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ABSTRACT 
In this paper we present a method for summarizing document by 
creating a semantic graph of the original document and 
identifying the substructure of such a graph that can be used to 
extract sentences for a document summary. We start with deep 
syntactic analysis of the text and, for each sentence, extract 
logical form triples, subject–predicate–object. We then apply 
cross-sentence pronoun resolution, co-reference resolution, and 
semantic normalization to refine the set of triples and merge them 
into a semantic graph. This procedure is applied to both 
documents and corresponding summary extracts. We train linear 
Support Vector Machine on the logical form triples to learn how 
to extract triples that belong to sentences in document summaries. 
The classifier is then used for automatic creation of document 
summaries of test data. Our experiments with the DUC 2002 data 
show that increasing the set of attributes to include semantic 
properties and topological graph properties of logical triples 
yields statistically significant improvement of the micro-average 
F1 measure for the extracted summaries. We also observe that 
attributes describing various aspects of semantic graph are 
weighted highly by SVM in the learned model. 

Categories and Subject Descriptors 
H.3.1 [Content Analysis and Indexing]: Abstracting Methods – 
document extracts, semantic structure, deep syntactic analysis.  

General Terms 
Performance, Experimentation. 

Keywords 
Summarization, sentence extraction, abstract, document summary, 
semantic structure, linguistic analysis, machine learning, support 
vector machines. 

1. INTRODUCTION 
Document summarization refers to the task of creating document 
surrogates that are smaller in size but retain various characteristics 
of the original document, depending on the intended use. While 
abstracts created by authors or trained professionals involve 
rewriting of text, automatic summarization of documents has been 
focused on extracting sentences from text [5, 10, 13, 15] so that 
the overall summary satisfies various criteria: optimal reduction 
of text for use in text indexing and retrieval [3], coverage of 
document themes [14], and similar. The objective of 
automatically creating professional abstracts of documents has 
been also pursued. In particular, the Document Understanding 
Conference [4] provides experimentation framework and a forum 
for exchanging research ideas and results on that particular topic.   

Automated summarization is often approached in two phases. 
First, key textual elements, e.g., keywords, concepts, and concept 
relations, are extracted from the text using linguistic and 
statistical analysis. These are then used to select sentences from 
the text, enforcing various requirements on coverage and 
coherence of extracts [15, 16]. More sophisticated approaches 
involve generation of text based on textual units identified in the 
first phase.  

In this paper we are primarily concerned with the first phase, i.e., 
identification of textual elements for use in extracting summaries. 
We start from the assumption that capturing semantic structure of 
a document is essential for summarization. We thus create 
semantic representations of the document, visualized as semantic 
graphs, and learn the model to extract sub-structures that could be 
used in document extracts. The basic elements of our semantic 
graphs are logical form triples, subject–predicate–object. We 
characterize each triple by a rich set of linguistic, statistical, and 
graph attributes and train linear SVM classifier to identify those 
triples that could be used for sentence extraction. Our experiments 
show that characteristics of the semantic graphs, obtained through 
sophisticated linguistic analyses, are most prominent attributes in 
the learnt SVM model. We also show that including the rich set of 
linguistic attributes increased the performance of the 
summarization model. 

In the following sections we describe the procedure that we use 
for generating semantic graphs. We then discuss the experiment 
set up and the results of the sub-graph learning experiments and 
conclude by outlining the future work. We refer to background 
research and related work. 
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2. PROBLEM STATEMENT 
The task of automated document summarization is to produce a 
shorter version of an original document. As document summaries, 
in form of abstracts, have been generated by authors and trained 
professionals, it seems most natural to try to model human 
abstracting. However, evaluation of such models is difficult 
because of the text generation aspects. In this study we thus focus 
on learning models for extracting rather than generating 
summaries from document text.  

We apply machine learning algorithms to capture characteristics 
of human extracted summary sentences. In contrast to related 
studies, which typically rely on a minimal understanding of the 
semantic structure of documents [5, 10], we start with deep 
syntactic analysis of the text. We extract elementary syntactic 
structures from individual sentences in the form of logical form 
triples, i.e., subject–predicate–object triples, and use semantic 
properties of nodes in the triples to build semantic graphs for both 
documents and corresponding summaries. We expect that 
extracted summaries would capture essential semantic relations 
within the document and thus their structures could be found 
within the document semantic graphs. We reduce the problem of 
summarization to acquiring machine learning models for mapping 
between the document graph and the graph of a summary. This 
means we learn models for extracting sub-structures from 
document semantic graphs which are characteristic of human 
selected summaries. We use logical form triples as basic features 
and apply Support Vector Machines to learn the summarization 
model.   

3. SEMANTIC GRAPH GENERATION 
Our approach to generating semantic representations of 
documents and summaries involves five phases, each described in 
more details in the sections below: 

 Deep syntactic analysis – We apply deep syntactic analysis 
to document sentences, using NLPWin linguistic tool [3], 
and extract logical form triples 

 Co-reference resolution – We identify co-references for 
named entities through surface form matching and text 

layout analysis, thus aiming at consolidating expressions 
that refer to the same named entity 

 Pronomial reference resolution – We then use NLPWin 
syntactic and semantic tags to trace and resolve pronominal 
references as they appear in the text  

 Semantic normalization – We expand terms in the logical 
form triples using WordNet semantic network in order to 
normalize expressions that refer to the same concepts  

 Semantic graph analysis – We merge the logical form 
triples into a semantic graph and analyze the graph 
properties. 

3.1 Linguistic Analysis 
For linguistic analysis of text we use Microsoft’s NLPWin natural 
language processing tool. NLPWin first segments the text into 
individual sentences, converts sentence text into a parse tree that 
represents the syntactic structure of the text (Figure 2) and then 
produces a sentence logical form that reflects the meaning, i.e., 
semantic structure of the text (Figure 3). This process involves a 
variety of techniques: use of knowledge base, grammar rules, and 
probabilistic methods in analyzing the text.  

 
Figure 2. Syntactic tree for the sentence  

“Jure sent Marko a letter” 
 

Figure 3. Logical form for the sentence 

Cracks appeared Tuesday in the U.N. trade embargo against Iraq as Saddam Hussein sought to circumvent the economic noose around his country. Japan, 
meanwhile, announced it would increase its aid to countries hardest hit by enforcing the sanctions. Hoping to defuse criticism that it is not doing its share to 
oppose Baghdad, Japan said up to $2 billion in aid may be sent to nations most affected by the U.N. embargo on Iraq. President Bush on Tuesday night 
promised a joint session of Congress and a nationwide radio and television audience that ``Saddam Hussein will fail'' to make his conquest of Kuwait 
permanent. ``America must stand up to aggression, and we will,'' said Bush, who added that the U.S. military may remain in the Saudi Arabian desert 
indefinitely. ``I cannot predict just how long it will take to convince Iraq to withdraw from Kuwait,'' Bush said. More than 150,000 U.S. troops have been sent 
to the Persian Gulf region to deter a possible Iraqi invasion of Saudi Arabia. Bush's aides said the president would follow his address to Congress with a 
televised message for the Iraqi people, declaring the world is united against their government's invasion of Kuwait. Saddam had offered Bush time on Iraqi 
TV. The Philippines and Namibia, the first of the developing nations to respond to an offer Monday by Saddam of free oil _ in exchange for sending their own 
tankers to get it _ said no to the Iraqi leader. Saddam's offer was seen as a none-too-subtle attempt to bypass the U.N. embargo, in effect since four days after 
Iraq's Aug. 2 invasion of Kuwait, by getting poor countries to dock their tankers in Iraq. But according to a State Department survey, Cuba and Romania have 
struck oil deals with Iraq and companies elsewhere are trying to continue trade with Baghdad, all in defiance of U.N. sanctions. Romania denies the allegation. 
The report, made available to The Associated Press, said some Eastern European countries also are trying to maintain their military sales to Iraq. A well-
informed source in Tehran told The Associated Press that Iran has agreed to an Iraqi request to exchange food and medicine for up to 200,000 barrels of refined oil a day 
and cash payments. There was no official comment from Tehran or Baghdad on the reported food-for-oil deal. But the source, who requested anonymity, said the deal was 
struck during Iraqi Foreign Minister Tariq Aziz's visit Sunday to Tehran, the first by a senior Iraqi official since the 1980-88 gulf war. After the visit, the two countries 
announced they would resume diplomatic relations. Well-informed oil industry sources in the region, contacted by The AP, said that although Iran is a major oil exporter 
itself, it currently has to import about 150,000 barrels of refined oil a day for domestic use because of damages to refineries in the gulf war. Along similar lines, ABC News 
reported that following Aziz's visit, Iraq is apparently prepared to give Iran all the oil it wants to make up for the damage Iraq inflicted on Iran during their conflict. 
Secretary of State James A. Baker III, meanwhile, met in Moscow with Soviet Foreign Minister Eduard Shevardnadze, two days after the U.S.-Soviet summit that produced 
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The logical form for the sentence, shown in Figure 3,  shows that 
the sentence is about sending, where “Jure” is the deep subject (an 
“Agent” of the activity), “Marko” is the deep indirect object 
(having a “Benefactive” role), and the “letter” is the deep direct 
object (assuming the “Patient” role). The notations in parentheses 
provide Semantic information about each node in the graphs. For 
example, “Jure” is a masculine, singular, and proper name. 

From the logical form we extract constituent sub-structures in the 
form of triples: “Jure”←“send”→“Marko” and “Jure”←“send” 
→“letter”. For each node we preserve semantic tags that are 
assigned by the NLPWin software. These are used in our further 
linguistic analyses and machine learning stage. 

Figure 4 shows an example that outlines the main processes and 
output of different stages involved in generating the semantic 
graph. We first perform deep syntactic analysis to the raw text, 
using NLPWin software. Then we refine the analysis applying 
several methods: co-reference resolution, pronominal anaphora 
resolution, and semantic normalization (discussed in Section 3.3). 
Resulting triples are then linked based on common concepts into a 
semantic graph. Figure 6 shows an example of a semantic graph 
for an entire document. 

3.2 Co-reference Resolution For Named 
Entities 
In documents it is common that terms with different surface forms 
refer to the same entity. Identifying such terms is referred to as 
co-reference resolution. We restrict our co-reference resolution 
attempt to syntactic nodes that, in the NLPWin analysis, have the 
attribute of ‘named entity’. Such are names of people, places, 
companies, and similar.  

For each named entity we record the gender tag that was obtained 
based on NLPWin semantic resources. This narrows the set of 
named entity surface forms we compare with the new record. 
Then, starting with multi-word named entities, we first eliminate 
the standard set of English stop words and ‘common’ words, such 
as “Mr.”, “Mrs.”, “international”, “company”, “group”, 
“president”, “federal”, etc. We then apply a simple rule by which 
two terms with distinct surface forms refer to the same entity if all 
the words from one term also appear as words in the other term. 
The algorithm, for example, correctly finds that “Hillary Rodham 
Clinton”, “Hillary Clinton”, “Hillary Rodham”, and “Mrs. 
Clinton” all refer to the same entity. 

3.3 Pronomial Anaphora Resolution 
NLPWin automatically performs pronoun reference resolution 
within a single sentence. However, as NLPWin analysis is 
focused on individual sentences, those pronominal references that 
cross the sentence boundaries have to be resolved as a post 
process to the logical form analysis. 

We take the approach that is similar to Mitkov in [11]. We start 
with resolved co-references to named-entities and make a 
simplifying assumption that pronouns in the text can refer only to 
named entities mentioned in the same text. We, accordingly, 
focus on resolving only five basic types of pronouns including all 
different forms: “he” (“his”, “him”, “himself”), “she”, “I”, “they” 
and “who”. For a given pronoun, we search sequentially through 
sentences, backward and forward, and check the type of named 
entity in order to find suitable candidates. To find candidates we 
first search backward inside the sentence, then we continue 
searching backward in previous sentences. If no appropriate 
candidates are found so far, we extend our search in forward 
direction – first inside the sentence of the pronoun and then also 
inside the sentences that follow it. Each candidate is scored based 
on character and sentence distance and the direction from the 
pronoun, part of speech attributes, and other linguistic features. 
Among the scored candidate entities we chose the one with the 
best score and assign it to the pronoun.  

 

Table 1: Performance of anaphora resolution algorithm 

Pronoun Frequency Frequency [%] Accuracy [%] 

He 681 45.22 86.9 
They 244 16.20 67.2 

It 204 13.55  
I 64 4.25 82.8 

You 50 3.32  
We 44 2.92  
That 44 2.92  
What 27 1.79  
She 24 1.59 62.5 
This 22 1.46  
Who 11 0.73 63.6 
Total 1506  82.1 

 

We evaluated our pronoun resolution algorithm on 91 manually 
labeled documents from DUC 2002 dataset. The set contained 
1506 pronouns of which 1024 (68%) were from the above 

Figure 4. Process of creating a semantic graph. 

Deep syntactic analysis 
Co-reference resolution: 
      Tom=Tom Sawyer 
Anaphora resolution:  
       he=Tom Sawyer 

Refined/enhanced 
Subject–Predicate–
Object triples 

Tom Sawyer  go  town 
Tom Sawyer  meet  friend 
Tom Sawyer  is  happy 

Creation of the 
semantic graph 

Tom Sawyer went to town. He 
met a friend. Tom was happy. 

Tom Sawyer went to town.  
He [Tom Sawyer] met a friend. 
Tom [Tom Sawyer] was happy. 



selected pronoun types and other 432 (32%) were “it”, “you”, 
“we”, “what”, and similar. Table 1 shows the distribution of most 
frequent pronouns and the accuracy of resolving the pronouns 
using our approach. Average accuracy over the 5 selected 
pronoun types is 82.1%. Scoring function coefficients were 
optimized through cross-validation experiments on the same data 
set. 

3.4 Semantic Normalization  
Having completed the pronoun and co-reference resolution, we 
arrive at a list of triples extracted from individual sentences and 
would like to link them into a semantic graph. In order to increase 
the coherence and compactness of the graphs, we decided to use 
WordNet [6] to establish synonymous relationships among nodes.  

WordNet is a semantic network of about 115,000 nodes 
(concepts) and 340,000 links among the concepts which capture 
26 different types of relations. WordNet provides opportunities 
for more sophisticated analysis and semantic normalization that 
will be subject of our future work. Synonymy information of 
concepts enables us to find equivalence relations between distinct 
triples. For example, as we expand subject node ‘watcher’ and 
predicate node ‘follow’ of the triple  “watcher” 
←“follow”→“moon” by synonyms and compare the resulting 
triples with the triples in the document, we find a match with 
“spectator”←“watch”→“moon”. 

Similarly we establish equivalence between the triples: “governor 
Patten”←”change”→”position” and “governor Patten” 
←”modify”→”attitude” and triples “earthquake”←”hit“→ 
”Northern Iran” and  “quake”←”strike”→”Northern Iran”. 

Figure 5: Full semantic graph of the document “Long Valley volcano activities”. Subject/object nodes indicated by the light 
color (yellow) nodes in the graph indicate summary nodes. Gray nodes indicate non-summary nodes. We learn a model for 

distinguishing between the light and dark nodes in the graph. 



3.5 Construction of a Semantic Graph 
We merge the logical form triples on subject and object nodes 
which belong to the same normalized semantic class and thus 
produce semantic graph, as shown in Figure 5. Subjects and 
objects are nodes in a graph and predicates label the relations 
between the nodes. Each node is also described with a set of 
attributes – explanatory words which are helpful for 
understanding the content of the node. 

For each node we calculate in/out degree of a node, PageRank 
weight [12], Hubs and Authorities weights [8], size of weakly 
connected component, size of strongly connected component and 
many more. These statistics are used as attributes of logical form 
triples during the sub-graph learning process. 

4. LEARNING SEMANTIC SUB-GRAPHS 
USING SUPPORT VECTOR MACHINES 
Using linguistic procedures described in Section 3 we can 
generate, for each pair of documents and document summaries, 
the corresponding subject–predicate–object triples and associate 
with them a rich set of attributes, stemming from the linguistic, 
statistical, and graph analysis. These serve as the basis for training 
our summarization models. 

In this section we describe the experimental set up and discuss the 
results. 

4.1 DUC Dataset 
In our experiments, we used the document collection from the 
Document Understanding Conference (DUC) 2002 [4], consisting 
of 300 newspaper articles on 30 different topics, collected from 
Financial Times, Wall Street Journal, Associated Press, and 
similar sources. Each topic contains about 10 different articles.  
For each article we have a 100 word human written abstract and 
for almost half of them also human extracted sentences, 
interpreted as extracted summaries. These are not used in the 
official DUC evaluation as they were generated by a volunteer 
from the research community. Nevertheless, these are useful for 
our analysis, as our objective is to learn characteristics of human 
summarization and apply the learned model to generated 
summaries automatically. 

An average article in the data set contains about 1000 words or 50 
sentences, each having 22 words. About 7.5 sentences are 
selected into the summary. After applying our linguistic 
processing, we find, on average 81 logical triples per document 
with 15 of them contained in extracted summary sentences. 

Due to the small overlap in terms of common triples between the 
document and human written abstract, we had to rely on human 
extracted sentence summaries. In preparation for learning, we 
label as positive examples all subject–predicate–object triples that 
correspond to sentences in the summaries. Triples form other 
sentences are designated as negative examples. 

4.2 Feature Set 
Features considered for learning are logical form triples, 
characterized by attributes of three types. Linguistic attributes 
include logical form tags (subject, predicate, object), part of 

speech tags, depth of the linguistic node in the syntactic or logical 
form analysis, and about 70 semantic tags (such as gender, 
location name, person name, etc.). There are total 118 distinct 
linguistic attributes for each individual node. Fourteen additional 
attributes come from the semantic graph properties, some 
mentioned in section 3.5. Finally we include several attributes 
that approximate document discourse structure: the location of the 
sentence in the document, frequency and location of the word 
inside the sentence, number of different senses of the word, and 
related. 

Each set of attributes is represented as a sparse vector of numeric 
values. These are concatenated into a single sparse vector and 
normalized to the unit length, to represent a node in the logical 
form triple. Similarly, for each triple the node vectors are 
concatenated and normalized. Thus, the resulting vectors for 
logical form triples contain about 466 binary and real-valued 
attributes. For the DUC dataset, 72 of these components have 
non-zero values, on average. 

4.3 Learning Algorithm 
This rich set of features serves as input to the Support Vector 
Machine (SVM) classifier [2, 7]. In the initial experiments we 
explored SVMs with polynomial kernel (up to degree five) and 
RBF kernel. However, the results were not significantly different 
from the SVMs with the linear kernel. Thus we continued our 
experiments with the linear SVMs, setting the parameter C to 2 
and J to 6. Parameter C controls the tradeoff between fitting and 
generalization of the model, while parameter J enables the learner 
to weigh training errors on positive examples J times more than 
on negative examples.  

The choice of J=6 is motivated by our assumption that the 
extracted summaries should aim at the higher recall, ensuring that 
all the human extracted sentences are included and being less 
sensitive to the possible noise they may be introduced. 

4.4 Experimental Setup 
Besides aiming at a good performance of the automatic 
summarizer, our important objective is to understand the relative 
importance of various attribute types that are available for 
describing the logical form triples. Thus we evaluate how adding      
features to the model impacts the precision and recall of 
extracting the logical form triples and corresponding summaries. 
In addition to standard precision and recall, we report for each 
experiment the corresponding F1 measure, defined as harmonic 
mean of the two statistics.  

We define the learning task as a binary classification problem. We 
label as positive examples all subject–predicate–object triples that 
were extracted from the document sentences which humans 
selected into the summary. Triples form all other sentences are 
designated as negative examples. We then learn a model to 
discriminate between the two classes of triples. 

All reported experiment statistics are micro-averaged over the 
instances of sentence classifications. In all of our experiments we 
regard the document boundaries, meaning that triples from a 
single document all belong either to training or test set and are 
never shared between the two. 



4.5 Experiment Results 
4.5.1 Impact of the Training Data Size 
Our sentence classifiers are trained and tested through 10-fold 
cross-validation experiments, for each of several sizes of training 
data: 10, 20, 50, and 100 documents. Samples of documents are 

selected randomly and corresponding sentences used for training 
and testing. We always run and evaluate the resulting models on 
both the training and the test sets, to gain insight into the 
generalization aspects. From the results reported in Table 2, we 
observe a negative impact of small training sets on the 
generalization of the model.  

Table 2: Performance of cross-topics summarization in terms of micro-average Precision, Recall and F1 measures.  
Results for ten-fold cross validation, for different sample size of training data. 

Training set Test set Learning 
documents Precision Recall F1 Precision Recall F1 

10 33.48 88.44 48.58 23.05 64.67 33.99 
20 31.26 86.45 45.92 24.49 68.69 36.11 
50 29.42 82.53 43.37 25.75 72.81 38.04 

100 28.64 79.91 42.16 26.25 73.22 38.64 
 

Table 3: Performance of cross-topics summarization, in terms of macro-average Precision, Recall and F1 measures.  
Results for ten-fold cross validation, for different sample size of training data. 

Training set Test set 
Attribute Set 

Precision Recall F1 Precision Recall F1 

Graph 21.63 83.40 34.35 21.35 82.40 33.91 
  Linguistic 26.27 75.78 39.02 25.48 73.31 37.82 

Graph + Linguistic 27.28 76.66 40.24 26.97 75.96 39.81 
All 28.39 78.54 41.70 27.50 76.23 40.42 

 

Table 4: Some of the most important Subject-Predicate-Object triple attributes. 

Attribute rank 
Attribute name 

1st quartile Median 3rd quartile 

Authority weight of Object node in a semantic graph 1 1 1 
Size of weakly connected component of Object node in 

a semantic graph 2 2.5 3 

Degree of Object node in a semantic graph 2 3 3 
Is Object a name of a country 4 5 5 

Size of weakly connected component of Subject node in 
a semantic graph 6 7 9 

Degree of Subject node in a semantic graph 6 10.5 12 
PageRank weight of Object node in a semantic graph 6 11 12 

Is Object a name of a geographical location 8 13 16 

Authority weight of Subject node in a semantic graph 13 18.5 23 



4.5.2 Impact of Different Feature Attributes 
Data presented in Table 3 provides further insight into the relative 
importance of different attribute types, the topological graph 
features, the linguistic features, and the statistical and discourse 
attributes. Performance statistics are obtained from 10-fold cross-
validation using 135 documents in the training set. Relative 
difference in performance has been evaluated using pair-wise t-
test and it has been established that the differences between 
different runs are all statistically significant. 

We see that using linguistic features (syntactic and semantic tags) 
outperforms the model relying only on the semantic graph 
topology. Starting with graph attributes and adding linguistic 
features, we experience 11.5% relative increase in the F1 

measure. As new attributes are added to describe triples from 
additional perspectives, the performance of the classifier 
consistently increases. The cumulative effect of all attributes 
considered in the study is 19.2% relative increase in F1 measure 
over the baseline that uses graph attributes only.  

We can also inspect the learned SVM models, i.e., the SVM 
normals, for the weights assigned to various attributes during the 
training process.  We observe the relative rank of attribute 
weights across experiment iterations. Since the distributions of 
weights and corresponding attribute ranks are skewed they are 
best described by the median.   

From Table 4 it is interesting to see that the semantic graph 
attributes are consistently ranked high among all the attributes 
used in the model. They describe the element of a triple in 

Table 5: Performance of within-topic summarization, compared with cross-topic summarization. Comparison shows that 
training on topic specific yields higher F1 performance.  

Training set Test set Learning using 
samples of 5 
documents Precision Recall F1 Precision Recall F1 

Within-topic 36.49 90.63 52.03 23.60 60.05 33.89 
Cross-topic 36.59 92.23 52.40 20.73 60.28 30.85 

 

(a) 

(b) 

Eight years after a volcano scare incited fear, anger and economic gloom in Sierra resorts, residents are nonchalant about renewed 
underground lava movement that is triggering thousands of tiny earthquakes.  

The resort town's 4,700 permanent residents live in Long Valley, a 19-mile-long, 9-mile-wide volcanic crater known as a caldera.  

The Earth's crust is being stretched apart in the region, allowing molten rock to fill half-mile-wide chambers under the caldera.  

The valley was created 730,000 years ago by one of Earth's most powerful eruptions, a blast that spewed 600 times more material than 
the May 1980 eruption of Mount St. Helens in Washington state.  

Despite the current activity, the probability of a major earthquake or a volcanic eruption in the area is “less than 1 percent each year,” 
said David Hill, the U.S.  

Geological Survey geophysicist in charge of research at Long Valley. Mono County Sheriff Martin Strelneck called such estimates “a 
scientific guessing game,” and said area residents rarely discuss the latest swarm of earthquakes, which started in May 1989.  

As a result, the Geological Survey issued a “notice of potential volcanic hazard” for Long Valley in May 1982.  

That warning, coupled with jarring earthquakes, damaged tourism and aggravated a recession in the once-booming real estate market.  

Figure 6: For the article on “Long Valley volcano activities” we show (a) Human extracted sentence summary and (b) 100 
word human written summary. 

California's Long Valley is a 19-mile caldera created 730,000 years ago by an eruption 600 times larger than Mount St. Helens. In May 
1989, new underground lava movement began triggering thousands of tiny earthquakes and raising the valley floor. Residents refuse to 
heed warnings, remembering a 1982 false alarm that damaged tourism and aggravated a recession. Afterward, journalists were accused 
of sensationalism and scientists of scaring people to get more funding. Currently, 5-10 small quakes happen daily as the Earth's crust is 
stretched apart and magma fills half-mile-wide chambers 4 miles under the caldera, but the probability of eruption is less than one 



relation to other entities mentioned in the text and so give overall 
structure of the document. For example, ‘Object – authority 
weight’ measures how other important ‘hub’ nodes in the graph  
link to it [8]. A good ‘hub’ points to nodes with ‘authoritative’ 
content, and a node is a good ‘authority’ if it is pointed to by good 
hubs. Subjects are hubs pointing to authorities – objects. 
Authority weight captures how important is the object – in how 
much action it is involved. 

The same observation holds for experiments in which all the 
attributes are normalized to have a value between 0 and 1. This 
way we prevented the attributes with smaller values to 
automatically have high weights and vice versa. So all attributes 
had the same influence on the SVM normal. In our future work 
we shall study in more details SVM models with heterogeneous 
attribute types. 

These results support our intuition that relations among concepts 
in the document that result from the syntactic and semantic 
properties of the text  are important for summarization. 
Interestingly, feature attributes that most strongly characterize 
non-summary triples are mainly linguistic attributes describing 
gender, position of the verb, as being inside the quotes,  position 
of the sentence in the document, word frequency, and similar – 
the latter few attributes are typically used in statistical approaches 
to summary extraction. 

4.5.3 Topic Specific Summarization 
For each of 30 topics there are 5 documents on the average with 
extracted sentence summaries. We used these documents to learn 
topic specific summaries. We performed ‘leave one out’ cross 
validation over all 30 topics. More precisely, for each topic, we 
take all the documents for training, except one. We learn the 
classifier on the selected documents (all triples extracted from the 
documents) and test the classifier on one that is left out.  This is 
repeated for each document in the test and the performance is 
averaged over all the cross validation runs.  

Table 5 shows the performance that is higher from the 
performance of the topic independent summaries, when the same 
sample of training data is used. While the data size for topic 
specific summarization is small and thus does not allow 
generalization, the results may be indicative of the ability to use 
the method on a rather small dataset and capture the topic specific 
trends. 

4.6 Sentence Extraction 
Extracted logical form triples are used to identify the appropriate 
sentences for inclusion into the summary. We apply a simple 
decision rule by which a sentence is included in the summary if at 
least one of the logical triples from the sentence is nominated by 
the learner as the summary triple. As logical form triples can be 
shared by multiple summary sentences, as well as sentences that 
may not be appropriate for summaries, this additional step 
introduces further noise. Applying F1 measure to the extracted 

Figure 7: Automatically generated summary (semantic graph) from the document “Long Valley volcano activities”. 
Subject/object nodes indicated by the light color (yellow) nodes in the graph indicate correct logical form nodes. Dark gray 

nodes are false positive and false negative nodes. 



sentences we find that the micro-average F1 value is about 2% 
lower relative to those for the triples themselves. 

In Figure 5 we show a sentence selection summary of the 
document about the Long Valley volcano activities. The original 
document is about 1000 words in length. Human generated 
sentence selection summary contains 200 words (Figure 6, (a)). 
Next, we show a 100 word human written summary of the same 
document (Figure 6, (b)). Comparing the text of human extracted 
and human generated summaries we can appreciate the 
complexity of automatic summary generation and evaluation of 
the experimental systems.  

Figure 5 and Figure 7 show semantic graphs for the document and 
automatically generated summary using our method. Light shaded 
nodes represent summary nodes – nodes that were generated by 
the triples extracted from the sentences humans selected into the 
summary (Figure 7). Dark shaded nodes were generated by the 
triples from non-summary sentences.   

5. RELATED WORK 
Over the past decades, research in text summarization has 
produced a great volume of literature and methods [13, 15]. 
However, even the simplified definition of document summaries 
as document extracts, as proposed by Luhn [10], does not 
simplify the task of creating comprehensible and useful document 
surrogates. One can group the efforts into those based on 
heuristics [5, 10, 14], others based on machine learning 
techniques [9, 16] and those combining the two. One common 
theme of research is the depth of the linguistic analysis 
undertaken in the summarization effort. While most of this work 
stays at the shallow parsing level, our approach is unique in three 
main respects. It introduces an intermediate, more generic layer, 
of text representation within which the structure and content of 
the document and summary are captured. This direction of 
research has been outline by Spark Jones in [15] as still 
unexplored avenue. Second we apply machine learning technique 
using features that capture semantic structure, i.e., concepts and 
relations, in contrast to previous attempts in which linguistic 
features are of finer granularity, i.e., keywords and noun phrases 
[9, 16]. Finally, the intermediate semantic graph representation 
opens up new areas of explorations in which the captured 
semantic structure itself can serve as a document surrogate and 
provide means for document navigation.   

6. CONCLUSIONS 
We presented a novel approach of document summarization by 
generating semantic representation of the document and applying 
machine learning to extract a sub-graph that corresponds to the 
semantic structure of a human extracted document summary. 
Experiments on the DUC 2002 data show that adding attribute 
types to the logical form features help increase the performance of 
the learnt model, as evidenced by the increase in the micro-
average F1 measure. Compared to human extracted summaries we 
achieve on average recall of 75% and precision of 30%. Our 
future work will involve explorations of alternative semantic 
structures on additional data sets, including human generated 
abstracts. 
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