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ABSTRACT
The phenomenon of edge clustering in real-world networks is a

fundamental property underlying many ideas and techniques in

network science. Clustering is typically quantified by the clustering

coefficient, which measures the fraction of pairs of neighbors of a

given center node that are connected. However, many common ex-

planations of edge clustering attribute the triadic closure to a “head”

node instead of the center node of a length-2 path—for example, “a

friend of my friend is also my friend.” While such explanations are

common in network analysis, there is no measurement for edge

clustering that can be attributed to the head node.

Here we develop local closure coefficients as a metric quantify-

ing head-node-based edge clustering. We define the local closure

coefficient as the fraction of length-2 paths emanating from the

head node that induce a triangle. This subtle difference in definition

leads to remarkably different properties from traditional clustering

coefficients. We analyze correlations with node degree, connect the

closure coefficient to community detection, and show that closure

coefficients as a feature can improve link prediction.
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1 INTRODUCTION
Networks are a fundamental tool for understanding and model-

ing complex physical, social, informational, and biological sys-

tems [8, 33]. Although network models of real-world systems are

often sparse graphs, a recurring trait is that the edges tend to

cluster [24, 39, 44, 50]. More specifically, the probability of a link

between a pair of nodes sharing a common neighbor is much larger

than one would expect compared to a random null model [50]. In

many contexts, the edge clustering phenomenon is natural. For ex-

ample, in a social network, two individuals with a common friend

are more likely to become friends themselves [38]; in co-authorship

networks, scientists with a mutual collaborator are more likely to
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Figure 1: Local Clustering Coefficient (A) and the proposed
Local Closure Coefficient (B) at nodeu. The Local Clustering
Coefficient is the fraction of closed length-2 paths (wedges)
with center node u. In contrast, we define the Local Closure
Coefficient as the fraction of closed wedges where u is the
head of the wedge.

collaborate in the future [20]; and in citation networks, two ref-

erences appearing in the same publication are more likely to cite

each other [51]. The clustering of edges underlies a number of

areas of network analysis, including community detection algo-

rithms [10, 12, 43], feature generation in machine learning tasks on

networks [17, 23], and the development of generative models for

networks [26, 41, 44].

The clustering coefficient is the standard metric for quantifying

the extent to which edges of a network cluster. In particular, the

local clustering coefficient of a node u is the fraction of pairs of

neighbors of u that are connected by an edge (Figure 1A). The lo-

cal clustering coefficient is a node attribute often used in machine

learning pipelines utilizing network features for tasks like outlier

detection [23] and role discovery [2, 17]. The local clustering coeffi-

cient has also been used as a covariate outside of computer science

in, for example, psychological studies of suicide [5].

In many networks, large clustering coefficients can be explained

by local evolutionary processes. In social networks, for example,

local clustering is often explained by the old adage that “a friend of

a friend is my friend,” which is incorporated into network growth

models [18, 27]. This intuitive explanation is an old idea in structural

balance theory [15, 16]: the head node u trusts neighbor v , who in

turn trusts its own neighborw , leading u to trustw (Figure 1B).

However, in this explanation, closure is driven by an end point
of the length-2 path (i.e., wedge), also called the head (this is node u
in Figure 1B), who “creates” a link to a friend of a friend. The head-

driven closure mechanism commonly appears in other network

contexts as well. For example, such closure is sometimes attributed

to status [14, 25]: the head node u thinks highly of a neighbor v ,
node v thinks highly of their neighborw , and then the head node

u thinks highly ofw . And in citation networks, acknowledging and

citing one paper usually leads to further reading on its references

and subsequent citations [51].

Surprisingly, the above explanations on the mechanism underly-

ing triadic closure and the clustering of edges are fundamentally
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different from how clustering is actually measured today. Specifi-

cally, the clustering coefficient quantifies clustering from the center
of the wedge, using edges that are not even adjacency to the center

node u (Figure 1A). On the other hand, explanations for the emer-

gence of clustering are often based on the head node u of a wedge,

using edges actually adjacent to u (Figure 1B). Currently, there is

no local metric quantifying clustering that is consistent with tri-

adic closure processes driven by the head of a wedge. This poses a

fundamental gap in how clustering is measured in networks.

Present work: Closure Coefficients.Here, we close this gap and
propose a new metric for quantifying the level of clustering attrib-

uted to the head node of a wedge (Figure 1B). Our work stems from

the observation that many processes leading to triadic closure are

head-based but the standard metric for clustering (the clustering

coefficient) is center-based (Figure 1A). We propose the local closure
coefficient to measure clustering from the head of a wedge. We

define the local closure coefficient of a node u as the fraction of

length-2 paths (wedges) emanating from u that induce a triangle

(Figure 1B). The traditional local clustering coefficient of a node

u measures the edge density amongst the neighbors of u—thus u
is not even adjacent to the edges that count towards its clustering

(Figure 1A). In contrast, the local closure coefficient depends on

edges adjacent to nodeu itself (Figure 1B). While naive computation

of the closure coefficient would examine the node’s 2-hop neigh-

borhood, we show how to compute the local closure coefficient in

the same time it takes to compute the local clustering coefficient.

Our goal is not to argue that the closure coefficient is an across-

the-board better metric of edge clustering. Instead, we show that

closure coefficients are a complementary metric and may be a

useful measure of clustering in scenarios such as link prediction,

role discovery, or outlier detection, which often use several node-

based features [3, 4, 17, 23]. While the definition of the closure

coefficient is only a subtle structural change from the clustering

coefficient—measuring triadic closure from the head of a wedge

rather than the center—it induces remarkably different empirical

and theoretical properties. The first major difference is correlation

with node degree. In many real-world networks, the local clustering

coefficient decreases with node degree at a power-law-like rate [40,

48], and some models can explain this [44, 47]. We show empirically

that the local closure coefficient increases with node degree and

provide theoretical justification for this phenomenon.

We also show connections between the closure coefficient and

the existence of communities in networks, as measured by con-

ductance. Specifically, the conductance of the 1-hop neighborhood

of every node is bounded by one minus the local closure coeffi-

cient. This is a generalization and strengthening of a prior result

that relies on highly technical proof techniques and only bounds a

single 1-hop neighborhood with minimal conductance [13]. Using

closure coefficients, the proofs simplify while providing stronger

and more general bounds. We also obtain analogous generalizations

and strengthening of a similar result for “higher-order” clustering

coefficients [53, 54] on a “motif conductance” metric [6]. Using our

theory as motivation, we find that the closure coefficient can iden-

tify good seeds for personalized PageRank community detection.

Finally, we show that including closure coefficients as a feature

improves link prediction performance in many cases, especially in

social networks. To explain these findings, we show that, compared

to clustering coefficients, closure coefficients more closely match

“true closures,” where the edge in a trianglewith the latest timestamp

is the only one that counts towards closure.

In summary, we propose the local closure coefficient, a new

metric of local clustering that is based on “a friend of my friend is

my friend” triadic closure. The metric is subtly different from the

classical local clustering coefficient but carries several interesting

empirical and theoretical properties, and we anticipate that it will

become part of the lexicon of basic node-level network statistics.

2 PRELIMINARIES AND BACKGROUND
Notation. We consider networks as undirected graphs G = (V ,E)
without self-loops. We use n = |V | as the number of nodes and

m = |E | as the number of edges. For any node u ∈ V , we denote its

degree by du , which is the number of edges incident to node u. We

denote the subset of nodes containing node u and all its neighbors

as N (u), which we refer to as the (1-hop) neighborhood of node u.
An ℓ-clique is an ℓ-node complete subgraph, and a triangle is

a 3-clique. We denote the number of triangles in which node u
participates by T (u). For larger cliques, we use Kℓ(u) where ℓ is
the size of clique. Moreover, we use T and Kℓ to denote the total

number of triangles and ℓ-cliques in the entire network.

Background on clustering coefficients.The concept of the node-
level clustering coefficient was initially proposed by Watts and

Strogatz [50], although the notion of clustering in general has a

longer history [38]. We say that a wedge is an ordered pair of edges

that share exactly one common node, and the common node is called

the center of the wedge (Figure 1A). A wedge is called closed if the

edge between two ends of the wedge exists, inducing a triangle.

The local clustering coefficient of a node u is defined as the fraction

of wedges centered at node u that are closed,

C(u) =
2T (u)

du · (du − 1)
.

The denominator du · (du − 1) is the number of wedges centered

at node u, and the coefficient 2 in the numerator comes from the

fact that each triangle at node u closes two wedges (two ordered

pairs of neighbors). If there is no wedge centered at node u (i.e., the

degree of node u is either 0 or 1), the local clustering coefficient is

undefined. To measure the overall clustering of the entire network,

the average clustering coefficient is the mean of local clustering

coefficients at all nodes in the network,

C̄ = 1

|Ṽ |

∑
u ∈Ṽ C(u),

where Ṽ is the set of nodes where the local clustering coefficient

is well-defined. When undefined, the local clustering coefficient

is sometimes assigned to be zero in calculations of the average

clustering coefficient of the network [33]. We refer to Kaiser [21]

for a discussion on how this can affect network analyses.

An alternative global version of the clustering coefficient is the

fraction of closed wedges in the entire network [32, 49]

C = 6T∑
u∈V du ·(du−1)

, (1)



where the coefficient 6 in the numerator comes from the fact that

each triangle contains 6 closed wedges (6 ordered pairs). We call

this metric the global clustering coefficient.
Both the average and global clustering coefficient are weighted

averages of local clustering coefficients. The weight in the global

case is the number of wedges centered at each node, which is at the

order of the degree squared, and thus places more weight on high-

degree nodes. The weight in the average case is uniform amongst all

nodes and thus (implicitly) places more weight on low-degree nodes

as they outnumber high-degree nodes in real-world networks with

heavy-tailed degree distributions. Therefore, global and average

clustering coefficients often have substantially different values in

real-world networks (including in the networks we will analyze;

see Table 1).

3 THE LOCAL CLOSURE COEFFICIENT
Recall that a wedge is an ordered pair of edges that share exactly

one common node (i.e., a length-2 path). The common node is called

the center of the wedge, and here we define the head of this wedge

as the other end point (i.e., other node) of the first edge. Now we

give the formal definition of local closure coefficient.

Definition 3.1. The local closure coefficient of node u, denoted
H(u), is the fraction of wedges headed at u that are closed:

H(u) =
2T (u)

W (h)(u)
, (2)

whereW (h)(u) is the number of wedges where u is the head and

T (u) is the number of triangles containing u. If there is no wedge
with nodeu being the head, the local closure coefficient is undefined.

Figure 1B illustrates this definition. Each triangle at node u con-

tains two closed wedges headed at node u, as combining either

incident edge of u with the opposite edge gives a wedge headed at

u. This gives the coefficient 2 in the numerator of Equation (2).

Even though both the local clustering and closure coefficients

are natural metrics of local clustering, we find that they may be

positively correlated, negatively correlated, or weakly correlated in

real-world networks (as given by the Pearson correlation coefficient

in Figure 2). Thus, the local closure coefficient captures comple-

mentary information on fundamental network clustering structure

missed by the classical clustering coefficient, and we explore this

further in the remainder of the paper.

Analogous to the local clustering coefficient, we also define an

average closure coefficient as follows.

Definition 3.2. The average local closure coefficient of a graph,
denoted by H̄ , is defined as the mean of the local closure coefficients

of nodes with well-defined local closure coefficients,

H̄ = 1

|Ṽ (h) |

∑
u ∈Ṽ (h) H(u),

where Ṽ (h)
is the set of nodes with well-defined closure coefficients.

We can also define a global closure coefficient akin to the global

clustering coefficient in Equation (1), but the two metrics are equi-

valent—both are simply the fraction of closed wedges in the entire

network. The global measurement has in fact been described with

a “head-based” closure definition [18], but this has not carried over

to the local node-based metric that we study.

Figure 2: Scatter plots of local clustering coefficientsC(u) and
local closure coefficients H(u) in real-world networks from
different domains, where each point in the plot represents
a node in the network, along with the Pearson correlation
ρ. While both metrics naturally quantify clustering, the cor-
relation might be positive, negative, or weak, depending on
the network, suggesting that the two metrics capture com-
plementary clustering information.
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Figure 3: (A) The higher-order local clustering coeffi-
cient [53] examines the fraction of (ℓ-clique, edge) pairswith
common center node u that induce an (ℓ + 1)-clique (in this
figure, ℓ = 3). (B) In contrast, we define the local higher-order
closure coefficient as the fraction of closed wedges where u
is the head of the wedge, i.e., the node in the (ℓ-clique, edge)
pair that is not part of an ℓ-clique.

Efficiently computing the closure coefficient. At first glance,
it may seem that computing closure coefficient is computationally

expensive, since the number of wedges headed by a nodeu involves

length-2 paths emanating from u. However, computing the local

closure coefficient of a node u only requires examining the 1-hop

neighborhood structure of node u, provided that one can efficiently

access the degree of any node efficiently. For any neighborv ∈ N (u),
each edge containing v (apart from the edge (u,v)) contributes one
wedge headed at node u. Therefore,

W (h)(u) =
∑
v ∈N (u)(dv − 1) =

∑
v ∈N (u)(dv − du ). (3)

Therefore, one can compute the local closure coefficient of every

node in the graph in the time to enumerate all of the triangles in

the graph. This is the same computational cost of computing the

local clustering coefficient of every node.

Higher-order closure coefficients.The perspective ofmeasuring

local clustering from the head of each wedge naturally extends to

our recent work on higher-order clustering coefficients [53]. We

use this extension in our theory and experiments in Section 4.2. An

ℓ-wedge is a pair of an ℓ-clique and an edge that share exactly one

node (Figure 3A). The unique node intersecting the ℓ-clique and



the edge is the center of the ℓ-wedge. An ℓ-wedge is called closed if

the ℓ + 1 nodes in the ℓ-wedge induce an (ℓ + 1)-clique. The local

ℓth-order clustering coefficient at a node u is defined as the fraction

of ℓ-wedges centered at node u that are closed (Figure 3A):

Cℓ(u) =
ℓKℓ+1

(u)

Kℓ(u) · (du − ℓ + 1)
.

(Each (ℓ+ 1)-clique contains ℓ different ℓ-wedges centered at u, and
the total number of ℓ-wedges centered at u is Kℓ(u) · (du − ℓ + 1).)

We define the head of an ℓ-wedge to be the node that is the other

end point of the edge in the ℓ-wedge, and we define the ℓth-order
local closure coefficient of node u as the fraction of ℓ-wedges headed

at u that induce an (ℓ + 1)-clique (Figure 3B),

Hℓ(u) =
ℓKℓ+1

(u)

W
(h)
ℓ

(u)
.

When ℓ = 2, the local higher-order closure coefficient is equiva-

lent to the local closure coefficient defined earlier. For notational

convenience, we omit the subscript ℓ in this case.

Next, we derive a formula similar to Equation (3) to show how

to efficiently computeW
(h)
ℓ

(u). For any ℓ-wedge headed at u, its
center node, denote by v , must be a neighbor of node u. This ℓ-
wedge corresponds to an ℓ-clique at node v in which u does not

participate. Denote the number of ℓ-cliques containing u and v by

Kℓ(u,v). Then for any 1-hop neighborv , there are Kℓ(v) −Kℓ(u,v)
ℓ-wedges of which u is the head and v is the center. Thus,

W
(h)
ℓ

(u) =
∑
v ∈N (u) [Kℓ(v) − Kℓ(u,v)]

=
∑
v ∈N (u) [Kℓ(v) − (ℓ − 1)Kℓ(u)] . (4)

The last equality comes from the fact that

∑
v ∈N (u) Kℓ(u,v) =

(ℓ − 1)Kℓ(u), since any ℓ-clique at node u contains ℓ − 1 nodes of

u’s neighbors. Therefore, the computational cost is the same as

computing the ℓth-order clustering coefficient [53].

Summary. Thus far, we have defined (higher-order) local closure

coefficients, given efficient ways of computing them, and provided

evidence that they are complementary metrics to the classical clus-

tering coefficients. The next section highlights interesting proper-

ties and applications of closure coefficients.

4 EXPERIMENTS AND ANALYSIS
In this section, we analyze closure coefficients and provide some

case studies for their applications. We first study correlation with

node degree, where closure coefficients have remarkably different

characteristics than clustering coefficients, and we provide theoreti-

cal justification for this fact. We then show how closure coefficients

explain the existence of community structure in graphs through a

theorem connecting conductance of 1-hop neighborhoods to clo-

sure coefficients and use this as a principled heuristic for identifying

good seed nodes for personalized PageRank community detection.

Finally, we show that, compared to clustering coefficients, closure

coefficients more strongly correlate with the temporal properties of

triadic closure in networks and use this as motivation for improving

link prediction with closure coefficient features.

Data. For our analysis and experiments, we examine the following

real-world networks (Table 1 lists summary statistics):

Table 1: Summary statistics of networks: the number of
nodes (n), the number of edges (m), the degree assortativity
coefficient (r ) [31], the global clustering coefficient (C), the
average clustering coefficient (C̄), and the average closure co-
efficient (H̄) defined in this paper. Asterisks (*)mark datasets
containing timestamps on edge creation.

Network n m r C C̄ H̄

fb-Stanford 11,621 568K 0.102 0.157 0.253 0.103

Flickr* 584K 2,257K -0.050 0.122 0.380 0.039

YahooAnswers* 598K 1,301K -0.014 0.011 0.107 0.009

Youtube* 3,224K 9,377K -0.064 0.001 0.169 0.013

LinkedIn* 6,881K 29,162K -0.026 0.068 0.229 0.016

congress 871 79,886 -0.001 0.424 0.499 0.386

arxiv-AstroPh 18,772 198K 0.206 0.318 0.677 0.250

DBLP* 1,282K 5,180K 0.104 0.172 0.735 0.224

email-Enron* 141 1,414 -0.232 0.285 0.388 0.196

email-Eu* 986 16,064 -0.026 0.267 0.450 0.153

msg-College* 1,899 13,838 -0.188 0.057 0.138 0.022

AskUbuntu* 157K 456K -0.155 0.011 0.184 0.001

SuperUser* 192K 715K -0.101 0.011 0.188 0.001

StackOverflow* 2,584K 28,183K -0.103 0.011 0.123 0.001

(i) Online friendship networks. fb-Stanford: the Facebook friend-

ships at Stanford University [46]; Flickr: the friendships network

at flickr.com, a photo-sharing website [24]; YahooAnswers: the

friendship network of answers.yahoo.com, a Q&A website [24];

Youtube: the friendship network at youtube.com [30]; LinkedIn:

the links in the LinkedIn professional network from 2003 to 2006 [24].

(ii) Collaboration networks. congress: a co-committee membership

network of United States congresspersons [37]; arxiv-AstroPh: a

co-authorship network derived from arXiv submissions on Astro-

physics [27];DBLP: a co-authorship network derived fromDBLP [1].

(iii) Communication networks. msg-College: a Facebook-like mes-

saging network between college students [35]; email-Eu and email-

Enron: two email networks [22, 27].

(iv)Online question-and-answer networks.AskUbuntu, SuperUser, and
StackOverflow [36]: networks derived from Stack Exchange web-

sites where nodes represent users and edge represents interactions

between two users (answer or comment).

4.1 Correlation with node degree
A natural first question is how metrics of local clustering vary with

node degree. This is fundamental in network analysis; for example,

it is well-known that the average clustering coefficient tends to

decrease with node degree [24, 40, 44, 45] and the same is true for

higher-order clustering coefficients [53].

We start our analysis with empirical evaluations, which mo-

tivates our subsequent theoretical analysis. In contrast with the

clustering coefficient, we observe the opposite behavior with the

closure coefficient. Specifically, the average closure coefficient tends

to increase as the degree of the node increases, even when the clus-

tering coefficient decreases (Figure 4).

Both the local clustering and closure coefficients are normalized

number of triangles at each node, and the major difference in the
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Figure 4: Correlation of local clustering and closure coef-
ficients with node degree. We group nodes by logarithmic
binning and show the average degree with average cluster-
ing and closure coefficients in each bin. We also include the
Pearson correlation ρ between degree and the local cluster-
ing and closure coefficients.

correlation with node degree comes from how we apply the nor-

malization. With the local clustering coefficient, normalization is

by the number of wedges centered at the node, which is on the

order the square of degree. On the other hand, normalization with

the local closure coefficient is by the number of wedges headed at

the node, which is the sum of degrees of its neighbors. Since the

degree distribution of many real-world networks are heavy-tailed

(including the ones we are studying), the neighbors of large degree

nodes cannot all have large degree, and the degree of a high-degree

node’s neighbor is likely smaller than the degree of the node itself.

Thus, the number of wedges headed at a node grows more slowly

than the square of the degree, leading to larger closure coefficients

at high degree nodes and smaller ones at low degree nodes.

To better understand why the local closure coefficient increases

with node degree, we provide a theoretical justification under the

configuration model. The configuration model uniformly at ran-

dom sample graphs with a prescribed degree sequence, and is a

standard tool to analyze the behavior of measures and patterns on

networks [11, 29]. One way to implement the configuration model

is via stub matching [11]: first generate stubs (half-edges) at each

node, where the number of stubs is the same as the node’s degree in

the given degree sequence, and then match these stubs uniformly

at random. In the configuration model, any stub pair is matched

with the same probability, so the probability of forming an edge

between nodesu andv is of the order of du ·dv/(2m). The following

result says that as graphs grow large, the closure coefficient in the

configuration model increases with degree.

Theorem 4.1. Let S = [du ]u ∈V be a given degree sequence andG
be a random graph generated from the configuration model with S ,
the local closure coefficient of any node u satisfies

E[H(u)] =
¯k − 1

2m
· (du − 1) · (1 + o(1))

as n → ∞, where ¯k = (
∑
v d2

v )/(
∑
v dv ) is the expected degree if we

randomly choose a node with probability proportional to its degree.

Proof. For any wedge headed at node u, we denote the node on the

other end by v . This wedge is closed if there is an edge between u
and v , and thus the probability is (du − 1)(dv − 1)/2m · (1 + o(1)).
Note that here we need to subtract by 1 because one stub of node u
(and v) has already been used in forming the wedge.

Now we show that E[dv ] = ¯k . Since any node v has dv stubs

to match in forming the second edge of the wedge, the probability

of v being the other end of wedge is proportional to dv , and thus

being
dv∑

v∈V dv
. Therefore, E[dv ] =

∑
v ∈V dv ·

dv∑
v dv

= ¯k .

In summary, we have

E[H(u)] = E [(du − 1)(dv − 1)/(2m)] · (1 + o(1))

∼
E[dv ] − 1

2m
· (du − 1) =

¯k − 1

2m
· (du − 1).

□

Theorem 4.1 shows that the expected value of the local closure

coefficient under the configuration model increases with node de-

gree. Quantitatively, it states that expected value is proportional to

the node degree, and thus it increases linearly at slope 1 under the

log-log axes scaling (as is in Figure 4). In real-world networks, even

though we observe the increasing relationship (Figure 4), the slope

of the line is sometimes smaller than 1 (such as in the Facebook

friendship network and the two co-authorship networks). Indeed,

the configuration model is a simple null model that preserves the

degree distribution but does not necessarily preserve other proper-

ties which may affect the correlation between degree and closure

coefficient, such as the degree assortativity [31]. Many real-world

networks, such as friendship networks and collaboration networks,

exhibit degree assortativity (the degree assortativity coefficient

r > 0 as is listed in Table 1), meaning that large-degree nodes

are more likely to connect with large-degree nodes. Consequently,

large-degree nodes are heads at more wedges than expected, and

thus have lower local closure coefficient than expected under the

configuration model. In comparison, in two communication net-

works and the StackOverflow network (Figure 4) with degree

dissortativity (r < 0), the slopes of the lines are close to 1.

4.2 Connections to community detection
In this section, we connect local closure coefficient to graph cluster-

ing and community detection. We generalize and strengthen recent

results on the connection between the global (higher-order) clus-

tering coefficient and the existence of 1-hop node neighborhoods

with small (clique motif) conductance. Our proofs are also much

simpler than technical results from prior work. Our new theoretical

results explain why previous empirical results work much better

than predicted by prior theory. We also use our theory to find good

seeds for personalized PageRank community detection.



Background: community detection, (motif) conductance, and
1-hop neighborhoods. The community detection problem aims to

find a subset of nodes S ⊂ V that is densely connected inside while

separated from the rest of the network [10]. This problem is often

formulated as finding a subset of nodes with small conductance [43]:

ϕ(S) =
cut(S)

min(vol(S), vol(S̄))
. (5)

Here cut(S) is the number of edges with one end point in S and

the other end point in the complement set S̄ = V \S , and vol(S) =∑
u ∈S du is the number of edge end points in S . When vol(S) ≤

vol(S̄), the conductance measures the ratio of the number of edges

leaving S to the number of edges in S . Small conductance indicates

a tightly knit community and is recognized as one of the most im-

portant graph clustering criterions [43]. Conductance minimization

is also effective at capturing ground-truth communities [52].

Some of our recent work generalized the conductance measure

to account for network motifs [6]. A network motifM is any chosen

small connected graph (such as a triangle), and an instance ofM in

a graph G is some induced subgraph of G that is isomorphic toM .

The motif conductance for a given motifM is defined as

ϕM (S) =
cutM (S)

min(volM (S), volM (S̄))
.

where cutM (S) is the number of instances ofM that have at least

one end point (i.e., node) in S and at least one end point in S̄ , and
volM (S) is the number of motif instance end points in S (i.e., the

sum—over all instances ofM—of the number of nodes in each motif

instance that are in S). WhenM is an edge, this definition reduces to

the original conductance measure described above. For undirected

networks, common motif examples are cliques, and we use ϕℓ(S)
to denote the motif conductance when the motifM is an ℓ-clique.

Prior work upper bounds the smallest conductance (Equation (5))

over all 1-hop neighborhoods in a network by a function of the

global clustering coefficient [13]. The bound is low when global

clustering is large, formalizing that clustering leads to community

structure. Our past work extended this result to motif-based com-

munity detection, where the motif is a clique [54]: for any graph

with global ℓth-order clustering coefficient Cℓ ,

minu ∈V ϕℓ(N (u)) ≤ c(Cℓ) · (1 −Cℓ), (6)

where c(Cℓ) is a function that takes value between 1 and 2.

The upper bound is weak but provids motivation for studying

1-hop neighborhoods (or egonets) as communities. Empirically,

both studies found many 1-hop neighborhoods with small (motif)

conductance. In other words, the theory was much weaker than

what was observed in practice. We next provide new theory that

subsumes Equation (6) and also explains why many 1-hop neigh-

borhoods have small (motif) conductance. Furthermore, our proofs

are much simpler than those from prior work [13, 54].

Connecting closure coefficients to low-conductance sets. Prior
results upper bounding the neighborhood conductance with the

clustering coefficient are provedwith a complex probabilisticmethod.

Furthermore, the upper bound only applies to the 1-hop neighbor-

hood with smallest conductance. Moreover, the upper bound far

from empirical observations—there are often many 1-hop neigh-

borhoods with small conductance [13, 54].

Using the local closure coefficient, we give a local version of the

previous results, showing that the node neighborhood conductance

of any node is upper bounded by 1−Hℓ(u). The upper bound is tight
in practice and thus closes the previous theory–practice gap [13,

54]. Furthermore, the prior results follow as a simple corollary to

our theorem (see Corollary 4.3). The following theorem provides

an upper bound on the motif conductance for any node u in the

network, in terms of the local closure coefficient.

Theorem 4.2. Let u be a node in a graph with volℓ(N (u)) ≤

volℓ(V )/2. Then the motif conductance for the ℓ-clique motif of the
1-hop neighborhood of node u is bounded by one minus the local
closure coefficient. Formally,

ϕℓ(N (u)) ≤ 1 − Hℓ(u). (7)

Proof. For every ℓ-clique that is cut by N (u), it must correspond to

an open ℓ-wedge headed at node u. Note that no two ℓ-cliques will

correspond to the same open ℓ-wedge, thus

cutℓ(N (u)) ≤ (1 − Hℓ(u))W
(h)
ℓ

(u).

Next, we give a lower bound on volℓ(N (u)), which counts three

types of ℓ-cliques: (i) cliques that are cut byN (u); (ii) cliques inN (u)
that do not contain u; and (iii) cliques in N (u) containing u. For the
first type, note that each ℓ-clique cut by N (u)will contribute at least
1 into volℓ(N (u)). For the second type, each of clique contributes ℓ

to volℓ(N (u)), and also corresponds to ℓ different closed ℓ-wedges

headed at node u. Therefore,

volℓ(N (u)) ≥ cutℓ(N (u)) + 1

ℓ · ℓ · Hℓ(u)W
(h)
ℓ

(u) + ℓ · Kℓ(u)

≥ cutℓ(N (u)) + Hℓ(u)W
(h)
ℓ

(u),

and consequently,

ϕℓ(N (u)) ≤
cutℓ (N (u))

cutℓ (N (u))+Hℓ (u)W
(h)
ℓ

(u)

≤
(1−Hℓ (u))W

(h)
ℓ

(u)

(1−Hℓ (u))W
(h)
ℓ

(u)+Hℓ (u)W
(h)
ℓ

(u)
= 1 − Hℓ(u).

□

Prior results (Equation (6); [13, 54]) are now a simple corollary

of Theorem 4.2.

Corollary 4.3. For any graph with global ℓth-order clustering
coefficient Cℓ , minu ∈V ϕℓ(N (u)) ≤ 1 − maxu ∈V Hℓ(u) ≤ 1 −Cℓ .

Proof. Note that maxv ∈V Hℓ(u) ≥ Cℓ because the global clustering

coefficient is a weighted average of the local closure coefficient at

all nodes (i.e., weighted by the number of wedges headed at each

node). Therefore, it must be no greater than the largest local closure

coefficient. Let u∗ be the node with the largest closure coefficient.

Then minu ∈V ϕℓ(N (u)) ≤ ϕℓ(N (u∗)) ≤ 1 − Hℓ(u
∗) ≤ 1 −Cℓ . □

Our result using the local closure coefficient contrasts with the

prior results in following ways: (i) the bound is stronger, (ii) there

is a bound for every node, and (iii) the proof is much simpler and

more informative. From part (ii), we can understand why many

1-hop node neighborhoods have small (motif) conductance. Simply

put, there are several nodes u with large values of Hℓ(u).

Empirical validation. We first validate our theoretical results by

computing the conductance and 3-clique motif conductance for

Flickr and DBLP (Figure 5). The upper bound in Theorem 4.2 is



Figure 5: (First two rows) Scatter plots of the local closure co-
efficient and the conductance (left) or 3-cliquemotif conduc-
tance (right) of the 1-hop neighborhood. Each red dot is one
node in the network, and the blue line is the upper bound
fromTheorem 4.2. The upper bound is tight formany nodes
in the network. (Last two rows) Scatter plots of the classical
clustering coefficient and 1-hop neighborhood conductance,
from which we see no connection between the two metrics.

tight for many values of Hℓ(u) in practice. The last two rows of

Figure 5 also show the relationship between the local clustering

coefficient of nodes and the conductances of their 1-hop neighbor-

hoods. In contrast to the closure coefficient, we see little correlation

between these features.

One implication and application of Theorem 4.2 is the identi-

fication of good seeds in local clustering, which is the problem

of finding communities in the network that contains a specified

seed node [19]. A key problem in local clustering is how to find

many good seed nodes that find clusters of low (motif) conduc-

tance. Previous work proposes to local minima, which are nodes

Table 2: Ratio of positive samples (second column) and the
test set AUC-PR values of the regularized logistic regression
model with and without the local closure coefficient covari-
ate for link prediction (last two columns). Significant im-
provement/decrease (more than 2%) is put in bold type. We
find significant improvement inmost networks after adding
the closure coefficient feature, especially social friendship
networks.

Network positive ratio only similarity add H(u)

Flickr 0.0063 0.0487 0.0498
YahooAnswers 0.0017 0.0240 0.0249
Youtube 0.0012 0.0028 0.0039
LinkedIn 0.0060 0.0425 0.0434

DBLP 0.0063 0.0191 0.0197

email-Enron 0.1108 0.1687 0.1719

email-Eu 0.1069 0.3441 0.3434

msg-College 0.0076 0.0175 0.0201

AskUbuntu 0.0004 0.0248 0.0241

StackOverflow 0.0005 0.0159 0.0158

SuperUser 0.0007 0.0283 0.0299

whose 1-hop neighborhood has conductance smaller than all of

its neighors. Here we propose a simpler method, which is to use

nodes whose closure coefficient are higher than all of its neighbors;

we call these local maxima. We use our motif-based personalized

PageRank (MAPPR) algorithm [54] seeded at local maxima in terms

of 2nd- and 3rd-order closure coefficient and compare the (motif)

conductance of the communities with those resulting from random

seeds. A one-sided Mann Whitney U test rejected the null hypoth-

esis, in all networks and at tiny significance level (< 10
−16

), that

the motif conductance from local maxima is no less than the motif

conductance from random seed, showing that local maxima are

better seeds than non-local maxima.

4.3 Temporal Closure and Link Prediction
As a new metric on local clustering, the closure coefficient provides

an additional feature for node-level graph analysis and inference.

As an example, we exhibits its utility in the link prediction problem,

where we see significant improvement on test set performance,

and we explain this improvement by examining the connection of

triadic closure with the graph evolution process.

Link prediction is a fundamental problem in network science [28].

Given a network up to time t , one uses the network structure to

predict new links that will appear after time t . Traditional meth-

ods look for pairs of nodes that are “close” with respect to some

measure. Common examples are the number of common neigh-

bors, the Jaccard similarity, or Adamic-Adar similarity [28]. Such

methods are “center-based” and do not explicitly look at closing

length-2 paths via friend-of-friend closure. The closure coefficient

provides a complementary signal, and our experiments below show

that including the closure coefficient as a covariate leads to better

prediction, especially on friendship networks.

Our experiment procedure is as follows. For each temporal net-

work, we first obtain the snapshot of network at the time when 50%

of edges in the final static graph have been created, and then we use
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Figure 6: Difference between a wedge in the static graph and
a temporal wedge in a network with edge creation times-
tamps. In the final static graph (T = 8, right), any length-2
path, such as (v,u,w) and (u,w,v), is a wedge. Only (v,u,w) is
a temporal wedge, since there is a time point (T = 5) when
the length-2 path (v,u,w) exists without inducing a triangle.

this snapshot to predict the appearance of new edges in the future.

Specifically, we obtain the link prediction dataset by, at each node

in the snapshot, randomly sampling 20 other nodes that are two

hops away in the snapshot. The dataset is unbalanced, and the frac-

tion of positive samples (pairs of nodes between which new edges

are created) is listed in the second column of Table 2. After ran-

domly split the dataset into training (80%) and testing (20%), on the

training set we fit a regularized logistic regression model with all

three similarity measures (number of common neighbors, Jaccard,

and Adamic-Adar) and the local closure coefficients to predict the

appearance of new edges, and evaluate the prediction performance

on the test set. To reduce variance from random train/test split,

we repeat the above step 500 times and report the mean AUC-PR

value. As a baseline, we use regularized logistic model that uses only

the three similarity measures (i.e., without the closure coefficient).

Note that here we use the regularized logistic regression model and

evaluate the performance on the test set, thus our comparison and

analysis is not affected by the increased dimension of features.

We compare the test set AUC-PR value of the baseline model as

well as the model with additional closure coefficient covariate in

Table 2. We observe significant improvement (at least 2%) in 7 out

of 11 networks after introducing the closure coefficient, while in

only one of the online Q&A networks we see significant decrease.

We observe better improvements in friendship networks where

head-driven triadic closure process takes place.

To understand why the closure coefficient improves link pre-

diction performance, we examine the connection of the closure

coefficient with the graph evolution process. Both the clustering

and closure coefficient are motivated from the perspective of graph

evolution—the third edge appears between the two end points of

an existing length-2 path to form a triangle.

We define a temporal wedge to be a length-2 path such that there

exists a time point when the two edges have been created while the

two endpoints of the length-2 path does not have an edge between

them (Figure 6). We say that a temporal wedge is closed if the third

edge is created afterwards. Now we define the temporal clustering
coefficient of a node u, denoted by C̃(u), as the fraction of closed

temporal wedges centered at u, and the temporal closure coefficient
H̃ (u) as the fraction of closed temporal wedges where u is the head.

We compute the local temporal clustering and closure coefficient

of each node, and compare them with the clustering and closure

coefficient on the final static graph (Figure 7). The local closure

coefficient in the static graph is more strongly correlated with the

temporal closure coefficient than the local clustering coefficient

with the temporal clustering coefficient. For most nodes in every

Figure 7: Correlation between the temporal and static clus-
tering coefficient (C̃(u) and C(u), left) and the temporal and
static closure coefficient (H̃ (u) and H (u), right) in two net-
works. Each red dot corresponds to a node, and each scat-
ter plot includes the Pearson correlation ρ. In each dataset,
there is a stronger correlation between the temporal and
static closure coefficients than that between the temporal
and static clustering coefficients. In the scatter plots for clo-
sure coefficients, most nodes lie close to the diagonal, indi-
cating that the local closure coefficient is an accurate approx-
imation to the temporal closure coefficient, even though we
require no temporal information in calculating the local clo-
sure coefficient in the final static graph.

network, the local closure coefficient is almost the same as the tem-

poral closure coefficient even if we have no temporal information

in calculating the local closure coefficient in the static graph. In

other words, the closure coefficient, as measured from a static graph,

more closely captures the temporal dynamics of triadic closure than

the clustering coefficient, and thus is potentially useful in network

evolution related task such as link prediction.

5 ADDITIONAL RELATEDWORK
We now summarize some additional related work, focusing on

other metrics of local clustering. Since local clustering coefficient

tends to decrease with node degree in most real-world networks

(as we saw in Section 4.1), Soffer and Vázquez proposed a modified

definition of the local clustering coefficient to remove the degree

bias [45]. Local clustering has also been extended to weighted [34],

directed [9], and multiplex [7] networks. However, these extensions

still measure clustering from the center node, rather than the head

node. Most similar to our work is a “closure ratio” used to analyze a

copying phenomenon in directed information networks [42]. While,

our proposed local closure coefficient is similar in that they both

consider the triadic closure processes from the head of a length-2

path, our closure coefficients (i) are defined on static and undirected

networks and (ii) are closely connected to the traditional perspective

of triadic closure.



6 CONCLUSION
We have introduced the closure coefficient, a simple metric for local

clustering that is based on the head, rather than the center, of a

length-2 path. The definition closes a gap in the network science

literature, which often describes triadic closure from the head of a

length-2 path but measures clustering from the center. We demon-

strated that the local closure coefficient is a complementary feature

to the classical local clustering coefficient while also possessing a

number of useful and interesting properties.

First, local closure coefficients tend to increase with node degree,

providing an explanation for how “popular” (i.e., high-degree) nodes

are well-connected locally—a fact which is missed by the local clus-

tering coefficient. We also provided theoretical justification for why

this is true. Next, the closure coefficient is also a useful theoretical

tool, letting us prove a strong connection between clustering and

community detection (as measured by (motif) conductance). Finally,

the closure coefficient is also strongly correlated with the temporal

dynamics of the graph, which gives more credence to its motivation

of capturing local evolutionary processes of triadic closure. This

explains why closure coefficients can improve link prediction tasks.

These examples demonstrate how closure coefficients are a useful

tool for network analysis, and the simple definition and interpreta-

tion of closure coefficients should make it easy to incorporate the

metric into other graph mining tasks and tools.

ACKNOWLEDGMENTS
This research has been supported in part byAROMURI, JD, Stanford

Data Science Initiative, and Chan Zuckerberg Biohub. ARB was

supported by NSF Award DMS-1830274. We thank Johan Ugander

for insightful comments, and Mason Porter and Peter Mucha for

access to the Congress data.

REFERENCES
[1] Dblp network dataset – KONECT, Apr. 2017.

[2] N. K. Ahmed, R. A. Rossi, J. B. Lee, X. Kong, T. L. Willke, R. Zhou, and H. Eldardiry.

Learning role-based graph embeddings. arXiv, 2018.
[3] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in

weighted graphs. In PAKDD, 2010.
[4] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and descrip-

tion: a survey. Data Mining and Knowledge Discovery, 2015.
[5] P. S. Bearman and J. Moody. Suicide and friendships among american adolescents.

Am. J. Public Health, 2004.
[6] A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex

networks. Science, 2016.
[7] E. Cozzo, M. Kivelä, M. De Domenico, A. Solé-Ribalta, A. Arenas, S. Gómez, M. A.

Porter, and Y. Moreno. Structure of triadic relations in multiplex networks. New
Journal of Physics, 17(7):073029, 2015.

[8] D. Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning about a
highly connected world. Cambridge University Press, 2010.

[9] G. Fagiolo. Clustering in complex directed networks. Physical Review E,
76(2):026107, 2007.

[10] S. Fortunato. Community detection in graphs. Phys. Rep, 2010.
[11] B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander. Configuring random

graph models with fixed degree sequences. SIAM Review, 60(2):315–355, 2018.
[12] M. Girvan and M. E. Newman. Community structure in social and biological

networks. PNAS, 2002.
[13] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts, and

good seeds for local community methods. In KDD, 2012.
[14] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and

distrust. In WWW, 2004.

[15] F. Harary et al. On the notion of balance of a signed graph. The Michigan
Mathematical Journal, 1953.

[16] F. Heider. Attitudes and cognitive organization. The J. of Psychology, 1946.
[17] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra,

C. Faloutsos, and L. Li. Rolx: structural role extraction & mining in large graphs.

In KDD, 2012.
[18] M. O. Jackson and B. W. Rogers. Meeting strangers and friends of friends: How

random are social networks? American Economic Review, 97(3):890–915, 2007.
[19] L. G. Jeub, P. Balachandran, M. A. Porter, P. J. Mucha, and M. W. Mahoney. Think

locally, act locally: Detection of small, medium-sized, and large communities in

large networks. Physical Review E, 91(1):012821, 2015.
[20] E. M. Jin, M. Girvan, and M. E. J. Newman. Structure of growing social networks.

PRE, 2001.
[21] M. Kaiser. Mean clustering coefficients: the role of isolated nodes and leafs on

clustering measures for small-world networks. New J. Phys., 2008.
[22] B. Klimt and Y. Yang. Introducing the enron corpus. In CEAS, 2004.
[23] T. LaFond, J. Neville, and B. Gallagher. Anomaly detection in networks with

changing trends. In ODD2 Workshop, 2014.
[24] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of

social networks. In KDD, 2008.
[25] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media.

In CHI, 2010.
[26] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws,

shrinking diameters and possible explanations. In KDD, 2005.
[27] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and

shrinking diameters. TKDD, 2007.
[28] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.

Journal of the American society for information science and technology, 2007.
[29] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform

generation of random graphs with prescribed degree sequences. arXiv, 2003.
[30] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee.

Growth of the flickr social network. In WOSN, 2008.
[31] M. E. Newman. Assortative mixing in networks. PRL, 2002.
[32] M. E. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary

degree distributions and their applications. PRE, 2001.
[33] M. E. J. Newman. The structure and function of complex networks. SIAM Rev.,

2003.

[34] T. Opsahl and P. Panzarasa. Clustering in weighted networks. Social networks,
31(2):155–163, 2009.

[35] P. Panzarasa, T. Opsahl, and K. M. Carley. Patterns and dynamics of users’

behavior and interaction: Network analysis of an online community. J. Assoc.
Inf. Sci. Technol., 2009.

[36] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal networks. In

WSDM, 2017.

[37] M. A. Porter, P. J. Mucha, M. E. J. Newman, and C. M. Warmbrand. A network

analysis of committees in the U.S. House of Representatives. PNAS, 2005.
[38] A. Rapoport. Spread of information through a population with socio-structural

bias: I. assumption of transitivity. The Bull. of Math. Biophysics, 1953.
[39] E. Ravasz and A.-L. Barabási. Hierarchical organization in complex networks.

PRE, 2003.
[40] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási. Hierar-

chical organization of modularity in metabolic networks. Science, 2002.
[41] P. Robles, S. Moreno, and J. Neville. Sampling of attributed networks from

hierarchical generative models. In KDD, 2016.
[42] D. M. Romero and J. M. Kleinberg. The directed closure process in hybrid social-

information networks, with an analysis of link formation on twitter. In ICWSM,

2010.

[43] S. E. Schaeffer. Graph clustering. Computer Science Review, 2007.
[44] C. Seshadhri, T. G. Kolda, and A. Pinar. Community structure and scale-free

collections of erdős-rényi graphs. PRE, 2012.
[45] S. N. Soffer and A. Vázquez. Network clustering coefficient without degree-

correlation biases. PRE, 2005.
[46] A. L. Traud, P. J. Mucha, and M. A. Porter. Social structure of facebook networks.

Physica A: Statistical Mechanics and its Applications, 2012.
[47] A. Vázquez. Growing networkwith local rules: Preferential attachment, clustering

hierarchy, and degree correlations. PRE, 2003.
[48] A. Vázquez, R. Pastor-Satorras, and A. Vespignani. Large-scale topological and

dynamical properties of the internet. PRE, 2002.
[49] S. Wasserman and K. Faust. Social network analysis: Methods and applications,

volume 8. Cambridge university press, 1994.

[50] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 1998.
[51] Z.-X. Wu and P. Holme. Modeling scientific-citation patterns and other triangle-

rich acyclic networks. PRE, 2009.
[52] J. Yang and J. Leskovec. Defining and evaluating network communities based on

ground-truth. Knowledge and Information Systems, 2015.
[53] H. Yin, A. R. Benson, and J. Leskovec. Higher-order clustering in networks.

Physical Review E, 97(5):052306, 2018.
[54] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph

clustering. In KDD, 2017.


	Abstract
	1 Introduction
	2 Preliminaries and background
	3 The Local closure coefficient
	4 Experiments and analysis
	4.1 Correlation with node degree
	4.2 Connections to community detection
	4.3 Temporal Closure and Link Prediction

	5 Additional related work
	6 Conclusion
	Acknowledgments
	References

