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Abstract

Given a large, real graph, how can we generate
a synthetic graph that matches its properties,
i.e., it has similar degree distribution, similar
(small) diameter, similar spectrum, etc? We pro-
pose to use “Kronecker graphs”, which naturally
obey all of the above properties, and we present
KronFit, a fast and scalable algorithm for fit-
ting the Kronecker graph generation model to
real networks. A naive approach to fitting would
take super-exponential time. In contrast, Kron-

Fit takes linear time, by exploiting the structure
of Kronecker product and by using sampling.
Experiments on large real and synthetic graphs
show that KronFit indeed mimics very well the
patterns found in the target graphs. Once fitted,
the model parameters and the resulting synthetic
graphs can be used for anonymization, extrapo-
lations, and graph summarization.

1. Introduction

Large, real graphs have a lot of structure: they typi-
cally obey power laws in their in- and out-degree dis-
tributions; they have small diameter; and they often
have a self-similar structure, with communities within
communities

Although several, realistic, graph generators have been
proposed in the past (like the preferential attachment,
the copying model, the small-world model, the forest
fire model, etc.), very little work exists on how to fit
the parameters of such models.

This is exactly the problem we examine here. Given a
large real graph, we want to choose the most realistic
generator and to estimate its parameters, so that our
resulting synthetic graph matches the properties of the
real graph as well as possible.

Ideally we would like: (a) A graph generation model
that naturally obeys as many properties as possible,
among the ones observed in real graphs. (b) The pa-
rameter fitting should be fast and scalable, so that
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we can handle graphs with thousands and millions of
nodes. (c) The resulting set of parameters should gen-
erate realistic-looking graphs, that match the topolog-
ical properties of the target, real graph.

The fitting presents several conceptual and engineering
challenges: Which generator should we choose, among
the many in the literature? How do we measure the
goodness of the fit? How do we solve the correspon-
dence problem (which node of the real graph corre-
sponds to what node of the synthetic one)?

We examine the Kronecker graphs (Leskovec et al.,
2005) which are based on Kronecker matrix multipli-
cation. Kronecker model can generate graphs that
obey many of the patterns found in real graphs. More-
over, we present KronFit, a fast and scalable algo-
rithm for fitting Kronecker graphs by using maximum
likelihood. When calculating the likelihood one needs
to consider all mappings of nodes to the graph adja-
cency matrix, which becomes intractable for graphs
with more than a few nodes. Even when given “true”
mapping evaluating the likelihood is prohibitively ex-
pensive. We present solutions to both problems: We
develop Metropolis sampling algorithm for node map-
ping and approximate the likelihood to obtain a linear
time algorithm that scales to large graphs.

Once the model is fitted to the real graph, there are
several benefits and applications: (a) The parameters
give us information about the structure of the graph
itself; (b) Graph compression: we can compress the
graph, by just storing the model parameters, and the
deviations between the real and the synthetic graph;
(c) Extrapolations: we can use the model to generate
a larger graph, to help us understand how the network
will look like in the future; (d) Sampling: conversely,
we can also generate a smaller graph, which may be
useful for running simulation experiments (e.g., sim-
ulating routing algorithms in computer networks, or
virus/worm propagation algorithms), when these al-
gorithms may be too slow to run on large graphs;
(e) Anonymization: suppose that the real graph can
not be publicized, like, e.g., corporate e-mail network;
customer-product sales in a recommendation system.
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Yet, we would like to share our network. Our work
gives ways to such a realistic, ’similar’ network.

2. Related Work and Background

Networks across a wide range of domains have been
found to share common statistical properties. We use
these properties as sanity checks, that is, our syn-
thetic graphs should match the properties of the target
graph. First we give a list of such properties, then we
mention the graph generators, and finally we survey
earlier attempts at graph fitting.

Graph patterns One of the most striking patterns
is the power-law of the degree distribution: nk ∝ k−a,
where a > 0 is the power-law exponent, and nk is the
count of nodes with degree k. Power law (or power
law tail) distributions occur in the Web (Kleinberg
et al., 1999), in the Internet (Faloutsos et al., 1999), in
citation graphs (Redner, 1998), in on-line social net-
works (Chakrabarti et al., 2004), and many more.

The second pattern is the small diameter (the small-
world phenomenon, or ’six degrees of separation’): In
real graphs, most pairs of nodes are within few hops
from each other (Albert & Barabási, 2002; Milgram,
1967). Hop-plot extends the notion of diameter by
plotting the number of reachable pairs P (h) within h
hops. It gives us a sense how quickly nodes’ neighbor-
hoods expand with the distance.

The spectral properties also exhibit power laws: The
scree plot is a plot of the eigen- (or singular-) values
of graph adjacency matrix, versus their rank. It often
obeys a power law. The same holds for the distribution
of the components of the first eigenvector (“network
value” of each node) (Chakrabarti et al., 2004).

Generative models The earliest generative model
for graphs is a random graph model (Erdos & Renyi,
1960)where a pair of nodes has identical, indepen-
dent probability of being joined by an edge. Although
heavily studied, this model fails to generate power-
law degree distributions. For small diameters, there is
the small-world generator (Watts & Strogatz, 1998).
The rest of the recent ones all generate heavy-tailed
degree distributions (power-law, or lognormal). An
influential idea was the preferential attachment (Al-
bert & Barabasi, 1999; Kleinberg et al., 1999) where
new nodes prefer to attach to high-degree older nodes,
which leads to power-law tails and to low diameters.
There are also many variations: “copying model”, the
“winner does not take all” model, and the “forest fire”
model. See (Chakrabarti & Faloutsos, 2006) for a de-
tailed survey and comparison of these methods.

One should also note that most of graph generative
models usually aim in modeling (explaining) just a

single property of the network. For these models it is
known that there are certain network properties they
don’t generate. Moreover, simple expressions have
been derived that relate the network property (e.g.,
degree exponent) with the setting of (usually just a
single) parameter. So, in these models there is no in-
teresting parameter estimation and fitting.

Our work builds on the “Kronecker Graph
model” (Leskovec et al., 2005), where Kronecker
matrix multiplication is used to lead to realistic
graphs obeying multiple properties of real world
graphs. Kronecker graphs have a variable number of
parameters, which makes them interesting for fitting.
We describe them in more detail later.

Fitting graph models Most work in fitting net-
work models comes from the social sciences, where
the so-called exponential random graph models were
introduced, also known as p∗ (Wasserman & Pattison,
1996). The p∗ model focuses on “local” structural fea-
tures of networks (like, e.g. characteristics of nodes
that determine a presence of an edge), while here we
model a large real-world graphs as a whole. Moreover,
for large graphs the number of parameters becomes
large, and estimation prohibitively expensive.

A common theme when estimating P (G) is the chal-
lenge of factorially many orderings of nodes. Ordering
can define the mapping to rows of adjacency matrix,
or the order in which nodes were added to the network.
(Butts, 2005) used permutation sampling to determine
similarity of adjacency matrices, and (Bezáková et al.,
2006) used it for graph model selection. Recently, an
approach for estimating parameters of “copying” mod-
els was introduced (Wiuf et al., 2006), however authors
also note that the class of “copying” models may not
be rich enough to model real networks.

As we show later, the Kronecker Graph model has the
necessary expressive power to mimic real graphs.

3. Kronecker Graphs

Kronecker matrix multiplication was recently pro-
posed for realistic graph generation, and shown to be
able to produce graphs that match many of the pat-
terns found in real graphs (Leskovec et al., 2005). Kro-
necker graphs are based on a recursive construction. A
procedure that is best described in terms of the Kro-
necker product of graph adjacency matrices.

Deterministic Kronecker Graphs The main idea
is to create self-similar graphs, recursively. We begin
with an initiator graph G1, with N1 nodes, and by
recursion we produce successively larger graphs G2 . . .
Gn such that the kth graph Gk is on Nk = Nk

1 nodes.
Kronecker product is a perfect tool for this goal:
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Figure 1. Kronecker multiplication: Top row: structure of
adjacency matrices. Bottom: corresponding graphs – “3-
chain” and its Kronecker product with itself; each of the
nodes gets expanded into 3 nodes, which are then linked.

Definition 1 (Kronecker product of matrices)
Given two matrices U = [ui,j ] and V of sizes n × m
and n′×m′ respectively, the Kronecker product matrix
S of dimensions (n ∗ n′) × (m ∗ m′) is given by

S = U ⊗ V
.
=









u1,1V u1,2V . . . u1,mV
u2,1V u2,2V . . . u2,mV

...
...

. . .
...

un,1V un,2V . . . un,mV









(1)

Kronecker product of two graphs is defined as Kro-
necker product of their adjacency matrices. We de-

note kth Kronecker power of G1 as G
[k]
1 (abbreviated

to Gk), where Gk = G
[k]
1 = Gk−1 ⊗ G1.

Figure 1 shows the recursive construction of Kronecker
graphs. We start with G1, a 3-node chain, and Kro-
necker power it to obtain G2. To produce Gk from
Gk−1, we “expand” (replace) nodes of Gk−1 by copies
of G1, and join the copies according to the adjacencies
in Gk−1 (see fig. 1). One can imagine this by posit-
ing that communities in the graph grow recursively,
with nodes in the community recursively getting ex-
panded into miniature copies of the community. Nodes
in the sub-community then link among themselves and
to nodes from other communities.

Stochastic Kronecker Graphs Here we will be
working with a stochastic version of Kronecker Graphs.
The difference is that now initiator matrix is stochas-
tic: we start with a N1 × N1 probability matrix Θ =
[θij ], where the element θij ∈ [0, 1] is the probability
that edge (i, j) is present. We compute the kth Kro-
necker power P = Θ[k]; And then for each puv ∈ P,
include edge (u, v) with probability puv.

Stochastic Kronecker Graphs are thus parameterized
by the N1×N1 probability (parameter) matrix Θ. The
probability puv of an edge (u, v) occurring in k-th Kro-
necker power P = Θ[k] can be calculated as:

puv =

k−1
∏

i=0

Θ

[

⌊u − 1

N i
1

⌋

(modN1) + 1,
⌊v − 1

N i
1

⌋

(modN1) + 1

]

The equation imitates recursive deepening into matrix
P, where at every level i the appropriate element of Θ
is chosen. Since P has Nk

1 rows and columns it takes
O(k log N1) to evaluate the equation.

4. Proposed Method

4.1. Preliminaries

Stochastic graph models introduce probability distri-
butions over graphs. A generative model assigns prob-
ability P (G) to every graph G. P (G) is the likelihood
that a given model generated graph G. We concen-
trate on Stochastic Kronecker Graph model, and con-
sider fitting it to a real graph G. We use maximum
likelihood approach, i.e. we aim to find parameter val-
ues Θ that maximize the P (G) under the model. This
presents several challenges:

Model selection Graph is a single structure, and not
a set of items drawn i.i.d. from some distribution. So
one can not split it into independent training and test
sets. The fitted parameters will thus be best to gener-
ate a particular instance of a graph. Also, overfitting
is an issue since more complex model fits better.

Node labeling The second issue is the node order-
ing or node labeling. Graph G has a set of N nodes,
and each node has unique index (label). Labels do
not carry any particular meaning. One can think of
this as a graph is first generated and then the labels
are randomly assigned to the nodes. This means that
two isomorphic graphs that have different node label-
ing should have the same likelihood. So to compute
the likelihood one has to consider all node labelings
P (G) =

∑

σ P (G|σ)P (σ), where the sum is over all
permutations σ of N nodes.

Likelihood estimation Calculating P (G|σ) naively
takes O(N2) by simply evaluating the probability of
each edge in the graph adjacency matrix. The chal-
lenge is averaging over the super-exponentially many
permutations which is computationally intractable,
and thus one has to reside to simulation and sampling.
As we will later see for real graphs even calculating
P (G|σ) in O(N2) is infeasible.

We use sampling to avoid super-exponential sum over
the node labelings. By exploiting the structure of kro-
necker matrix multiplication we develop an algorithm
to evaluate P (G|σ) in linear time O(E). Since real
graphs are sparse, i.e. the number of edges is of the
same order as the number of nodes, this makes the fit-
ting of the Kronecker model to large graphs tractable.



Scalable Modeling of Real Graphs using Kronecker Multiplication

4.2. Problem Formulation

Suppose we are given a graph G on N = Nk
1 nodes (for

some positive integer k), and a N1 by N1 Stochastic
Kronecker Graph initiator matrix Θ. Θ is a param-
eter matrix, a set of parameters that we aim to esti-
mate. For now also assume N1 is given. Later we will
show how to select it. Next, we create a Stochastic
Kronecker Graph probability matrix P = Θ[k], where
every cell pij of P contains a probability that node i
links to node j. We evaluate the probability that G is
a realization of P. The task is to find such Θ that has
the highest probability of generating G. Formally, we
are solving:

arg max
Θ

P (G|Θ) (2)

A permutation σ of the set {1, . . . , N} defines the map-
ping of nodes from G to stochastic adjacency matrix
P. The node labeling is arbitrary and carries no sig-
nificant information. A priori all labelings are equally
likely. To evaluate the likelihood of G one needs to con-
sider all possible mappings of N nodes of G to rows of
P. For convenience we work with log-likelihood l(Θ),
and solve arg maxΘ l(Θ), where l(Θ) is defined as:

l(Θ) = log P (G|Θ) = log
∑

σ

P (G|Θ, σ)P (σ|Θ)

= log
∑

σ

P (G|Θ, σ)P (σ) (3)

P (G|Θ, σ) is calculated as follows. First, by using Θ
we create the Stochastic Kronecker graph adjacency
matrix P = Θ[k]. Permutation σ defines the mapping
of nodes of G to the rows and columns of stochastic
adjacency matrix P. Modeling edges as Bernoulli ran-
dom variables we evaluate the likelihood:

P (G|P, σ) =
∏

(u,v)∈G

P[σu, σv]
∏

(u,v)/∈G

(1 − P[σu, σv]), (4)

where we denote σi as the ith element of the permuta-
tion σ, and P[i, j] is the element at row i, and column
j of matrix P = Θ[k]. The products go over all edges
present in graph G, and all edges missing from G.

Ideally, we would like to compute the log-likelihood
l(G|Θ) and the gradient matrix ∂

∂Θ̂t

l(Θ̂t), and then

use the gradient to update the current parameter es-
timates and move towards a better solution. Algo-
rithm 1 gives an outline of the optimization procedure.

As the problem is introduced there are several diffi-
culties. First, we assume gradient descent type opti-
mization will work, i.e. the problem does not have
(too many) local minima. Second, we are summing
over exponentially many permutations in equation 3.

Algorithm 1 KronFit algorithm

Input: integer N1, and graph G on N = Nk
1 nodes

Output: MLE parameters Θ̂ (N1 × N1 matrix)

initialize Θ̂1

while not converged do
evaluate gradient: ∂

∂Θ̂t

l(Θ̂t)

update parameters: Θ̂t+1 = Θ̂t + λ ∂

∂Θ̂t

l(Θ̂t)

end while
return Θ̂ = Θ̂t

Algorithm 2 Calculating log-likelihood and gradient

Input: Parameter matrix Θ, and graph G
Output: Log-likelihood l(Θ), and gradient ∂

∂Θ l(Θ)
for t = 1 to T do

σ(t) := SamplePermutation(G,Θ)

lt = log P (G|σ(t),Θ)
gradt := ∂

∂Θ log P (G|σ(t),Θ)
end for
return l(Θ) = 1

T

∑

t lt,
∂

∂Θ l(Θ) = 1
T

∑

t gradt

Third, the evaluation of equation 4 as it is written
takes O(N2) and needs to be evaluated N ! times. So,
naively calculating the likelihood takes O(N2N !).

Next, we show that all these can be done in linear time.

4.3. Summing over the Node Labelings

To maximize equation 2 using algorithm 1 we need to
obtain log-likelihood gradient ∂

∂Θ l(Θ). We can write:

∂
∂Θ

l(Θ) =

∑

σ
∂

∂Θ
P (G|σ, Θ)P (σ)

∑

σ′ P (G|σ′, Θ)P (σ′)

=

∑

σ

[

∂ log P (G|σ, Θ)

∂Θ
P (G|σ, Θ)

]

P (σ)

P (G|Θ)

=
∑

σ

∂ log P (G|σ, Θ)

∂Θ
P (σ|G, Θ) (5)

Note we are still summing over all permutations σ,
so calculating eq. 5 is computationally intractable
for graphs with more than a few nodes. However,
the equation has a nice form which allows to use
simulation techniques and avoid the summation over
super-exponentially many node labelings. We simulate
draws from the permutation distribution P (σ|G,Θ),
and evaluate the quantities at the sampled permuta-
tions to obtain the expected values of log-likelihood
and gradient. Algorithm 2 gives the details.

Next, we describe a Metropolis algorithm to
simulate draws from the permutation distribu-
tion P (σ|G,Θ), which is given by P (σ|G,Θ) =
P (σ,G,Θ)/

∑

σ P (σ,G,Θ) =
∑

σ P (σ,G,Θ)/Zσ,
where Zσ is the normalizing constant that is hard to
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Algorithm 3 SamplePermutation(G,Θ): Metropo-
lis sampling of the permutations

Input: Kronecker initiator matrix Θ and a graph
G on N nodes
Output: Permutation σ(i) ∼ P (σ|G,Θ)
σ(0) := (1, . . . , N)
repeat

Draw j and k uniformly from (1, . . . , N)
σ(i) := SwapElements(σ(i−1), j, k)
Draw u from U(0, 1)

if u > P (σ(i)|G,Θ)
P (σ(i−1)|G,Θ)

then

σ(i) := σ(i−1)

end if
i = i + 1

until σ(i) ∼ P (σ|G,Θ)
return σ(i)

Where U(0, 1) is a uniform distribution on [0, 1], and
σ′ := SwapElements(σ, j, k) is the permutation σ′

obtained from σ by swapping elements j and k.

compute since it involves the sum over N ! elements.
However, if we compute the likelihood ratio between
permutations σ and σ′ (eq. 6) notice that the normal-
izing constants cancel out:

P (σ′|G,Θ)
P (σ|G,Θ)

=
∏

(u,v)∈G
P[σu,σv ]
P[σ′

u
,σ′

v
]

∏

(u,v)/∈G
(1−P[σu,σv ])
(1−P[σ′

u
,σ′

v
])

(6)

=
∏

(u,v)∈G

(σu,σv) 6=(σ′

u
,σ′

v
)

P[σu,σv ]
P[σ′

u
,σ′

v
]

∏

(u,v)/∈G

(σu,σv) 6=(σ′

u
,σ′

v
)

(1−P[σu,σv ])
(1−P[σ′

u
,σ′

v
])
(7)

This immediately suggests Metropolis sampling al-
gorithm (Gamerman, 1997) to simulate draws from
the permutation distribution since Metropolis is solely
based on such ratios. In particular, suppose that in
the Metropolis algorithm (Algorithm 3) we consider a
move from permutation σ to a candidate permutation
σ′. Probability of accepting the move to σ′ is given by

eq. 6, if P (σ′|G,Θ)
P (σ|G,Θ) ≤ 1 or 1 otherwise.

We further speed up algorithm by using the follow-
ing observation. As written the eq. 6 takes O(N2) to
evaluate since we have to consider N2 possible edges.
However, notice that permutations σ and σ′ differ only
at two elements, i.e. elements at position j and k are
swapped, e.i. σ and σ′ map all nodes except the two
to the same location, which means those elements of
equation 6 cancel out. Thus we only need to traverse
two rows and columns of matrix P, namely rows and
columns j and k, since everywhere else the mapping
of nodes to the adjacency matrix is the same for both
permutations. We get eq. 7 where the products go only
over the two rows where σ and σ′ differ.

Graphs we are working with here are too large to ex-
plicitly create and store the stochastic adjacency ma-

trix P by Kronecker powering the initiator matrix Θ.
Every time probability P[i, j] of edge (i, j) is needed
the equation in section 3 is evaluated, which takes
O(k). So a single iteration of algorithm 3 takes O(kN).

4.4. Efficiently Evaluating the Likelihood

Similarly to evaluating the likelihood ratio, naively cal-
culating the log-likelihood l(Θ) or its gradient ∂

∂Θ l(Θ)
takes time quadratic in the number of nodes. Next we
show how to compute this in linear time.

We begin with observation that real graphs are sparse,
which means the number of edges is not quadratic but
rather linear in the number of nodes. This means that
majority of elements of graph adjacency matrix are
zero, i.e. most of the edges are not present. We exploit
this fact. The idea is to first calculate the likelihood
(gradient) of an empty graph, i.e. a graph with no
edges, and then correct for edges that are in G.

Naively calculating the likelihood for an empty graph
one needs to evaluate every cell of graph adjacency
matrix. We consider Taylor approximation to the like-
lihood, and exploit the structure of matrix P to devise
a constant time algorithm.

First, consider the second order Taylor approximation
to log-likelihood of an edge that succeeds with proba-
bility x but does not appear in the graph: log(1−x) ≈
−x − 1

2x2. Calculating le(Θ), the log-likelihood of an
empty graph, becomes:

le(Θ) =
N

∑

i,j=1

log(1 − pij) ≈ −

( N1
∑

i,j=1

θi,j

)k

−
1

2

( N1
∑

i,j=1

θ
2
i,j

)k

(8)

Equation 8 is holds due to the structure of matrix
P generated by the Kronecker product. We substi-
tute the log(1 − pij) with its Taylor approximation,
which gives a sum over elements of P and their squares.
Next, we notice the sum of elements of P forms a multi-
nomial series, and thus

∑

i,j pij = (
∑

i,j θij)
k, where

θij denotes an element of Θ, and P = Θ[k].

Calculating log-likelihood of G now takes O(N): First,
we calculate the likelihood of an empty graph in
constant time, and then account for edges that are
present, i.e. we subtract no-edge likelihood and add
the edge likelihood:

l(Θ) = le(Θ) +
∑

(u,v)∈G

− log(1 − P[σu, σv]) + log(P[σu, σv])

Calculation of the gradient follows exactly the same
pattern. We first calculate gradient if graph G would
have no edges, and then correct for the edges that are
present in G. We skip the details of the derivation for
brevity. As in previous section we speed up the calcu-
lations of log-likelihood and the gradient by exploiting
the fact that permutations σ and σ′ differ at only two
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positions, and thus given the log-likelihood (gradient)
from previous time step one only needs to account for
the swap of two rows and columns of P to update it.

4.5. Determining Size of the Initiator Matrix

For model selection to find the appropriate value of
N1, the size of matrix Θ, and choose the right trade-
off between the complexity of the model and qual-
ity of the fit, we propose to use the Bayes Infor-
mation Criterion (BIC) (Schwarz, 1978). Stochastic
Kronecker Graphs model the presence of edges with
Bernoulli random variables, where the canonical num-
ber of parameters is N2k

1 , which is a function of a
lower-dimensional parameter Θ. This is then a curved
exponential family (Efron, 1975), and BIC naturally

applies: BIC = −l(Θ̂) + 1
2N2

1 log(N2), where Θ̂ are
maximum likelihood parameters under the model with
Θ̂ of size N1 × N1, and N is the number of nodes in
G.

5. Experiments

We begin by investigating the convergence of sampling
and gradient descent, then present results on fitting
large real-world graphs.

For the experiments we considered synthetic and real
graphs. Synthetic Kronecker graphs were generated
using Θ̃ = [.9, .7; .5, .3], and k = 14 (N1 = 16, 384).
Real graphs include a graph of connectivity among
Internet Autonomous systems (AS) with N = 6, 474
and E = 26, 467; and a who-trusts-whom type social
network from Epinions (Richardson et al., 2003) with
N = 75, 879 and E = 508, 960.

In general networks do not have the number of nodes
be the integer power of N1. As the removal of random
nodes corrupts the degree distribution (Stumpf et al.,
2005) we pad the graph with isolated nodes so that
the total number of nodes is a integer power of N1.

5.1. Convergence

In maximizing the likelihood we use stochastic approx-
imation to the gradient. This adds variance to the
gradient and makes efficient optimization techniques,
e.g. conjugate gradient, highly unstable. Thus we use
gradient descent, which is slower but easier to control.

Permutation sampling We examine the convergence
of Metropolis permutation sampling. Starting with a
random permutation we run algorithm 3, and measure
convergence of likelihood and gradient to their true
values. Experiments showed that one needs less than a
million samples for the estimates to converge. We also
measured the variance of the estimates is sufficiently
small. In our experiments we start with a random
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Figure 2. Convergence of graph patterns with the number
of iterations of gradient descent using synthetic dataset.

permutation and use long burn-in time. Then when
performing optimization we use the permutation from
previous step to initialize the permutation at current
step of gradient descent. The intuition is that small
changes in Θ also mean small changes in P (σ|G,Θ).

Optimization space In Kronecker graphs permuta-
tions of the parameter matrix Θ all have the same like-
lihood. This means that the maximum likelihood opti-
mization problem is not convex, but rather has several
global minima. To check for the presence of other local
minima where gradient descent could get stuck we run
the following experiment: we generated 100 synthetic
Kronecker graphs on 16,384 (214) nodes and 1.4 mil-
lion edges on average, with a randomly chosen 2 × 2
parameter matrix Θ∗. For each of the 100 graphs we
start gradient descent from a different random loca-
tion Θ′, and try to recover Θ∗. In 98% of the cases the
descent converged to the true parameters. Many times
the algorithm converged to a different global minima,
i.e. permuted true parameter values. This suggests
surprisingly nice structure of the optimization prob-
lem: it seems it behaves like a convex optimization
problem with many equivalent global minima.

Gradient descent To get a better understanding of
the convergence of the gradient descent we performed
the following experiment. After every step t of gra-
dient descent, we compare the true graph G with the
synthetic Kronecker graph K generated using the cur-
rent parameter estimates Θ̂t. Figure 2 gives the con-
vergence of log-likelihood (a), average absolute error
in parameters (b), diameter (c), and largest singular
value (d). Note how with iterations of gradient de-
scent properties of graph K quickly converge to those
of G even though we are not directly optimizing over
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Figure 3. Autonomous Systems: Overlayed patterns of real
graph and the fitted Kronecker graph. Notice that the
fitted Kronecker graph matches patterns of the real graph.

them: log-likelihood increases, average absolute error
decreases, diameter and largest singular value of K
both converge to G. This is a nice result since it shows
that through the optimization of the maximum likeli-
hood the graphs also match in several other properties
even though we are not directly optimizing over them.

5.2. Fitting to Real-world Graphs

We also present experiments of fitting Kronecker
Graphs model to real-world graphs. Given a real graph
G we aim in discovering most likely parameters Θ̂ that
ideally would generate a synthetic graph K having
same properties as G. This assumes that Kronecker
Graphs is a good model for real graphs, and that Kro-

nFit is able to recover good parameters. We take real
graph G, find parameters Θ̂ using KronFit, generate
synthetic graph K using Θ̂, and compare their prop-
erties that we introduced in section 2.

Figure 3 shows properties of Autonomous Systems
graph, and compares them with the properties of a
synthetic Kronecker graph generated using the fitted
parameters Θ̂ of size 2 × 2. Notice that properties of
both graphs match really well.

Autonomous Systems is undirected graph and the fit-
ted parameter matrix Θ̂ = [.98, .58; .58, .06] is also
symmetric. This means that without a priori biasing
the fitting towards undirected graphs, the recovered
parameters obey this. Fitting AS graph from a ran-
dom set of parameters, performing gradient descent
for 50 iterations and at each iteration sampling half
a million permutations, took less than 20 minutes on
a standard desktop PC. This is a significant speedup
over (Bezáková et al., 2006), where by using a simi-
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Figure 5. (a) Run time to sample 1 million gradients as the
graph grows. The algorithm scales linearly with the graph
size. (b) BIC score for model selection. Notice it recovers
the model with the true number of parameters.

lar permutation sampling approach for calculating the
likelihood of a preferential attachment model on sim-
ilar AS graph took about two days on a cluster of 50
machines, while in our case finding the MLE parame-
ters took 20 minutes on a desktop PC.

Last, we present the results of fitting Epinions graph.
We performed 200 steps of gradient descent and at
each step sampled 200,000 permutations. The fitting
took 2.5 hours on a standard desktop. Figure 4 shows
the results. Notice very good fit of all properties be-
tween the Epinions graph and the synthetic graph. Es-
timated parameter matrix is Θ̂ = [.99, .54; .49, .13]. As
with Autonomous Systems estimated parameter ma-
trix Θ̂ is very skewed: θ11 ≈ 1, the diagonal param-
eters (θ12, θ21) are around 0.5, and θ22 is very small.
This indicates that in the Epinions network we observe
the “core-periphery” type of network structure.

5.3. Scalability

We generated a sequence of increasingly larger syn-
thetic graphs on N nodes and 8N edges, and measured
the time of one iteration of gradient descent, i.e. sam-
ple 1 million permutations and evaluate the gradients.
We started with a graph on 1000 nodes, and finished
with a graph on 8 million nodes, and 64 million edges.
Figure 5(a) shows KronFit scales linearly with the
size of the graph. We plot processor time vs. size of
the graph. Dashed line presents linear fit to the data.

5.4. Model Selection

Last, we present result on model selection. Figure 5(b)
shows BIC scores for the following experiment: We
generated Kronecker graph with N = 2, 187 and E =
8, 736 using N1 = 3 (9 parameters) and k = 7. For
1 ≤ N1 ≤ 9 we find the MLE parameters using gradi-
ent descent, and calculate the BIC scores. Model with
lowest score is chosen. As figure 5(b) shows we recov-
ered the true model, i.e. BIC score is lowest for the
model with the true number of parameters, N1 = 3.
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Figure 4. Epinions: Overlayed patterns of real graph and the fitted Kronecker graph. Notice that the synthetic Kronecker
graph generated using the fitted parameters matches patterns of the real Epinions graph.

6. Conclusion

We presented KronFit, a fast, scalable algorithm to
create a synthetic graph that mimics the properties of
a given real graph.

In contrast to earlier work, our work has the following
novelties: (a) it is among the few that estimates the
parameters of the chosen generator (b) it is among
the few that has a concrete measure of goodness of
the fit (namely, likelihood) (c) it avoids the quadratic
complexity of computing the likelihood by exploiting
the properties of the “Kronecker graphs” (d) it avoids
the factorial explosion of the correspondence problem,
by using Metropolis sampling.

The resulting algorithm matches well all the known
properties of real graphs, as we show with the Epin-
ions graph and the AS graph, it scales linearly on the
number of edges, and it is order of magnitudes faster
than earlier graph-fitting attempts: 20 minutes on a
commodity PC, versus 2 days on a cluster of 50 work-
stations (Bezáková et al., 2006).

The benefits of fitting a Kronecker graph model into
a real graph are several: Extrapolation: Once we have
the Kronecker generator Θ for a given real matrix G
(such that G is mimicked by Θ[k]), a larger version of
G would be generated by Θ[k+1]. Sampling: Similarly,
if we want a realistic sample of the real graph, we could
use a smaller exponent in the Kronecker exponentia-
tion, like Θ[k−1]. Anonymization: Since Θ[k] mimics
G, we can publish Θ[k], without revealing information
about the nodes of the real graph G.
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