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Pain is widespread and unequally distributed in society. Like 
many other causes of pain, knee osteoarthritis, which affects 
10% of men and 13% of women over 60 years of age in the 

United States1, disproportionately affects underserved populations; 
people of color score far higher on knee pain scales than do white 
individuals2–6. Understanding these racial disparities in pain is 
important for clinical decision making and public policy but also 
for understanding pain disparities for a variety of other medical 
problems7,8.

Two explanations for these disparities have been proposed. 
First, underserved patients might have more severe osteoarthritis 
within the knee. Alternatively, underserved patients could have 
more aggravating factors external to the knee. For example, the 
same physical ailments in different populations can produce very 
different experienced pain due to life stress, social isolation or other 
factors7–9. These two explanations have very different treatment 
implications: psychosocial interventions target causes external to 
the knee, whereas physical therapy, medication and orthopedic pro-
cedures address causes within the knee10–12.

Research to date has indirectly implicated factors external to 
the knee. Methodologically, this is demonstrated by defining an 
objective measure of osteoarthritis severity based on knee X-rays 
and then measuring the extent of pain disparities that remain after 
adjusting for severity. Typically, large differences in pain remain 
even after adjustment2–4,13. For example, even though Black patients 
have more severe osteoarthritis based on standard radiographic 
measures (Kellgren–Lawrence grade (KLG)), adjusting for KLG 
only slightly decreased measured Black–white disparities in pain3,13. 
These findings that pain disparities remain even when adjusting for 
radiographic osteoarthritis severity, however, depend heavily on 
how severity is measured. The relationship between radiographic 
severity and pain is debated. Many patients with mild or no disease 
as measured by radiographic severity suffer pain, and many patients 

with structural damage on X-ray or even magnetic resonance imag-
ing (MRI) experience no or very little pain14–16. Standard radio-
graphic measures such as KLG, developed decades ago in white 
British populations, might miss physical causes of pain in people of 
color17,18; further, there are known racial and socioeconomic biases 
in how a patient’s pain is perceived by observers19,20. If the pain expe-
rienced by underserved populations is caused by objective factors 
missing from current measures, a range of painful, treatable knee 
ailments would be misattributed to factors external to the knee.

In this paper, we use a machine-learning approach to dis-
criminate between the ‘within the knee’ and ‘external to the knee’ 
hypotheses. We produce a new algorithmic measure of osteoar-
thritis severity from radiographs alone. We use a dataset of knee 
radiographs from a diverse sample of 4,172 patients in the United 
States who had or were at high risk of developing knee osteoarthri-
tis. As part of an NIH-funded study21, bilateral fixed flexion knee 
radiographs were obtained and scored by radiologists on summary 
measures of radiographic severity (for example, KLG) and other 
objective features (for example, osteophytes and joint space narrow-
ing (JSN)). Patients also reported a knee-specific pain score (Knee 
injury and Osteoarthritis Outcome Score (KOOS)), derived from a 
multi-item survey on pain experienced during various activities (for 
example, fully straightening the knee22).

Summary statistics of the 4,172 participants, who generated 
36,369 observations (one for each knee at each time point) are pro-
vided in Table 1. Black patients had substantially higher pain levels 
across knees and time points compared with non-Black patients 
(97% of whom were white). Black patients experienced severe pain 
58% of the time (KOOS ≤ 86.1, a standard threshold for severe 
pain23), compared with 38% for patients overall (P value for racial 
difference, <0.001). The median Black patient had worse pain  
than 75% of non-Black patients. Black patients had a pain score  
that was 10.6 KOOS points higher than that of non-Black patients 
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(P value for racial difference, <0.001); for comparison, the s.d. in 
the dataset was 16.2 KOOS points. We found similar pain disparities 
across socioeconomic groups. Across knees and time points, 43% 
of lower-income patients and 45% of lower-education patients had 
severe pain (versus 38% overall; both P values < 0.001). Extended 
Data Fig. 3 provides statistics on the overlap between the Black, 
lower-education and lower-income patient groups; the groups were 
not independent.

Black patients also had more severe osteoarthritis, with 56% 
of knees having KLG ≥ 2 versus 46% of knees overall (P value for 
racial difference, <0.001), with similar trends across socioeconomic 
groups. But despite this higher disease severity, controlling for KLG 
scores does not fully account for the higher pain levels experienced 
by Black patients. Table 2 shows that the racial disparity in pain was 
10.6 KOOS points, without controlling for any severity measures, 
compared with 9.7 points when controlling for KLG, meaning that 
KLG accounted for only 9% of the pain disparity (95% CI, 3–16%). 
Results were similar for other underserved groups, with KLG 
accounting for only 16% (95% CI, 5–29%) and 8% (95% CI, −1% 
to 18%) of the pain disparity by income and education, respectively. 
These results replicate findings in the literature3,13 and suggest that 
objective osteoarthritis severity does not account for a large propor-
tion of the pain disparity between racial and socioeconomic groups. 
However, this judgment is dependent on the objective measure 
used (in this case, KLG), which could incorporate a range of inac-
curacies. For example, KLG scores were developed decades ago in 
white British populations, which might not reflect the experience of 
osteoarthritis in diverse populations17,18.

To generate an alternative measure, we trained a convolutional 
neural network to predict the reported pain score for each knee 
using each X-ray image, using a randomly selected training and 
development dataset of 25,049 radiographs (2,877 patients). We 
generated predictions in an independent validation (held-out) set 
of 11,320 radiographs (1,295 patients, mean age, 61.0 years; 56% 

female; 16% Black; 39% with income <$50,000; 38% non-college 
graduates). The following results are shown for the validation 
set alone, and no patients from the training or development sets 
were included in the validation set.

The resulting severity measure, denoted by algorithmic pain 
prediction (ALG-P), summarizes the objective features present in 
the radiograph that predict pain. As a preliminary check of the net-
work’s ability to predict pain, the Pearson correlation, Spearman 
correlation, root mean square error (RMSE) and mean absolute 
error of ALG-P for KOOS pain score were estimated; area under 
the curve (AUC) for predicting severe pain was also calculated 
(KOOS ≤ 86.1)23. As a preliminary check of validity, we found that 
the network’s ability to predict pain was at least as good as that of 
the KLG measure. The Pearson R2 value was 0.16 for ALG-P (95% 
CI, 0.13–0.19) versus 0.10 for KLG (95% CI, 0.08–0.13), represent-
ing a relative increase of 61% (95% CI, 38–86%). Further details and 
performance metrics (AUC for severe pain, etc.) are provided in 
Extended Data Fig. 4.

We found that disparities in osteoarthritis pain can be better 
accounted for by differences in this new measure of radiographic 
disease severity, relative to the standard measure KLG. As shown in 
Table 2, ALG-P accounted for 43% (95% CI, 33–56%) of the racial 
pain disparity, 4.7 times more than did KLG (95% CI, 3.2–11.8). 
It also accounted for 2.0 times more of the disparity by income 
(32% versus 16%) and 3.6 times more of the disparity by education 
(30% versus 8%). Importantly, these results were not specific to the 
KLG scoring system. Racial and socioeconomic disparities in pain 
persisted when controlling for alternative measures (for example, 
Osteoarthritis Research Society International (OARSI) joint space 
narrowing (JSN) grade24) or when controlling for the radiologist 
interpretation of the MRI (as measured by the MRI Osteoarthritis 
Knee Score (MOAKS)25) for the 22% of observations with MRI 
studies of the knee available (Methods).

Several sensitivity tests were run to determine whether the algo-
rithm’s predictive performance was driven by confounding factors 
or true signal in radiographs (for further details, see Methods). First, 
when ALG-P was grouped into five bins with sizes equal to those for 
KLG, the explanatory power of ALG-P was still greater than that 
of KLG, demonstrating that the algorithm was not simply learning 
a more granular version of KLG. Consistent with this, regressing 
ALG-P on KLG and image features that are commonly measured 
radiologically yielded an R2 of only 73%. Second, importantly, ALG-P 
did not simply learn how to reconstruct race or socioeconomic sta-
tus, and thereby pain, from radiographs, because it remained pre-
dictive for pain when controlling for race and socioeconomic status 
and achieved better predictive performance for pain than did KLG, 
even within racial and socioeconomic subgroups. Third, there was 
no evidence that ALG-P was gaining predictive power from image 
artifacts (or predicting pain only by predicting other features, such 
as body mass index (BMI)) (Fig. 1), nor that it was learning a radio-
graphic predictor specific to one recruitment site; see Methods for 
additional robustness checks.

After ruling out these explanations, we attempted to understand 
how ALG-P predictions reduce pain disparities. We hypothesized 
that the algorithm’s key advantage was learning from a diverse data-
set, with nearly 20% Black patients and many lower-income and 
lower-education patients. Statistics on the overlap between the Black, 
lower-education and lower-income patient groups are provided in 
Extended Data Fig. 3. This was tested by retraining the neural net-
work under two experimental conditions: (1) using a non-diverse 
training set from which all minority patients (for example, all Black 
patients; we also performed analogous experiments by remov-
ing all lower-income patients and all lower-education patients) 
had been removed and (2) using an equally sized diverse training 
set from which a subset of non-minority patients were removed.  
While models trained under both conditions outperformed KLG, 

Table 1 | Dataset summary statistics

training–
development

Validation

Sample size

 no. individuals 2,877 1,295

 no. observations 25,049 11,320

Demographics

 Black 17% 16%

 Lower-income (<$50,000 per year) 38% 39%

 non-college graduates 39% 38%

 Female 58% 56%

 Mean age, baseline visit (s.d.) 61.1 (9.2) 61.0 (9.1)

 Mean BMI, baseline visit (s.d.) 28.7 (4.9) 28.4 (4.6)

Fraction of knees with severe osteoarthritis (KLG ≥ 2)

 All 45% 46%

 Black 60% 56%

 Lower-income (<$50,000 per year) 52% 49%

 non-college graduates 52% 49%

Fraction of knees with severe pain score (KOOS ≤ 86.1)

 All 37% 38%

 Black 53% 58%

 Lower-income (<$50,000 per year) 44% 43%

 non-college graduates 46% 45%
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models trained on the diverse training sets achieved better predic-
tive performance for pain and greater reductions in racial and socio-
economic pain disparities than models trained on the non-diverse 
training sets of the same size (Extended Data Fig. 1). The model 
trained on a dataset with no Black patients reduced the racial pain 
disparity by only 2.3× KLG, as opposed to an average of 4.9× for 
models trained on five randomly sampled diverse training sets of 
the same size (P value for difference, <0.001 for all five randomly 
sampled training sets; results when removing all lower-income or 
all lower-education patients were similar). Thus, training set diver-
sity contributes to the algorithm’s ability to reduce disparities.

In addition to raising important questions regarding how we 
understand potential sources of pain, our results have impli-
cations for the determination of who receives arthroplasty for  
knee pain. While radiographic severity is not part of the formal 
guideline in allocations for arthroplasty (which only requires  
evidence of radiographic damage26), empirically, patients with 
higher KLGs are more likely to receive surgery27. Consequently, we  

hypothesize that underserved patients with disabling pain but  
without severe radiographic disease could be less likely to receive 
surgical treatments and more likely to be offered non-specific thera-
pies for pain. This approach could lead to overuse of pharmaco-
logical remedies, including opioids, for underserved patients and 
contribute to the well-documented disparities in access to knee 
arthroplasty10,27,28.

Our findings are consistent with previous literature report-
ing that underserved patients are less likely to receive knee sur-
gery29. In our data, Black patients have 0.78 lower odds (95% CI, 
0.64–0.96) of receiving knee surgery, as do lower-income (0.63; 
95% CI, 0.54–0.74) and lower-education patients (0.85; 95% CI, 
0.74–0.99). Patients from underserved populations are also more 
likely to be treated with opioids (odds ratios, 2.17 for Black (95% CI, 
1.58–2.99), 1.78 for lower-income (95% CI, 1.34–2.37) and 2.33 for 
lower-education patients (95% CI, 1.74–3.11).

Disparities in pain, particularly those remaining after adjust-
ment for standard radiographic severity, could contribute to these 
observations. Patients with greater radiographic severity are empiri-
cally more likely to receive arthroplasty27 (although formal arthro-
plasty guidelines simply require presence of radiographic damage26). 
Arthroplasty removes tissue objectively affected by degenerative 
disease and thereby relieves pain (though no trials specifically 
demonstrated that benefit varies by radiographic appearance10,28). 
As a result, most total knee replacements occur in patients with 
end-stage knee osteoarthritis11.

ALG-P identifies a subgroup of patients who have severe pain, 
based on the radiographic appearance of the knee; however, this 
appearance is not consistent with severe osteoarthritis as defined 
by commonly used radiographic grading systems. It is possible that 
these patients would benefit from arthroplasty, but because radio-
graphic osteoarthritis severity partially determines the decision to 
offer surgery (along with pain, function and quality of life), these 
patients may not be offered surgery. Because these patients, with 
severe pain and high ALG-P but lower osteoarthritis severity (KLG), 
were more likely to be Black, limitations of standard measures 
could contribute to disparities in access to arthroplasty. To test this 
hypothesis, we replicated a procedure previously used in an analy-
sis of arthroplasty allocation, using severe knee pain (KOOS ≤ 86.1) 
and severe osteoarthritis (KLG ≥ 3) to identify patients in our data-
set who were likely under most active consideration for arthro-
plasty27. These patients were then compared with patients identified 
using our alternative eligibility rule comprising severe pain and 
our alternate measure of severe osteoarthritis, severe ALG-P, as 
opposed to severe KLG. Table 3 illustrates the differences between 
the existing and simulated guidelines for allocation to arthroplasty. 
The same number of knees were classified as having severe osteo-
arthritis when using both the KLG and ALG-P severity measures. 

Table 2 | reducing unexplained racial and socioeconomic disparities in pain

Pain disparity (KOOS points) after controlling for reduction in pain disparity after controlling for ratio of 
reduction

No severity 
measures

radiographic severity 
(KLG)

Algorithmic severity 
(ALG-P)

radiographic severity 
(KLG)

Algorithmic severity 
(ALG-P)

ALG-P to KLG

Race 10.6 (8.3, 12.9) 9.7 (7.4, 11.9) 6.1 (3.7, 8.3) 9% (3%, 16%) 43% (33%, 56%) 4.7 (3.2, 11.8)

Income 4.2 (2.8, 5.6) 3.5 (2.3, 4.9) 2.9 (1.6, 4.1) 16% (5%, 29%) 32% (18%, 50%) 2.0 (1.4, 4.4)

Education 5.3 (3.7, 6.7) 4.9 (3.5, 6.2) 3.7 (2.4, 5.0) 8% (−1%, 18%) 30% (18%, 44%) 3.6 (2.1, *)

The first three columns report racial and socioeconomic pain disparities (in KOOS points) without any controls for severity (first column, equivalent to the difference in mean pain scores between groups), 
when controlling for the clinician’s severity measure KLG (second column) and when controlling for algorithmic severity measure ALG-P (third column). Controlling for either severity measure reduces 
racial and socioeconomic pain disparities, with the algorithmic severity measure achieving a larger reduction. The final three columns quantify the sizes of these reductions. The fourth column reports how 
much pain disparities are reduced by controlling for KLG, relative to controlling for no severity measures (that is, the reduction in the second column relative to the first). The fifth column reports how much 
pain disparities are reduced by controlling for ALG-P, relative to controlling for no severity measures (that is, the reduction in the third column relative to the first). The final column reports the ratio of the 
reductions in disparities by ALG-P versus KLG. In parentheses are 95% CIs computed by cluster bootstrapping at the patient level. The asterisk in the bottom-right entry (*) indicates that the upper limit of 
the CI was not defined, because the CI for the denominator included zero.

Fig. 1 | Heatmap of a representative X-ray image. The model’s prediction 
target is the pain score in the knee appearing on the right side of the image. 
Regions that influence the prediction more strongly are shown in brighter 
colors.
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However, measuring severity with ALG-P, rather than with KLG,  
would double the potential eligibility for arthroplasty for Black 
patients, increasing it from 11% to 22% of knees (P < 0.001).  
Using ALG-P would also decrease the fraction of knees that 
have severe pain and are ineligible for surgery from 51% to 40%  
among Black patients (P < 0.001). Among the population not cur-
rently eligible for surgery, patients with the highest ALG-P sever-
ity scores were also the patients most likely to be taking analgesics, 
including opioids (odds ratio, 1.24 for a 1-s.d. worsening in ALG-P; 
P = 0.008). As arthroplasty is known to reduce pain, this realloca-
tion of surgery could potentially narrow the racial and socioeco-
nomic disparities in pain as well as reduce the use of opioids for 
those in severe pain30.

In summary, we used a machine-learning algorithm to show  
that standard radiographic measures of severity overlook objec-
tive but undiagnosed features that disproportionately affect 
diagnosis and management of underserved populations with  
knee pain. As radiographic severity is a key input to management 
decisions, we propose that our new algorithmic measure ALG-P 
could potentially enable expanded access to treatments for under-
served patients.

This study has limitations. While the Osteoarthritis Initiative 
(OAI) dataset used for our analysis enrolled a diverse patient group 
from sites across the USA, our findings need to be validated in inde-
pendent populations. This would also serve as a check on overfitting, 
which was minimized by creating a separate validation set before 
beginning any analysis. The analysis of access to arthroplasty for 
underserved populations is speculative. We can estimate who might 
receive surgery, based on pain and radiographic severity, but do not 
observe the surgical decision-making process. Similarly, it was not 
possible to assess how using ALG-P as a decision aid would affect 
patient outcomes in the current study. Finally, a central question we 
were not able to address is which features of the knee the algorithm 
is using. Beyond our study, this is generally difficult to determine 
with neural networks, and fully explaining the signal that algo-
rithms find remains a pressing topic for future work, if algorithms 
are to be responsibly deployed in medical decision making. Caution 
is warranted because, while ALG-P accounts for significantly more 
of the variance in pain than does KLG, the variance accounted for 
by both methods is low. This low variance does not prevent us from 
studying disparities between racial or socioeconomic groups, as it 
is a common feature in studies of disparities in complex, unpredict-
able traits. The goal in such studies is not to explain all the variance 
between people, but to understand the group disparities that persist 
when controlling for relevant contextual variables. Still, one inter-
esting possibility for future work would be to explore whether pre-
dictive performance for pain could be improved using deep learning 
models with different architectures, for example, architectures 
that accommodate three-dimensional data to make predictions  

from MRI or combine images from multiple time points to leverage 
longitudinal datasets31,32.

One promising option for integrating our algorithm into clini-
cal practice is to use it as a decision aid, rather than as a replace-
ment, for human clinicians (for example, by showing the clinician 
a heatmap of affected regions within the knee (Fig. 1) alongside the 
ALG-P score). Such cooperation between humans and algorithms 
was shown to improve clinical decision making in some settings33, 
although this approach is not without challenges, such as physicians 
potentially placing incorrect levels of weight on algorithmic predic-
tions34. More broadly, our results illustrate how algorithms can be 
used to identify and reduce disparities in healthcare.
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Methods
Dataset. Clinical and radiological data were employed from the OAI, a multicenter, 
longitudinal study of participants aged 45–79 years who had or were at high risk 
of developing knee osteoarthritis21. Study data were anonymized, and this analysis 
was deemed exempt from review by the Stanford IRB.

Data were analyzed from five time points (baseline visit and 12-, 24-, 36- and 
48-month follow-ups). Each observation in the dataset corresponds to one knee 
for one person at one time point. Observations were removed if they were missing 
pain scores, KLG, age, race, sex, socioeconomic status or a knee X-ray image that 
passed the study’s quality control. After applying these filters, 4,172 of the original 
4,796 patients (87%) were included.

We randomly divided the data at the patient level (not the image level) into  
a training set, which was used to optimize model weights; a development set,  
which was used to conduct hyperparameter search and rank models by RMSE for 
pain score; and a blinded validation (held-out) set (approximately one-third of 
patients), for which no statistical analyses were performed until the model  
training procedure, including all hyperparameters, was finalized. (Extended Data 
Fig. 2 summarizes the analysis pipeline.) We confirmed that all statistics reported 
in Table 1 were balanced between the training-development and validation 
(held-out) set (all P values for differences, >0.05). All results were reported on the 
validation (held-out) set. All CIs and P values were computed by clustering at the 
patient level to account for repeated observations from each patient. All P values 
are two-sided.

Radiological images and preprocessing. Bilateral fixed flexion knee X-rays  
were used in the analysis and preprocessed using standard methods (for example, 
as in Rajpurkar et al.35). Each image was normalized by first dividing pixel  
values by the maximum pixel value (so that all pixel values were in the range 0–1) 
and then z scoring (subtracting the mean and dividing by the s.d. across all  
pixels). Using alternate image normalization methods (z scoring each image 
individually or z scoring using the mean and s.d. of the ImageNet dataset  
that the neural network was originally trained on) did not substantially affect 
performance. Images were downsampled to 1,024 × 1,024 pixels. Images were 
removed if they did not pass quality control filters, as annotated in the OAI  
X-ray image metadata.

Study outcomes. As part of the OAI study, images were scored by radiologists  
on radiographic features of osteoarthritis, including summary measures of  
severity (for example, KLG) and other features (for example, osteophytes  
and JSN)17,24,36.

KLG, a standard measure of osteoarthritis severity, is a five-level categorical 
variable (0–4), with increasing grades indicating increasing disease severity17,36. 
KLG ≥ 2 is used as a standard threshold for radiological osteoarthritis21. Besides 
KLG, 18 other radiographic features, which quantify osteophytes, JSN, subchondral 
sclerosis, cysts, chondrocalcinosis and attrition, were also used to train the neural 
network and to interpret its predictions, as described below. For the scoring 
of radiographic features, while some images were assessed multiple times by 
independent teams (referred to as projects 15 and 37), only the assessments 
from project 15 were used in the analysis, because project 37 assessed only a 
non-random subset of participants. The OAI only assessed these additional 
18 radiographic features (besides JSN, which was assessed in all participants) 
for participants who developed radiographic osteoarthritis in at least one knee 
(KLG ≥ 2) at any time point. Therefore, in this analysis, radiographic features were 
set to zero for other participants; in other words, it was assumed that participants 
who were never assessed to have osteoarthritis, and thus were not assessed for 
other radiographic features of osteoarthritis, did not display these features. To 
ensure that results were not specific to using KLG, a sensitivity analysis was 
performed using OARSI JSN24. Knee MRIs were also collected for a subset of 
patients and scored using the MOAKS method25, which we used for another similar 
sensitivity analysis in this subset.

KOOS pain score was used as a measure of self-reported pain22. KOOS is a 
knee-specific score (0–100, with lower scores indicating greater pain) derived from 
a multi-item survey on how often patients experience knee pain and pain severity 
during various activities (for example, ‘straightening the knee fully’); as usual, 
responses to each survey question were aggregated into a single score22.

Neural network training. A convolutional neural network was trained to predict 
KOOS pain score for each knee using each X-ray image. The input to the network 
was an X-ray of both knees, meaning that each X-ray for each person at each time 
point yielded two separate observations, one for each knee. To ensure that the 
prediction target was always the KOOS pain score in the knee that appeared on the 
right side of the image, we flipped the original image horizontally when necessary 
(that is, when the target knee appeared on the left side of the original image). The 
network was provided with both knees on the hypothesis that asymmetry between 
the knees might be predictive for pain; empirically, using both knees slightly 
improved prediction performance.

To give the network additional information about each image and guide it 
toward learning medically meaningful features, the network was trained to predict 
both KOOS pain score (its primary objective) and 19 radiographic features  

(KLG and the 18 additional radiographic features). For each training example, the 
network tried to minimize the following loss:

Ytrue � Ypredicted
� 2þλ

X

j

C jð Þ
true � C jð Þ

predicted

 2

Y is the KOOS pain score, C(j) is the z-scored jth image feature, and λ is a weight 
chosen by hyperparameter search. (Because the primary objective was to predict 
KOOS pain score, the RMSE for predicting KOOS pain score was used as the 
criterion for selecting model hyperparameters, as described below.) Intuitively, this 
loss encourages the network to learn to predict the KOOS pain score, its primary 
objective, but also the radiographic features and thereby learn a representation of 
the knee X-ray that captures medically relevant information. We emphasize that the 
additional features were not used as input to the network; the network only used 
the knee X-ray as input.

The network used a ResNet-18 architecture, with network weights pretrained 
on ImageNet37,38. Deeper layers of the architecture were then fine-tuned on the 
OAI dataset. The training dataset was augmented by applying random horizontal 
and vertical translations to each image39. Adam40 was used to optimize network 
weights, with an initial learning rate that decayed by a factor of 2 each time the 
loss plateaued. To mitigate overfitting, early stopping was used, and model weights 
were set at the completion of training to those after the epoch with the lowest 
RMSE for KOOS pain score on the development set. Random search was used to 
choose the network hyperparameters, including the batch size, magnitude of the 
horizontal and vertical translations for dataset augmentation, network architecture 
and number of layers to fine tune, optimizer to use and optimizer hyperparameters, 
the number of epochs to train for and the learning rate schedule. After finalizing 
the network architecture and training procedure, multiple models were trained 
(initialized with different random seeds), and the top five models (as measured by 
RMSE for KOOS pain score on the development set) were ensembled41. Training 
was performed on four Nvidia XP GPUs. Analysis was performed using Python 3.5.

Quantifying pain disparities. The main outcome was racial disparities in pain 
between Black (16% of patients in the validation set) and non-Black patients (84%, 
of whom 97% were white). Disparities by two socioeconomic measures were also 
considered: whether the patient had an annual income below $50,000 (39% of 
patients) and whether they had graduated from college (38% had not). Differences 
in pain scores across groups were first quantified without controlling for 
osteoarthritis severity, using mean KOOS pain score between groups (for example, 
racial pain disparity was defined as the difference in mean pain between Black and 
non-Black patients). Extended Data Fig. 3 reports the mean KOOS pain score for 
each race and socioeconomic subgroup.

We then computed the racial and socioeconomic pain disparities that remained 
when controlling for radiographic osteoarthritis severity. To do so, our approach 
was to fit a linear regression with KOOS pain score as the dependent variable and 
two independent variables: binary race or socioeconomic group and a measure 
of osteoarthritis severity (see below for specifics). The pain disparity was defined 
as the coefficient on binary race or socioeconomic group; that is, the gap in mean 
pain between racial or socioeconomic groups when controlling for severity.

We defined two alternative measures of osteoarthritis severity. First, we used 
the network’s predicted pain score ALG-P; this can be thought of as summarizing 
the radiographic features that are linked to pain, as quantified by the network. 
Second, we used the radiologist’s assessment of severity, as measured by KLG. 
To ensure fair comparison of explanatory power between ALG-P and KLG, we 
first rescaled KLG by predicting pain from KLG (in the combined training and 
development sets) using a regression in which KLG was coded as a categorical 
variable, with a separate coefficient for each of the five levels; this allowed for 
maximum flexibility in predicting pain from KLG, in case the relationship between 
the two was nonlinear. Lasso regression was used as a standard technique to 
prevent overfitting42. Conceptually, the output of this regression model (which was 
generated in the held-out set) was a rescaled KLG on the same scale as KOOS pain 
score and thus the same scale as ALG-P.

An alternate procedure would have been to fit a regression controlling for 
KLG coded as a categorical variable (rather than for rescaled KLG). We favored 
the procedure used in this paper because it treats the clinical and algorithmic pain 
predictions consistently; for both predictors, the training–development sets are used 
to learn a pain predictor, and then that predictor is assessed on the validation set. 
This avoids potential overfitting to the validation set. However, the two procedures 
are extremely similar, and we confirmed that the procedure used in this paper yielded 
estimates of pain disparities that were essentially identical to those produced by the 
alternate procedure. The income pain disparity estimates differed by 0.2% (3.529 
versus 3.524), the racial pain disparity estimates differed by 0.6% (9.664 versus 9.718), 
and the education pain disparity estimates differed by 0.3% (4.879 versus 4.895).

Because our analysis performs a regression of pain on severity score and 
binary racial or socioeconomic group, it implicitly fits a model in which the 
relationship between pain and severity score is the same for both groups. As 
a robustness check, we performed an additional regression that included an 
interaction between group and severity score and assessed the significance of the 
interaction term. In all cases, the interaction term was small (at most, one-quarter 
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of the main slope effect) and not statistically significant after multiple hypothesis 
correction (Bonferroni-adjusted P > 0.05). This indicates that the relationship 
between pain and severity score did not differ significantly across groups. As an 
additional check that our results were not sensitive to the use of linear regression 
to quantify the pain gap (and the parametric assumption of equal slopes across 
groups), we performed an alternate computation in which we quantified the pain 
gap as the sum of gaps between groups at each of the five severity levels (0, 1, 2, 3 
and 4), weighting each level by the number of knees at that level. This procedure 
is a non-parametric means of fully accounting for any differences across racial or 
socioeconomic groups in the relationship between severity score and pain. Our 
results remained extremely similar under this alternate definition of the pain 
gap; our estimation of the pain gap changed by less than 5% in all cases (for both 
severity scores and all three racial or socioeconomic groups).

Comparing predictive powers of ALG-P and KLG. We found that ALG-P 
explained 61% (95% CI, 38–86%) more of the variance in pain than did  
KLG, indicating that the knee X-rays did contain signal for predicting pain  
that KLG did not capture. The Pearson R2 for ALG-P was 0.16 (compared to  
0.10 for KLG) (Extended Data Fig. 4). When regressing pain on both ALG-P  
and KLG, the coefficient on ALG-P remained significant (P < 0.001), but the 
coefficient on KLG became insignificant (P = 0.20). This indicates that ALG-P 
captured the signal for pain that was present in KLG, while also capturing signal 
that KLG did not.

Not only did ALG-P correlate with patients’ current pain scores, it also 
identified patients who went on to have significantly worse future pain trajectories 
over the follow-up period. When controlling for pain score at baseline, a 1-s.d. 
worsening in ALG-P corresponded to 1.5× higher odds (95% CI, 1.4–1.7) that 
patients would be in severe pain at follow-up (combining data across all follow-up 
visits). Binning ALG-P into five categories of the same size as KLG bins, patients 
with a binned ALG-P ≥ 2 had 1.7× (95% CI, 1.5–2.0) higher odds of being in severe 
pain at follow-up when controlling for pain at baseline; patients with a binned 
ALG-P of 4, the highest grade, had 2.9× (95% CI, 1.9–4.5) higher odds of being in 
severe pain at follow-up. ALG-P also significantly predicted progression of KLG, 
even after controlling for KLG at baseline; a 1-s.d. change in ALG-P predicted a 
0.07-s.d. worsening in KLG at follow-up (95% CI, 0.06–0.08).

Visualizing image regions that influenced predictions. To compute the degree 
to which a region of the image influenced the neural network’s predicted pain 
score, the region was ‘masked’ out, by replacing it with a circle, the value of which 
was the mean pixel value for the image, using Gaussian smoothing to prevent 
sharp boundaries43. The absolute change in the neural network’s predicted pain 
level (comparing the masked image to the original image) was then computed. 
This process was repeated for a 32 × 32 grid of regions, evenly tiling the 
1,024 × 1,024-pixel image, allowing computation of a heatmap for how much 
masking each region of the image affected the neural network’s prediction (Fig. 1).  
As an additional robustness check, class activation mapping was used, which 
similarly indicated that the neural network’s prediction was, as expected, primarily 
influenced by the knee that appeared on the right side of the image, although it 
was also somewhat influenced by the contralateral knee44. (Because the predicted 
output variable was continuous, for class activation mapping, each filter was 
upweighted by its weight in the final fully connected layer.)

Allocation of arthroplasty following clinical guidelines. To simulate how 
arthroplasty would be differentially allocated when using KLG versus ALG-P  
as a severity measure, we replicated a procedure previously used in an analysis  
of arthroplasty allocation by identifying patients with severe pain (KOOS ≤ 86.1) 
and severe osteoarthritis (KLG ≥ 3)23,27. A different guideline was then  
simulated, for which eligibility was driven by severe pain and severe ALG-P,  
instead of severe pain and severe KLG. To do so, we used the categorical version 
of ALG-P, on the same scale of 0–4 as for KLG, by dividing the continuous ALG-P 
into five bins with the same size as KLG bins; arthroplasty was then allocated 
to knees with severe pain (KOOS ≤ 86.1) and severe osteoarthritis (categorical 
ALG-P ≥ 3). The same number of knees were classified as having severe 
osteoarthritis under both severity measures; only the ranking of knees changed.  
In this analysis, knees were excluded that had already had any knee surgery, and 
only knees at baseline were considered; neither of these decisions substantially 
altered results.

Validation of training and image processing pipeline. As a check that the overall 
training and image preprocessing procedure was able to extract meaningful signal 
from the image, a model with the same architecture used for the main prediction 
task was trained to predict KLG (rather than KOOS pain score) from the images. 
This prediction task was chosen because it was the subject of substantial research, 
allowing validation of the pipeline used in this analysis in comparison to previous 
studies45,46. Predictive performance on this task was comparable to that of previous 
studies using models specifically designed to predict KLG (mean square error, 0.35 
as compared to 0.48 and 0.50 in previous studies; R2, 0.87)45,46. This indicates that 
the model was able to extract clinically relevant signal from the image, even on a 
task it was not originally designed to perform.

Robustness to alternate measures of disease severity. To confirm that results were 
not specific to the measure of osteoarthritis severity used (KLG), the main analyses 
were repeated using two alternate measures of osteoarthritis severity. First, OARSI 
JSN grade was used as a measure of severity, defining a single severity measure by 
taking the maximum grade over the medial and lateral compartments, which is 
a standard procedure24,47. Similar to the results when comparing to KLG, ALG-P 
predicted more of the variance in pain (R2, 0.16) than did JSN (R2, 0.09), the 
prediction performance of which was comparable to that of KLG (R2, 0.10). ALG-P 
also achieved greater reductions in racial and socioeconomic pain disparities than 
did JSN: a 3.9× greater reduction in the education pain disparity (30% versus 8%), 
a 2.1× greater reduction in the income pain disparity (32% versus 16%) and a 7.7× 
greater reduction in the racial pain disparity (43% versus 6%).

To confirm that results were not specific to radiographic measures of image 
severity, the main analyses were repeated using MOAKS scores of knee MRIs for 
the 22% of observations for which they were available25. Following a previously 
used procedure for summarizing MOAKS scores, we extracted MOAKS scores 
assessing bone marrow lesions, cartilage and meniscus variables; aggregated 
subscores by taking the maximum within each knee compartment; and applied a 
threshold to the resulting value to produce a binary variable48. This resulted in ten 
binary variables summarizing the MOAKS scores. On the subset of observations 
for which MOAKS scores were available, ALG-P predicted more of the variance in 
pain (R2, 0.20) than did the MOAKS summary measures, either on their own  
(R2, 0.14) or when combined with radiographic features (R2, 0.16). ALG-P also 
achieved greater reductions in racial and socioeconomic pain disparities than 
did the MOAKS summary measures: a greater reduction in the education pain 
disparity (44% versus 22%), the income pain disparity (52% versus 32%) and the 
racial pain disparity (52% versus 2%).

Robustness check: ALG-P is not merely a more granular KLG. ALG-P’s superior 
predictive performance could come from the fact that it is a continuous prediction 
for pain, while KLG is confined to coarser bins (five categories). To test for this,  
we produced a categorical version of ALG-P, on the same scale of 0–4 as for KLG, 
by dividing the continuous ALG-P into five bins with the same size as KLG bins. 
The categorical version of ALG-P still achieved superior predictive power  
(R2, 0.15 versus 0.10 for KLG and 0.16 for the continuous ALG-P). It also narrowed 
racial and socioeconomic pain disparities more than did KLG; it narrowed the 
racial pain disparity by 4.5× more than did KLG (similar to the original value 
of 4.7× for the continuous ALG-P), the education pain disparity by 3.4× more 
than KLG (similar to the 3.6× value for continuous ALG-P) and the income 
pain disparity by 1.9× more than KLG (similar to the 2.0× value for continuous 
ALG-P). Of note, the categorical version of ALG-P agreed with KLG only 49% of 
the time, indicating that ALG-P was actually reranking individuals and not simply 
learning a more granular version of KLG.

Robustness check: ALG-P is not only reweighting features already known 
to radiologists. The model could have achieved its predictive performance by 
simply recovering factors known to radiologists and reweighting them to produce 
a score different from KLG; for example, placing more weight on osteophytes 
rather than on sclerosis. To test this, correlations of ALG-P with 19 radiographic 
features (KLG and an additional 18 radiographic features relevant to osteoarthritis, 
for example, osteophytes, JSN and sclerosis, as described above) were examined. 
First, the coefficient of ALG-P in a regression with KOOS pain score as the 
dependent variable was calculated (0.94; 95% CI, 0.85–1.03, without controlling 
for radiographic features) and then compared to the coefficient on ALG-P when 
variables controlling for known radiographic features were added (0.95; 95% 
CI, 0.80–1.10). The fact that the coefficient did not change indicates that the 
model’s explanatory power for pain was not fully captured by currently measured 
radiographic features. While ALG-P correlated with a number of radiographic 
features, with KLG (R2, 0.57) and all four osteophyte features (R2, 0.41–0.52) 
explaining the largest fraction of the variance in ALG-P, ALG-P could not be fully 
explained by the radiographic features (R2, 0.73) together.

Robustness check: ALG-P is not simply learning to predict race or 
socioeconomic status. ALG-P could be narrowing disparities in pain by simply 
learning how to predict race or socioeconomic status from the knee image. As 
patients from underserved groups have higher pain, simply learning to predict 
group membership from the image could produce some signal for predicting pain, 
without picking up on any independent signal for pain itself. To check that ALG-P’s 
predictive power did not derive merely from predicting race and socioeconomic 
status, we verified that ALG-P still significantly predicted pain when controlling 
for our binary variables for race, income and education. In a regression with KOOS 
pain score as the dependent variable, the coefficient on ALG-P was 0.94 (95% CI, 
0.85–1.03) without controlling for binary race or socioeconomic variables and 0.83 
(95% CI, 0.74–0.93) when controlling for all three binary race or socioeconomic 
variables. Thus, the coefficient on ALG-P remained highly statistically significant 
and similar in magnitude when controlling for race or socioeconomic status. We 
also verified that ALG-P achieved better predictive performance for pain than 
did KLG across all six race or socioeconomic groups in our analysis (Black or 
non-Black, higher- or lower-income and higher- or lower-education).
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Robustness check: predictions are not driven merely by image artifacts. The 
model could be gaining predictive power from image artifacts, for example, related 
to the study site in which patients were recruited49. To check for this, standard 
visualization techniques were used to assess which regions of the X-rays most 
influenced the model’s predictions. Figure 1 provides a representative example, 
illustrating that the model’s predictions did not appear to be influenced by 
image artifacts; rather, they were influenced by the expected knee (that is, on the 
right side of the image) and by regions of the knee (femorotibial joint space and 
surroundings) that were clinically relevant and consistent with previous work36,45. 
In the heatmap, warmer colors indicate regions of the image that influence the 
neural network’s predictions more strongly.

As an additional check that the model was not merely picking up image 
artifacts, linear regression was used to assess whether ALG-P still significantly 
predicted KOOS pain score when controlling for the recruitment site and time 
point at which imaging was conducted; whether the left or right knee was affected; 
and the individual’s age, sex, marital status, current and maximum BMI, history 
of knee surgery or injury and smoking or drinking behavior. The coefficient on 
ALG-P in a regression with KOOS pain score as the dependent variable remained 
highly statistically significant and similar in magnitude when these controls were 
included (coefficient, 0.94 (95% CI, 0.85–1.03) without controls; 0.77 (95% CI, 
0.67–0.87) with controls), and these controls explained only 32% of the variance  
in ALG-P.

BMI is an especially plausible source of predictive power, as it is likely 
detectable from knee radiographs and known to be correlated with pain50. Hence, 
we further confirmed that our predictive power was not only due to predicting 
BMI by stratifying the dataset by BMI category (18.5–25, 25–30, 30–35 and >35) 
and confirming that ALG-P still achieved larger R2 values than did KLG for each 
BMI group.

In sum, these results indicate that the model was unlikely to be deriving its 
predictive power merely from image artifacts.

Robustness check: ALG-P generalizes across sites. Previous work has shown 
that neural network performance on medical data can suffer when networks are 
tested on data from locations or hospitals that they were not trained on49. To assess 
whether the pain prediction model generalized across the five OAI recruitment 
sites, we altered the training set such that the model was trained on only four of 
the five sites; model performance was assessed using the held-out fifth site as a 
validation set. This experiment was repeated for all five recruitment sites. For all 
five sites, the algorithmic pain score achieved a higher R2 value on the held-out 
site than did KLG and achieved greater reductions in racial and socioeconomic 
pain disparities. Taking an unweighted average across all five held-out sites, the 
algorithmic pain predictor achieved an R2 value of 0.13 (as opposed to 0.10 for 
KLG and 0.14 for the original ALG-P), a reduction in the racial pain disparity of 
31% (as opposed to 7% for KLG), a reduction in the income pain disparity of 27% 
(as opposed to 13% for KLG) and a reduction in the education disparity of 20%  
(as opposed to 3% for KLG).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Anonymized imaging and clinical data to reproduce results of this study are 
available online at https://nda.nih.gov/oai/.

Code availability
Code to reproduce the results of this study is available online at https://github.com/
epierson9/pain-disparities.
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Extended Data Fig. 1 | the effect of dataset diversity on model performance. Each row of plots shows the effect of removing one minority group from 
the training set: from top, Black, lower-income, and lower-education patients. Each column of plots shows one metric: from left, R2 in predicting KOOS 
pain score, and the reductions in the education, income, and racial pain disparities (relative to KLG). In each subplot, the blue dot shows, as a baseline, 
the performance of KLG. The red dot shows the performance of a neural network trained on a non-diverse training set, with all minority patients removed. 
The five black dots show the performance of neural networks trained on five diverse training sets of equal size, with five random subsets of non-minority 
patients removed; in all cases, the diverse training sets yield superior performance to non-diverse training sets of equal size.
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Extended Data Fig. 2 | Analysis pipeline. Prior to conducting any analysis, 1,295 patients (red box) were reserved as a held-out validation set to assess 
final results. In the exploratory phase, the remaining patients were analyzed as follows: a training set was used to optimize model weights, and a 
development set to select model hyperparameters and conduct early stopping to avoid overfitting. The main analyses to run on the held-out validation set 
were determined prior to examining it, and the hyperparameters were finalized. In the final analysis, all models were retrained using the hyperparameters 
chosen in the exploratory phase, and model predictions were assessed on the 1,295 patients in the held-out validation set.
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Extended Data Fig. 3 | Pain levels among overlapping racial and socioeconomic subgroups. Race and socioeconomic status are correlated: among 
Black patients, 61% were lower-education and 63% were lower-income, while among non-Black patients, 34% were lower-education and 34% were 
lower-income.
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Extended Data Fig. 4 | Predictive performance for pain. 95% CIs are computed by cluster bootstrapping at the patient level.
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