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ABSTRACT
Predicting the occurrence of links is a fundamental problemin net-
works. In the link prediction problem we are given a snapshotof a
network and would like to infer which interactions among existing
members are likely to occur in the near future or which existing
interactions are we missing. Although this problem has beenex-
tensively studied, the challenge of how to effectively combine the
information from the network structure with rich node and edge
attribute data remains largely open.

We develop an algorithm based onSupervised Random Walks
that naturally combines the information from the network structure
with node and edge level attributes. We achieve this by usingthese
attributes to guide a random walk on the graph. We formulate a
supervised learning task where the goal is to learn a function that
assigns strengths to edges in the network such that a random walker
is more likely to visit the nodes to which new links will be created
in the future. We develop an efficient training algorithm to directly
learn the edge strength estimation function.

Our experiments on the Facebook social graph and large collab-
oration networks show that our approach outperforms state-of-the-
art unsupervised approaches as well as approaches that are based
on feature extraction.

Categories and Subject Descriptors:H.2.8 [Database Manage-
ment]: Database applications—Data mining

General Terms: Algorithms; Experimentation.

Keywords: Link prediction, Social networks

1. INTRODUCTION
Large real-world networks exhibit a range of interesting proper-

ties and patterns [7, 20]. One of the recurring themes in thisline of
research is to design models that predict and reproduce the emer-
gence of such network structures. Research then seeks to develop
models that will accurately predict the global structure ofthe net-
work [7, 20, 19, 6].

Many types of networks and especially social networks are highly
dynamic; they grow and change quickly through the additionsof
new edges which signify the appearance of new interactions be-
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tween the nodes of the network. Thus, studying the networks at
a level of individual edge creations is also interesting andin some
respects more difficult than global network modeling. Identifying
the mechanisms by which such social networks evolve at the level
of individual edges is a fundamental question that is still not well
understood, and it forms the motivation for our work here.

We consider the classical problem of link prediction [21] where
we are given a snapshot of a social network at timet, and we seek
to accurately predict the edges that will be added to the network
during the interval from timet to a given future timet′. More con-
cretely, we are given a large network, say Facebook, at timet and
for each user we would like to predict what new edges (friendships)
that user will create betweent and some future timet′. The prob-
lem can be also viewed as alink recommendation problem, where
we aim to suggest to each user a list of people that the user is likely
to create new connections to.

The processes guiding link creation are of interest from more
than a purely scientific point of view. The current Facebook system
for suggesting friends is responsible for a significant fraction of link
creations, and adds value for Facebook users. By making better
predictions, we will be able to increase the usage of this feature,
and make it more useful to Facebook members.

Challenges. The link prediction and link recommendation prob-
lems are challenging from at least two points of view. First,real
networks are extremely sparse, i.e., nodes have connections to only
a very small fraction of all nodes in the network. For example, in
the case of Facebook a typical user is connected to about 100 out
of more than 500 million nodes of the network. Thus, a very good
(but unfortunately useless) way to predict edges is to predict no new
edges since this achieves near perfect predictive accuracy (i.e., out
of 500 million possible predictions it makes only 100 mistakes).

The second challenge is more subtle; to what extent can the links
of the social network be modeled using the features intrinsic to the
network itself? Similarly, how do characteristics of users(e.g., age,
gender, home town) interact with the creation of new edges? Con-
sider the Facebook social network, for example. There can bemany
reasons exogenous to the network for two users to become con-
nected: it could be that they met at a party, and then connected on
Facebook. However, since they met at a party they are likely to be
about the same age, and they also probably live in the same town.
Moreover, this link might also be hinted at by the structure of the
network: two people are more likely to meet at the same party if
they are “close” in the network. Such a pair of people likely has
friends in common, and travel in similar social circles. Thus, de-
spite the fact that they became friends due to the exogenous event
(i.e., a party) there are clues in their social networks which suggest
a high probability of a future friendship.

Thus the question is how do network and node features interact



in the creation of new links. From the link creation point of view:
how important is it to have common interests and characteristics?
Furthermore, how important is it to be in the same social circle and
be “close” in the network in order to eventually connect. From the
technical point of view it is not clear how to develop a methodthat,
in a principled way, combines the features of nodes (i.e., user pro-
file information) and edges (i.e., interaction information) with the
network structure. A common, but somewhat unsatisfactory,ap-
proach is to simply extract a set of features describing the network
structure (like node degree, number of common friends, shortest
path length) around the two nodes of interest and combine it with
the user profile information.

Present work: Supervised Random Walks. To address these
challenges we develop a method for both link prediction and link
recommendation. We develop a concept ofSupervised Random
Walks that naturally and in a principled way combines the network
structure with the characteristics (attributes, features) of nodes and
edges of the network into a unified link prediction algorithm.

We develop a method based onSupervised Random Walks that in
a supervised way learns how to bias a PageRank-like random walk
on the network [3, 2] so that it visits given nodes (i.e., positive
training examples) more often than the others.

We achieve this by using node and edge features to learn edge
strengths (i.e., random walk transition probabilities) such that the
random walk on a such weighted network is more likely to visit
“positive” than “negative” nodes. In the context of link prediction,
positive nodes are nodes to which new edges will be created inthe
future, and negative are all other nodes. We formulate a supervised
learning task where we are given a source nodes and training ex-
amples about which nodess will create links to in the future. The
goal is to then learn a function that assigns a strength (i.e., random
walk transition probability) to each edge so that when computing
the random walk scores in such a weighted network nodes to which
s creates new links have higher scores tos than nodes to whichs
does not create links.

From a technical perspective, we show that such edge strength
function can be learned directly and efficiently. This means, that
we do not postulate what it means for edge to be “strong” in an ad-
hoc way and then use this heuristic estimate. Rather, we showhow
to directly find the parameters of the edge strength functionwhich
give optimal performance. This means we are able to compute the
gradient of the parameters of the edge strength function with re-
spect to the PageRank-like random walk scores. The formulation
results in an optimization problem for which we derive an efficient
estimation procedure.

From the practical point of view, we experiment with large col-
laboration networks and data from the Facebook network, show-
ing that our approach outperforms state-of-the-art unsupervised ap-
proaches as well as supervised approaches based on complex net-
work feature extraction. An additional benefit of our approach is
that no complex network feature extraction or domain expertise are
necessary as our algorithm nicely combines the node attribute and
network structure information.

Applications and consequences.As networks evolve and grow by
addition of new edges, the link prediction problem offers insights
into the factors behind creation of individual edges as wellas into
network formation in general.

Moreover, the link-prediction and the link-recommendation prob-
lems are relevant to a number of interesting current applications of
social networks. First, for online social networking websites, like
Facebook and Myspace, being able to predict future interactions
has direct business consequences. More broadly, large organiza-

tions can directly benefit from the interactions within the informal
social network among its members and link-prediction methods
can be used to suggest possible new collaborations and interac-
tions within the organization. Research in security has recently
recognized the role of social network analysis for this domain (e.g.,
terrorist networks). In this context link prediction can beused to
suggest the most likely links that may form in the future. Similarly,
link prediction can also be used for prediction of missing orunob-
served links in networks [9] or to suggest which individualsmay
be working together even though their interaction has yet been di-
rectly observed. Applications go well beyond social networks, as
our techniques can be used to predict unobserved links in protein-
protein interaction networks in systems biology or give suggestions
to bloggers about which relevant pages on the Web to link to.

Furthermore, the framework we develop is more general than
link prediction, and could be used for any sort of interaction. For
instance, in a collaboration network, it could easily be used not to
predict whos will link to next (write a paper with a previously
un-collaborated-with person) but to predict whos will coauthor a
paper with next, including all those with whoms has previously
coauthored.

Further related work. The link prediction problem in networks
comes in many flavors and variants. For example, the network in-
ference problem [13, 24] can be cast as a link prediction problem
where no knowledge of the network is given. Moreover, even mod-
els of complex networks, like Preferential Attachment [7],Forest
Fire model [20] and models based on random walks [19, 8], can be
viewed as ways for predicting new links in networks.

The unsupervised methods for link prediction were extensively
evaluated by Liben-Nowell and Kleinberg [21] who found thatthe
Adamic-Adar measure of node similarity [1] performed best.More
recently approaches based on network community detection [9, 16]
have been tested on small networks. Link prediction in supervised
machine learning setting was mainly studied by the relational learn-
ing community [28, 26]. However, the challenge with these ap-
proaches is primarily scalability.

Random walks on graphs have been considered for computing
node proximities in large graphs [31, 30, 29, 27]. They have also
been used for learning to rank nodes in graphs [3, 2, 23, 11].

2. SUPERVISED RANDOM WALKS
Next we describe our algorithm for link prediction and recom-

mendation. The general setting is that we are given a graph and a
nodes for which we would like to predict/recommend new links.
The idea is thats has already created some links and we would like
to predict which links it will create next (or will be createdto it,
since the direction of the links is often not clear). For simplicity
the following discussion will focus on a single nodes and how to
predict the links it will create in the future.

Note that our setting is much more general than it appears. We
require that for a nodes we are given a set of “positive” and “neg-
ative” training nodes and our algorithm then learns how to distin-
guish them. This can be used for link prediction (positive nodes are
those to which links are created in the future), link recommenda-
tion (positive nodes are those which user clicks on), link anomaly
detection (positive nodes are those to whichs has anomalous links)
or missing link prediction (positive nodes are those to which s has
missing links), to name a few. Moreover, our approach can also
be generalized to a setting where prediction/recommendation is not
being made for only a single nodes but also for a group of nodes.

General considerations.A first general approach to link predic-
tion would be to view it as a classification task. We take pairs



of nodes to whichs has created edges as positive training exam-
ples, and all other nodes as negative training examples. We then
learn a classifier that predicts where nodes is going to create links.
There are several problems with such an approach. The first isthe
class imbalance;s will create edges to a very small fraction of the
total nodes in the network and learning is particularly hardin do-
mains with high class imbalance. Second, extracting the features
that the learning algorithm would use is a challenging and cumber-
some task. Deciding which node features (e.g., node demographics
like, age, gender, hometown) and edge features (e.g., interaction
activity) to use is already hard. However, it is even less clear how
to extract good features that describe the network structure and pat-
terns of connectivity between the pair of nodes under consideration.

Even in a simple undirected graph with no node/edge attributes,
there are countless ways to describe the proximity of two nodes.
For example, we might start by counting the number of common
neighbors between the two nodes. We might then adjust the prox-
imity score based on the degrees of the two nodes (with the intuition
being that high-degree nodes are likely to have common neighbors
by mere happenstance). We might go further giving differentlength
two paths different weights based on things like the centrality or de-
gree of the intermediate nodes. The possibilities are endless, and
extracting useful features is typically done by trial and error rather
than any principled approach. The problem becomes even harder
when annotations are added to edges. For instance, in many net-
works we know the creation times of edges, and this is likely to be
a useful feature. But how do we combine the creation times of all
the edges to get a feature relevant to a pair of nodes?

A second general approach to the link prediction problem is to
think about it as a task to rank the nodes of the network. The idea
is to design an algorithm that will assign higher scores to nodes
whichs created links to than to those thats did not link to. PageR-
ank [25] and variants like Personalized PageRank [17, 15] and
Random Walks with Restarts [31] are popular methods for ranking
nodes on graphs. Thus, one simple idea would be to start a random
walk at nodes and compute the proximity of each other node to
nodes [30]. This can be done by setting the random jump vector
so that the walk only jumps back tos and thus restarts the walk.
The stationary distribution of such random walk assigns each node
a score (i.e., a PageRank score) which gives us a ranking of how
“close” to the nodes are other nodes in the network. This method
takes advantage of the structure of the network but does not con-
sider the impact of other properties, like age, gender, and creation
time.

Overview of our approach. We combine the two above approaches
into a single framework that will at the same time consider rich
node and edge features as well as the structure of the network. As
Random Walks with Restarts have proven to be a powerful tool for
computing node proximities on graphs we use them as a way to
consider the network structure. However, we then use the node and
edge attribute data to bias the random walk so that it will more often
visit nodes to whichs creates edges in the future.

More precisely, we are given a source nodes. Then we are also
given a set ofdestination nodes d1, . . . , dk ∈ D to which s will
create edges in the near future. Now, we aim to bias the random
walk originating froms so that it will visit nodesdi more often
than other nodes in the network. One way to bias the random walk
is to assign each edge a random walk transition probability (i.e.,
strength). Whereas the traditional PageRank assumes that transi-
tion probabilities of all edges to be the same, we learn how toas-
sign each edge a transition probability so that the random walk is
more likely to visit target nodesdi than other nodes of the network.
However, directly setting an arbitrary transition probability to each

edge would make the task trivial, and would result in drasticover-
fitting. Thus, we aim to learn a model (a function) that will assign
the transition probability for each edge(u, v) based on features of
nodesu andv, as well as the features of the edge(u, v). The ques-
tion we address next is, how to directly and in a principled way
estimate the parameters of such random walk biasing function?

Problem formulation. We are given a directed graphG(V,E), a
nodes and a set of candidates to whichs could create an edge.
We label nodes to whichs creates edges in the future asdestina-
tion nodes D = {d1, . . . , dk}, while we call other nodes to which
s does not create edgesno-link nodes L = {l1, . . . , ln}. We la-
bel candidate nodes with a setC = {ci} = D ∪ L. We think of
nodes inD as positive and nodes inL as negative training exam-
ples. Later we generalize to multiple instances ofs,L andD. Each
node and each edge inG is further described with a set of features.
We assume that each edge(u, v) has a corresponding feature vector
ψuv that describes the nodesu andv (e.g., age, gender, hometown)
and the interaction attributes (e.g., when the edge was created, how
many messagesu andv exchanged, or how many photos they ap-
peared together in).

For edge(u, v) in G we compute the strengthauv = fw(ψuv).
Functionfw parameterized byw takes the edge feature vectorψuv
as input and computes the corresponding edge strengthauv that
models the random walk transition probability. It is exactly the
functionfw(ψ) that we learn in the training phase of the algorithm.

To predict new edges of nodes, first edge strengths of all edges
are calculated usingfw. Then a random walk with restarts is run
from s. The stationary distributionp of the random walk assigns
each nodeu a probabilitypu. Nodes are ordered bypu and top
ranked nodes are then predicted as destinations of future links ofs.

Now our task is to learn the parametersw of functionfw(ψuv)
that assigns each edge a transition probabilityauv. One can think
of the weightsauv as edge strengths and the random walk is more
likely to traverse edges of high strength and thus nodes connected
to nodes via paths of strong edges will likely be visited by the
random walk and will thus rank higher.

The optimization problem. The training data contains informa-
tion that source nodes will create edges to nodesd ∈ D and not
to nodesl ∈ L. So, we aim to set the parametersw of function
fw(ψuv) so that it will assign edge weightsauv in such a way that
the random walk will be more likely to visit nodes inD thanL, i.e.,
pl < pd, for eachd ∈ D andl ∈ L.

Thus, we define the optimization problem to find the optimal set
of parametersw of edge strength functionfw(ψuv) as follows:

min
w
F (w) = ||w||2

such that

∀ d∈D, l∈L : pl < pd

(1)

wherep is the vector of PageRank scores. Note that PageRank
scorespi depend on edge strengthsauv and thus actually depend
on fw(ψuv) that is parameterized byw. The idea here is that we
want to find the parameter vectorw such that the PageRank scores
of nodes inD will be greater than the scores of nodes inL. We
prefer the shortestw parameter vector simply for regularization.

However, Eq. 1 is a “hard” version of the optimization problem
as it allows no constraints to be violated. In practice it is unlikely
that a solution satisfying all the constraints exists. Thussimilarly to
formulations of Support Vector Machines we make the constraints
“soft” by introducing a loss functionh that penalizes violated con-



straints. The optimization problem now becomes:

min
w
F (w) = ||w||2 + λ

∑

d∈D,l∈L

h(pl − pd) (2)

whereλ is the regularization parameter that trades-off between the
complexity (i.e., norm ofw) for the fit of the model (i.e., how much
the constraints can be violated). Moreover,h(·) is a loss function
that assigns a non-negative penalty according to the difference of
the scorespl − pd. If pl − pd < 0 thenh(·) = 0 aspl < pd and
the constraint is not violated, while forpl− pd > 0, alsoh(·) > 0.

Solving the optimization problem. First we need to establish the
connection between the parametersw of the edge strength function
fw(ψuv) and the random walk scoresp. Then we show how to ob-
tain the derivative of the loss function and the random walk scores
p with respect tow and then perform gradient based optimization
method to minimize the loss and find the optimal parametersw.

Functionfw(ψuv) combines the attributesψuv and the parame-
ter vectorw to output a non-negative weightauv for each edge. We
then build the random walk stochastic transition matrixQ′:

Q′
uv =

{

auv∑
w auw

if (u, v) ∈ E,

0 otherwise
(3)

To obtain the final random walk transition probability matrix Q,
we also incorporate the restart probabilityα, i.e., with probability
α the random walk jumps back to seed nodes and thus “restarts”:

Quv = (1− α)Q′
uv + α1(v = s).

Note that each row ofQ sums to1 and thus each entryQuv defines
the conditional probability that a walk will traverse edge(u, v)
given that it is currently at nodeu.

The vectorp is the stationary distribution of the Random walk
with restarts (also known as Personalized PageRank), and isthe
solution to the following eigenvector equation:

pT = pTQ (4)

Equation 4 establishes the connection between the node PageR-
ank scorespu ∈ p, and parametersw of functionfw(ψuv) via the
random walk transition matrixQ. Our goal now is to minimize
Eq. 2 with respect to the parameter vectorw. We approach this by
first deriving the gradient ofF (w) with respect tow, and then use a
gradient based optimization method to findw that minimizeF (w).
Note that is non-trivial due to the recursive relation in Eq.4.

First, we introduce a new variableδld = pl−pd and then we can
write the derivative:

∂F (w)

∂w
= 2w +

∑

l,d

∂h(pl − pd)

∂w

= 2w +
∑

l,d

∂h(δld)

∂δld
(
∂pl
∂w

−
∂pd
∂w

)

(5)

For commonly used loss functionsh(·) (like, hinge-loss or squared
loss), it is simple to compute the derivative∂h(δld)

∂δld
. However, it is

not clear how to compute∂pu
∂w

, the derivative of the scorepu with
respect to the vectorw. Next we show how to do this.

Note thatp is the principal eigenvector of matrixQ. Eq. 4 can be
rewritten aspu =

∑

j
pjQju and taking the derivative now gives:

∂pu
∂w

=
∑

j

Qju
∂pj
∂w

+ pj
∂Qju
∂w

(6)

Notice thatpu and ∂pu
∂w

are recursively entangled in the equation.
However, we can still compute the gradient iteratively [4, 3]. By

Initialize PageRank scoresp and partial derivatives∂pu
∂wk

:

foreachu ∈ V do p(0)u = 1
|V |

foreachu ∈ V, k = 1, . . . , |w| do ∂pu
∂wk

(0)
= 0

t = 1
while not converged do

foreachu ∈ V do
p
(t)
u =

∑

j
p
(t−1)
j Qju

t = t+ 1
t = 1
foreachk = 1, . . . , |w| do

while not converged do
foreachu ∈ V do

∂pu
∂wk

(t)
=

∑

j
Qju

∂pj
∂wk

(t−1)
+ p

(t−1)
j

∂Qju

∂wk

t = t+ 1

return ∂pu
∂w

(t−1)

Algorithm 1 : Iterative power-iterator like computation of
PageRank vectorp and its derivative∂pu

∂w
.

recursively applying the chain rule to Eq. 6 we can use a power-
method like algorithm to compute the derivative. We repeatedly
compute the derivative∂pu

∂w
based on the estimate obtained in the

previous iteration. Thus, we first computep and then update the
estimate of the gradient∂pu

∂w
. We stop the algorithm when bothp

and ∂p

∂w
do not change (i.e., ε = 10−12 in our experiments) between

iterations. We arrive at Algorithm 1 that iteratively computes the
eigenvectorp as well as the partial derivatives ofp. Convergence
of Algorithm 1 is similar to those of power-iteration [5].

To solve Eq. 4 we further need to compute
∂Qju

∂w
which is the

partial derivative of entryQju (Eq. 3). This calculation is straight-
forward. When(j, u) ∈ E we find

∂Qju

∂w
=

(1− α)

∂fw(ψju)

∂w

(
∑

k
fw(ψjk)

)

− fw(ψju)
(
∑

k

∂fw(ψjk)

∂w

)

(
∑

k
fw(ψjk)

)2

and otherwise
∂Qju

∂w
= 0. The edge strength functionfw(ψuv)

must be differentiable and so∂fw
∂w

(ψjk) can be easily computed.
This completes the derivation and shows how to evaluate the

derivative ofF (w) (Eq. 5). Now we apply a gradient descent based
method, like a quasi-Newton method, and directly minimizeF (w).

Final remarks. First we note that our problem is not convex in
general, and thus gradient descent methods will not necessarily find
the global minimum. In practice we resolve this by using several
different starting points to find a good solution.

Second, since we are only interested in the values ofp for nodes
in C, it makes sense to evaluate the loss function at a slightly dif-
ferent point:h(p′l− p′d) wherep′ is a normalized version ofp such
thatp′u = pu∑

v∈C pv
. This adds one more chain rule application to

the derivative calculation, but does not change the algorithm. The
effect of this is mostly to allow larger values ofα to be used with-
out having to changeh(·) (We omit the tick marks in our notation
for the rest of this paper, usingp to refer to the normalized score).

So far we only considered training and estimating the parameter
vectorw for predicting the edges of a particular nodes. However,
our aim to estimatew that make good predictions across many dif-
ferent nodess ∈ S. We easily extend the algorithm to multiple
source nodess ∈ S, that may even reside in different graphs. We
do this by taking the sum of losses over all source nodess and the



corresponding pairs of positiveDs and negativeLs training exam-
ples. We slightly modify the Eq. 2 to obtain:

minw F (w) = ||w||2 + λ
∑

s∈S

∑

d∈Ds,l∈Ls
h(pl − pd)

The gradients of each instances ∈ S remain independent, and can
thus be computed independently for all instances ofs (Alg. 1). By
optimizing parametersw over many individualss, the algorithm is
less likely to overfit, which improves the generalization.

As a final implementation note, we point out that gradient de-
scent often makes many small steps which have small impact on
the eigenvector and its derivative. A 20% speedup can be achieved
by using the solutions from the previous position (in the gradient
descent) as initialization for the eigenvector and derivative calcula-
tions in Alg. 1. Our implementation of Supervised Random Walks
uses the L-BFGS algorithm [22]. Given a function and its par-
tial derivatives, the solver iteratively improves the estimate ofw,
converging to a local optima. The exact runtime of the methodde-
pends on how many iterations are required for convergence ofboth
the PageRank and derivative computations, as well as of the overall
process (quasi-Newton iterations).

3. EXPERIMENTS ON SYNTHETIC DATA
Before experimenting with real data, we examine the soundness

and robustness of the proposed algorithm using synthetic data. Our
goal here is to generate synthetic graphs, edge features andtraining
data (triples(s,D,L)) and then try to recover the original model.

Synthetic data. We generate scale-free graphsG on 10,000 nodes
by using the Copying model [18]: Graph starts with three nodes
connected in a triad. Remaining nodes arrive one by one, each
creating exactly three edges. When a nodeu arrives, it adds three
edges(u, vi). Existing nodevi is selected uniformly at random
with probability0.8, and otherwisevi is selected with probability
proportional to its current degree. For each edge(u, v) we create
two independent Gaussian features with mean0 and variance1. We
set the edge strengthauv = exp(ψuv1−ψuv2), i.e.,w∗ = [1,−1].

For eachG, we randomly select one of the oldest 3 nodes ofG
as the start node,s. To generate a set of destinationD and no-link
nodesL for a givens we use the following approach.

On the graph with edge strengthsauv we run the random walk
(α = 0.2) starting froms and obtain node PageRank scoresp∗. We
use these scores to generate the destinationsD in one of two ways.
First is deterministic and selects the topK nodes according top∗

to which s is not already connected. Second is probabilistic and
selectsK nodes, selecting each nodeu with probabilityp∗u.

Now given the graphG, attributesψuv and targetsD our goal is
to recover the true edge strength parameter vectorw∗ = [1,−1].
To make the task more interesting we also add random noise to all
of the attributes, so thatψ′

uvi = ψuvi+N (0, σ2), whereN (0, σ2)
is a Gaussian random variable with mean 0 and varianceσ2.

Results. After applying our algorithm, we are interested in two
things. First, how well does the model perform in terms of the
classification accuracy and second, whether it recovers theedge
strength function parametersw∗ = [1,−1]. In the deterministic
case of creatingD and with0 noise added, we hope that the al-
gorithm is able achieve near perfect classification. As the noise
increases, we expect the performance to drop, but even then,we
hope that the recovered values ofŵ will be close to truew∗.

In running the experiment we generated 100 synthetic graphs.
We used 50 of them for training the weightsw, and report results
on the other 50. We compute Area under the ROC curve (AUC)
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Figure 1: Experiments on synthetic data. DeterministicD.
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Figure 2: Experiments on synthetic data. ProbabilisticD.

of each of 50 test graphs, and report the mean (AUC of 1.0 means
perfect classification, while random guessing scores 0.5).

Figures 1 and 2 show the results. We plot the performance of the
model that ignores edge weights (red), the model with true weights
w∗ (green) and a model with learned weightsŵ (blue).

For the deterministically generatedD (Fig. 1), the performance
is perfect in the absence of any noise. This is good news as it
demonstrates that our training procedure is able to recoverthe cor-
rect parameters. As the noise increases, the performance slowly
drops. When the noise reachesσ2 ≈ 1.5, using the true parame-
tersw∗ (green) actually becomes worse than simply ignoring them
(red). Moreover, our algorithm learns the true parameters[+1,−1]
almost perfectly in the noise-free case, and decreases their magni-
tude as the noise level increases. This matches the intuition that,
as more and more noise is added, the signal in the edge attributes
becomes weaker and weaker relatively to the signal in the graph
structure. Thus, with more noise, the parameter valuesw decrease
as they are given less and less credence.

In the probabilistic case (Fig. 2), we see that our algorithmdoes
better (statistically significant atp = 0.01) than the model with
true parametersw∗, regardless of the presence or absence of noise.
Even though the data was generated using parametersw∗ = [+1,−1],
these values are not optimal and our model gets better AUC by find-
ing different (smaller) values. Again, as we add noise, the overall
performance slowly drops, but still does much better than the base-
line method of ignoring edge strengths (red), and continuesto do
better than the model that uses true parameter valuesw∗ (green).

We also note that regardless of where we initialize the parameter
vectorw before starting gradient descent, it always converges to the
same solution. Having thus validated our algorithm on synthetic
data, we now move on to predicting links in real social networks.
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Figure 4: Facebook Iceland: Hop distance between a pair of
nodes just before they become friends. Distance x=-1 denotes
nodes that were in separate components, while x=2 (friends of
friends) is order of magnitude higher than next highest point.

4. EXPERIMENTAL SETUP
For experiments on real data we consider four real physics co-

authorship networks and a complete Facebook network of Iceland.
Generally we focus on predicting links to nodes that are 2-hops

from the seed nodes. We do this for two reasons. First, in online
social networks more than half of all edges at the time of creation
close a triangle,i.e., a person connects to a friend of a friend [19].
For instance, Figure 4 shows that 92% of all edges created on Face-
book Iceland close a path of length two,i.e., a triangle. Second, this
also makes the Supervised Random Walks run faster as graphs get
smaller. Given that some Facebook users have degrees in the thou-
sands, it is not practical to incorporate them (a user may have as
many as a hundred million nodes at 3 hops).

Co-authorship networks. First we consider the co-authorship net-
works from arXiv e-print archive [12] where we have a time-stamped
list of all papers with author names and titles submitted to arXiv
during 1992 and 2002. We consider co-authorship networks from
four different areas of physics: Astro-physics (Astro-Ph), Con-
densed Matter (Cond-Mat), High energy physics theory (Hep-th)
and High energy physics phenomenology (Hep-ph). For each of
the networks we proceed as follows. For every nodeu we compute
the total number of co-authors at the end of the dataset (i.e., net-
work degree)ku and lettu be the time whenu created it’sku/2-th
edge. Then we definemu to be the number of co-authorship links
thatu created after timetu and that at the time of creation spanned
2-hops (i.e., closed a triangle). We attempt to make predictions

N E S D̄ C̄ D̄/C̄

Astro-Ph 19,144 198,110 1,123 18.0 775.6 0.023
Cond-Mat 23,608 94,492 140 9.1 335.5 0.027
Hep-Ph 12,527 118,515 340 29.2 345.3 0.084
Hep-Th 10,700 25,997 55 6.3 110.5 0.057

Facebook 174,000 29M 200 43.6 1987 0.022

Table 1: Dataset statistics.N,E: number of nodes and edges
in the full network, S: number of sources,C̄ : avg. number of
candidates per source,̄D: avg. number of destination nodes.

only for “active” authors, where we define a nodeu to be active if
ku ≥ K andmu ≥ ∆. In this work, we setK = 10 and∆ = 5.
For every source nodes that is above this threshold, we extract the
network at timets and try to predict theds new edges thats creates
in the time afterts. Table 1 gives dataset statistics.

For every edge(i, j) of the network around the source nodeu at
time tu we generate the following six features:

• Number of papersi written beforetu
• Number of papersj written beforetu
• Number of papersi andj co-authored
• Cosine similarity between the titles of papers written byi and

titles of j’s papers
• Time sincei andj last co-authored a paper.
• The number of common friends betweenj ands.

The Facebook network. Our second set of data comes from the
Facebook online social network. We first selected Iceland since it
has high Facebook penetration, but relatively few edges pointing
to users in other countries. We generated our data based on the
state of the Facebook graph on November 1, 2009. The destination
nodesD from a nodes are those thats became friends with be-
tween November 1 2009 and January 13 2010. The Iceland graph
contains more than 174 thousand people, or 55% of the country’s
population. The average user had 168 friends, and during thepe-
riod Nov 1 – Jan 23, an average person added 26 new friends.

From these users, we randomly selected 200 as the nodess.
Again, we only selected “active” nodes, this time with the crite-
ria |D| > 20. As Figure 3 shows, individuals without many mutual
friends are exceedingly unlikely to become friends. As the Face-
book graph contains users whose 2-hop neighborhood have several
million nodes we can prune such graphs and speed-up the compu-
tations without loosing much on prediction performance. Since we
know that individuals with only a few mutual friends are unlikely to
form friendships, and our goal is to predict the most likely friend-
ships, we remove all individuals with less than 4 mutual friends
with practically no loss in performance. As demonstrated inFig-
ure 3, if a user creates an edge, then the probability that shelinks
to a node with whom she has less than 4 friends is about0.1%.).

We annotated each edge of the Facebook network with seven
features. For each edge(i, j), we created:

• Edge age:(T − t)−β , whereT is the time cutoff Nov. 1, and
t is the edge creation time. We create three features like this
with β = {0.1, 0.3, 0.5}.

• Edge initiator: Individual making the friend request is en-
coded as+1 or −1.

• Communication and observation features. They represent the
probability of communication and profile observation in a
one week period.

• The number of common friends betweenj ands.

All features in all datasets are re-scaled to have mean 0 and standard
deviation 1. We also add a constant feature with value 1.



Evaluation methodology. For each dataset, we assign half of the
nodess into training and half into test set. We use the training set
to train the algorithm (i.e., estimatew). We evaluate the method on
the test set, considering two performance metrics: the Areaunder
the ROC curve (AUC) and the Precision at Top 20 (Prec@20),i.e.,
how many of top 20 nodes suggested by our algorithm actually
receive links froms. This measure is particularly appropriate in
the context of link-recommendation where we present a user with a
set of friendship suggestions and aim that most of them are correct.

5. EXPERIMENTS ON REAL DATA
Next we describe the results of on five real datasets: four co-

authorship networks and the Facebook network of Iceland.

5.1 General considerations
First we evaluate several aspects of our algorithm: (A) the choice

of the loss function, (B) the choice of the edge strength function
fw(·), (C) the choice of random walk restart (jump) parameterα,
and (D) choice of regularization parameterλ. We also consider the
extension where we learn a separate edge weight vector depending
on the type of the edge,i.e., whether an edge touchess or any of
the candidate nodesc ∈ C.

(A) Choice of the loss function.As is the case with most machine
learning algorithms, the choice of loss function plays an important
role. Ideally we would like to optimize the loss functionh(·) which
directly corresponds to our evaluation metric (i.e., AUC or Preci-
sion at topk). However, as such loss functions are not continuous
and not differentiable and so it is not clear how to optimize over
them. Instead, we experiment with three common loss functions:

• Squared loss with marginb:

h(x) = max{x+ b, 0}2

• Huber loss with marginb and windowz > b:

h(x) =











0 if x ≤ −b,
(x+ b)2/(2z) if −b < x ≤ z − b,

(x+ b)− z/2 if x > z − b

(7)

• Wilcoxon-Mann-Whitney (WMW) loss with widthb (Pro-
posed to be used when one aims to maximize AUC [32]):

h(x) =
1

1 + exp(−x/b)

Each of these loss functions is differentiable and needs to be
evaluated for all pairs of nodesd ∈ D andl ∈ L (see Eq. 2). Per-
forming this naively takes approximatelyO(c2)wherec = |D∪L|.
However, we next show that the first two loss functions have the ad-
vantage that they can be computed inO(c log c). For example, we
rewrite the squared loss as:
∑

d,l

h(pl − pd) =
∑

l,d:pl+b>pd

(pl − pd + b)2

=
∑

l

∑

d:pl+b>pd

(pl + b)2 − 2(pl + b)pd + p2d

=
∑

l

|{d : pl + b > pd}|(pl + b)2

−2(pl + b)
∑

d:pl+b>pd

pd +
∑

d:pl+b>pd

p2d

Once we have the lists{pl} and{pd} sorted, we can iterate over
the list{pl} in reverse order. As we do this, we can incrementally
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Figure 5: Impact of random walk restart parameter α.

update the two terms which sum overd above. The Huber loss can
as well be quickly evaluated using a similar calculation.

Computation of the WMW loss is more expensive, as there is no
way to go around the summation over all pairs. Evaluating WMW
loss thus takes timeO(|D| · |L|). In our case,|D| is typically
relatively small, and so the computation is not a significantpart
of total runtime. However, the primary advantage of it is that it
performs slightly better. Indeed, in the limit asb goes to 0, it reflects
AUC, as it measures the number of inversions in the ordering [32].

In our experiments we notice that while the gradient descent
achieves significant reduction in the value of the loss for all three
loss functions, this only translates to improved AUC and Prec@20
for the WMW loss. In fact, the model trained with the squared or
the Huber loss does not perform much better than the baselinewe
obtain through unweighted PageRank. Consequently, we use the
WMW loss function for the remainder of this work.

(B) Choice of edge strength functionfw(ψuv). The edge strength
functionfw(ψuv) must be non-negative and differentiable. While
more complex functions are certainly possible, we experiment with
two functions. In both cases, we start by taking the inner product of
the weight vectorw and the feature vectorψuv of an edge(u, v).
This yields a single scalar value, which may be negative. To trans-
form this into the desired domain, we apply either an exponential
or logistic function:

• Exponential edge strength:auv = exp(ψuv · w)
• Logistic edge strength:auv = (1 + exp(−ψuv · w))

−1

Our experiments show that the choice of the edge strength func-
tion does not seem to make a significant impact on performance.
There is slight evidence from our experiments that the logistic func-
tion performs better One problem that can occur with the exponen-
tial version is underflow and overflow of double precision floating
point numbers. As the performance seems quite comparable, we
recommend the use of the logistic to avoid this potential pitfall.

(C) Choice ofα. To get a handle on the impact of random walk
restart parameterα, it is useful to think of the extreme cases, for un-
weighted graphs. Whenα = 0, the PageRank of a node in an undi-
rected graph is simply its degree. On the other hand, whenα ap-
proaches 1, the score will be exactly proportional to the “Random-
Random” model [19] which simply makes two random hops from
s, as random walks of length greater than 2 become increasingly
unlikely, and hence the normalized eigenvector scores become the
same as the Random-Random scores [19]. When we add the notion
of edge strengths, these properties remain. Intuitively,α controls
for how “far” the walk wanders from seed nodes before it restarts



and jumps back tos. High values ofα give very short and local
random walks, while low values allow the walk to go farther away.

When evaluating on real data we observe thatα plays an impor-
tant role in the simple unweighted case when we ignore the edge
strengths, but as we give the algorithm more power to assign dif-
ferent strengths to edges, the role ofα diminishes, and we see no
significant difference in performance for a broad range of choices
α. Figure 5 illustrates this; in the unweighted case (i.e., ignoring
edge strengths)α = 0.3 performs best, while in the weighted case
a broad range from0.3 to 0.7 seem to do about equally well.

(D) Regularization parameter λ. Empirically we find that over-
fitting is not an issue in our model as the number of parametersw
is relatively small. Settingλ = 1 gives best performance.

Extension: Edge types. The Supervised Random Walks frame-
work we have presented so far captures the idea that some edges
are stronger than others. However, it doesn’t allow for different
types of edges. For instance, it might be that an edge(u, v) be-
tweens’s friendsu and v should be treated differently than the
edge(s, u) betweens andu. Our model can easily capture this
idea by declaring different edges to be of different types, and learn-
ing a different set of feature weightsw for each edge type. We can
take the same approach to learning each of these weights, comput-
ing partial derivatives with respect to each one weight. Theprice
for this is potential overfitting and slower runtime.

In our experiments, we find that dividing the edges up into multi-
ple types provides significant benefit. Given a seed nodes we label
the edges according to the hop-distance froms of their endpoints,
e.g., edges(s, u) are of type (0,1), edges(u, v) are either of type
(1,1) (if bothu andv link to s) or (1,2) (if v does not link tos).
Since the nodes are at distance 0, 1, or 2 froms, there are 6 pos-
sible edge types: (0,1), (1,0), (1,1), (1,2), (2,1) and (2,2). While
learning six sets of more parametersw increases the runtime, using
multiple edge types gives a significant increase in performance.

Extension: Social capital.Before moving on to the experimental
results, we also briefly examine somewhat counterintuitivebehav-
ior of the Random Walk with Restarts. Consider a graph in Figure 6
with the seed nodes. There are two nodes whichs could form a
new connection tov1 andv2. These two are symmetric except for
the fact that the two paths connectings to v1 are connected them-
selves. Now we ask, iss more likely to link tov1 or tov2?

Building on the theory of embeddedness and social capital [10]
one would postulate thats is more likely to link tov1 than tov2.
However, the result of an edge(u1, u2) is that whenα > 0, v2
ends up with a higher PageRank score thanv1. This is somewhat
counterintuitive, asv1 somehow seems “more connected” tos than
v2. Can we remedy this in a natural way?

One solution could be that carefully settingα resolves the is-
sue. However, there is no value ofα > 0 which will make the
score ofv1 higher thanv2 and changing to other simple teleport-
ing schemes (such as a random jump to a random node) does not
help either. However, a simple correction that works is to add the
number of friends a nodew has in common withs, and use this
as an additional featureγ on each edge(u,w). If we apply this to
the graph shown in Figure 6, and set the weight along each edgeto
1 + γ, then the PageRank scorepv1 of nodev1 is 1.9 greater than
of v2 (as opposed to 0.1 smaller as in Fig 6).

In practice, we find that introducing this additional feature γ
helps on the Facebook graph. In Facebook, connection(u1, u2)
increases the probability of a link forming tov1 by about 50%. In
the co-authorship networks, the presence of(u1, u2) actually de-
creases the link formation probability by 37%. Such behavior of
co-authorship networks can be explained by the argument that long

Figure 6: Stationary random walk distribution with α = 0.15.
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Figure 7: Performance of Supervised Random Walks as a func-
tion of the number of steps of parameter estimation procedure.

range weak ties help in access to new information [14] (i.e., s is
more likely to link tov2 thanv1 of Fig 6). Having two independent
paths is a stronger connection in the co-authorship graph, as this
indicates thats has written papers with two people, on two differ-
ent occasions, and both of these people have written with thetarget
v, also on two different occasions. Thus, there must be at least
four papers between these four people when the edge(u1, u2) is
absent, and there may be as few as two when it is present. Note this
is exactly the opposite to the social capital argument [10],which
postulates that individuals who are well embedded in a network or
a community have higher trust and get more support and informa-
tion. This is interesting as it shows that Facebook is about social
contacts, norms, trying to fit in and be well embedded in a circle of
friends, while co-authorship networks are about access to informa-
tion and establishing long-range weak ties.

5.2 Experiments on real data
Next we evaluate the predictive performance of Supervised Ran-

dom Walks (SRW) on real datasets. We examine the performance
of the parameter estimation and then compare Supervised Random
Walks to other link-prediction methods.

Parameter estimation. Figure 7 shows the results of gradient de-
scent on the Facebook dataset. At iteration 0, we start with un-
weighted random walks, by settingw = 0. Using L-BFGS we
perform gradient descent on the WMW loss. Notice the strong cor-
relation between AUC and WMW loss,i.e., as the value of the loss
decreases, AUC increases. We also note that the method basically
converges in only about 25 iterations.

Comparison to other methods.Next we compare the predictive
performance of Supervised Random Walks (SRW) to a number of
simple unsupervised baselines, along with two supervised machine
learning methods. All results are evaluated by creating twoinde-



Learning Method AUC Prec@20

Random Walk with Restart 0.63831 3.41
Adamic-Adar 0.60570 3.13
Common Friends 0.59370 3.11
Degree 0.56522 3.05
DT: Node features 0.60961 3.54
DT: Network features 0.59302 3.69
DT: Node+Network 0.63711 3.95
DT: Path features 0.56213 1.72
DT: All features 0.61820 3.77
LR: Node features 0.64754 3.19
LR: Network features 0.58732 3.27
LR: Node+Network 0.64644 3.81
LR: Path features 0.67237 2.78
LR: All features 0.67426 3.82
SRW: one edge type 0.69996 4.24
SRW: multiple edge types 0.71238 4.25

Table 2: Hep-Ph co-authorship network. DT: decision tree, LR:
logistic regression, and SRW: Supervised Random Walks.

Learning Method AUC Prec@20

Random Walk with Restart 0.81725 6.80
Degree 0.58535 3.25
DT: Node features 0.59248 2.38
DT: Path features 0.62836 2.46
DT: All features 0.72986 5.34
LR: Node features 0.54134 1.38
LR: Path features 0.51418 0.74
LR: All features 0.81681 7.52
SRW: one edge type 0.82502 6.87
SRW: multiple edge types 0.82799 7.57

Table 3: Results for the Facebook dataset.

pendent datasets, one for training and one for testing. Eachperfor-
mance value is the average over all of the graphs in the test set.

Figure 8 shows the ROC curve for Astro-Ph dataset, compar-
ing our method to an unweighted random walk. Note that much
of the improvement in the curve comes in the area near the ori-
gin, corresponding to the nodes with the highest predicted values.
This is the area that we most care about,i.e., since we can only
display/recommend about 20 potential target nodes to a Facebook
user we want the top of the ranking to be particularly good (and do
not care about errors towards the bottom of the ranking).

We compare the Supervised Random Walks to unsupervised link-
prediction methods: plain Random Walk with Restarts, Adamic-
Adar score [1], number of common friends, and node degree. For
supervised machine learning methods we experiments with deci-
sion trees and logistic regression and group the features used for
training them into three groups:

• Network features: unweighted random walk scores, Adamic-
Adar score, number of common friends, and degrees of nodes
s and the potential targetc ∈ C

• Node features: average of the edge features for those edges
incident to the nodess andc ∈ C, as described in Section 4

• Path features: averaged edge features over all paths between
seeds and the potential destinationc.

Tables 2 and 3 compare the results of various methods on the
Hep-Ph co-authorship and Facebook networks. In general, wenote
very performance of Supervised Random Walks (SRW): AUC is in
the range 0.7–0.8 and precision at top 20 is between 4.2–7.6.We
consider this surprisingly good performance. For example,in case

Dataset AUC Prec@20
SRW LR SRW LR

Co-authorship Astro-Ph 0.70548 0.67639 2.55 2.15
Co-authorship Cond-Mat 0.74173 0.71672 2.54 2.61
Co-authorship Hep-Ph 0.71238 0.67426 4.18 3.82
Co-authorship Hep-Th 0.72505 0.69428 2.59 2.61
Facebook (Iceland) 0.82799 0.81681 7.57 7.52

Table 4: Results for all datasets. We compare favorably to lo-
gistic features as run on all features. Our Supervised Random
Walks (SRW) perform significantly better than the baseline in
all cases on ROC area. The variance is too high on the Top20
metric, and the two methods are statistically tied on this metric.
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of Facebook this means that out of 20 friendships we recommend
nearly 40% of them realize in near future.

Overall, Supervised Random Walks (SRW) give a significant im-
provement over the unweighted Random Walk with Restarts (RWR).
SRW also gives gains over other techniques such as logistic re-
gression which combine features. For example, in co-authorship
network (Tab. 2) we note that unsupervised RWR outperforms de-
cision trees and slightly trails logistic regression in terms of AUC
and Prec@20. Supervised Random Walks outperform all methods.
In terms of AUC we get 6% and in terms of Prec@20 near 12%
relative improvement. In Facebook (Tab. 3), Random Walk with
Restarts already gives near-optimal AUC, while SupervisedRan-
dom Walks still obtain 11% relative improvement in Prec@20.

It is important to note that, in addition to outperforming the other
methods, Supervised Random Walks do so without the tedious pro-
cess of feature extraction. There are many network featuresrelating
pairs of unconnected nodes (Adamic-Adar was the best out of the
dozens examined in [21], for example). Instead, we need onlyse-
lect the set of node and edge attributes, and Supervised Random
Walks take care of determining how to combine them with the net-
work structure to make predictions.

Last, Table 4 compares the performance of top two methods: Su-
pervised Random Walks and logistic regression. We note thatSu-
pervised Random Walks compare favorably to logistic regression.
As logistic regression requires state of the art network feature ex-
traction and Supervised Random Walks outperforms it out of the
box and without any ad hoc feature engineering.

When we examine the weights assigned, we find that for Face-
book the largest weights are those which are related to time.This
makes sense as if a user has just made a new friendu, she is
likely to have also recently met some ofu’s friends. In the co-
authorship networks, we find that the number of co-authored pa-
pers and the cosine similarity amongst titles were the features with
highest weights.



Runtime. While the exact runtime of Supervised Random Walks
is highly dependent on the graph structure and features used, we
give some rough guidelines. The results here are for single runs on
a single 2.3Ghz processor on the Facebook dataset.

When putting all edges in the same category, we have 8 weights
to learn. It took 98 iterations of the quasi-Newton method tocon-
verge and minimize the loss. This required computing the PageR-
anks of all the nodes in all the graphs (100 of them) 123 times,
along with the partial derivatives of each of the 8 parameters 123
times. On average, each PageRank computation took 13.2 steps
of power-iteration before converging, while each partial derivative
computation took 6.3 iterations. Each iteration for PageRank or
its derivative takesO(|E|). Overall, the parameter estimation on
Facebook network took 96 minutes. By contrast, increasing the
number of edge types to 6 (which gives best performance) required
learning 48 weights, and increased the training time to 13 hours on
the Facebook dataset.

6. CONCLUSION
We have proposed Supervised Random Walks, a new learning al-

gorithm for link prediction and link recommendation. By utilizing
node and edge attribute data our method guides the random walks
towards the desired target nodes. Experiments on Facebook and co-
authorship networks demonstrate good generalization and overall
performance of Supervised Random Walks. The resulting predic-
tions show large improvements over Random Walks with Restarts
and compare favorably to supervised machine learning techniques
that require tedious feature extraction and generation. Incontrast,
our approach requires no network feature generation and in aprin-
cipled way combines rich node and edge features with the structure
of the network to make reliable predictions.

Supervised Random Walks are not limited to link prediction,and
can be applied to many other problems that require learning to rank
nodes in a graph, like recommendations, anomaly detection,miss-
ing link, and expertise search and ranking.
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