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Abstract. Large-scale image retrieval benchmarks invariably consist of
images from the Web. Many of these benchmarks are derived from on-
line photo sharing networks, like Flickr, which in addition to hosting
images also provide a highly interactive social community. Such com-
munities generate rich metadata that can naturally be harnessed for
image classification and retrieval. Here we study four popular bench-
mark datasets, extending them with social-network metadata, such as
the groups to which each image belongs, the comment thread associated
with the image, who uploaded it, their location, and their network of
friends. Since these types of data are inherently relational, we propose
a model that explicitly accounts for the interdependencies between im-
ages sharing common properties. We model the task as a binary labeling
problem on a network, and use structured learning techniques to learn
model parameters. We find that social-network metadata are useful in
a variety of classification tasks, in many cases outperforming methods
based on image content.
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1 Introduction

Recently, research on image retrieval and classification has focused on large image
databases collected from the Web. Many of these datasets are built from online
photo sharing communities such as Flickr [1,2,3,4] and even collections built
from image search engines [5] consist largely of Flickr images.

Such communities generate vast amounts of metadata as users interact with
their images, and with each other, though only a fraction of such data are used by
the research community. The most commonly used form of metadata considered
in multimodal classification settings is the set of tags associated with each image.
In [6] the authors study the relationship between tags and manual annotations,
with the goal of recovering annotations using a combination of tags and image
content. The problem of recommending tags was studied in [7], where possible
tags were obtained from similar images and similar users. The same problem
was studied in [8], who exploit the relationships between tags to suggest future
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annotated with the same tag

submitted to the same group

taken from the same location

posted by the same user

Fig. 1. The proposed relational model for image classification. Each node rep-
resents an image, with cliques formed from images sharing common properties.
‘Common properties’ can include (for example) communities, e.g. images sub-
mitted to a group; collections, e.g. sets created by a user; annotations, e.g. tag
data; and user data, e.g. the photo’s uploader and their network of friends.

tags based on existing ones. Friendship information between users was studied
for tag recommendation in [9], and in [10] for the case of Facebook.

Another commonly used source of metadata comes directly from the camera,
in the form of exif and GPS data [11,12,13,14]. Such metadata can be used to
determine whether two photos were taken by the same person, or from the same
location, which provides an informative signal for certain image categories.

Our goal in this paper is to assess what other types of metadata may be
beneficial, including the groups, galleries, and collections in which each image
was stored, the text descriptions and comment threads associated with each
image, and user profile information including their location and their network
of friends. In particular, we focus on the following three questions: (1) How can
we effectively model relational data generated by the social-network? (2) How
can such metadata be harnessed for image classification and labeling? (3) What
types of metadata are useful for different image labeling tasks?

Focusing on the first question we build on the intuition that images sharing
similar tags and appearance are likely to have similar labels [2]. In the case of
image tags, simple nearest-neighbor type methods have been proposed to ‘prop-
agate’ annotations between similar images [15]. However, unlike image labels
and tags – which are categorical – much of the metadata derived from social
networks is inherently relational, such as collections of images posted by a user
or submitted to a certain group, or the networks of contacts among users. We
argue that to appropriately leverage these types of data requires us to explicitly
model the relationships between images, an argument also made in [16].

To address the relational nature of social-network data, we propose a graphi-
cal model that treats image classification as a problem of simultaneously predict-
ing binary labels for a network of photos. Figure 1 illustrates our model: nodes
represent images, and edges represent relationships between images. Our intu-
ition that images sharing common properties are likely to share labels allows us
to exploit techniques from supermodular optimization, allowing us to efficiently
make binary predictions on all images simultaneously [17].
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In the following sections, we study the extent to which categorical predictions
about images can be made using social-network metadata. We first describe how
we augment four popular datasets with a variety of metadata from Flickr. We
then consider three image labeling tasks. The creators of these datasets obtained
labels through crowdsourcing and from the Flickr user community. Labels range
from objective, everyday categories such as ‘person’ or ‘bicycle’, to subjective
concepts such as ‘happy’ and ‘boring’.

We show that social-network metadata reliably provide context not contained
in the image itself. Metadata based on common galleries, image locations, and
the author of the image tend to be the most informative in a range classification
scenarios. Moreover, we show that the proposed relational model outperforms a
‘flat’ SVM-like model, which means that it is essential to model the relationships
between images in order to exploit these social-network features.

2 Dataset Construction and Description

We study four popular datasets that have groundtruth provided by human anno-
tators. Because each of these datasets consists entirely of images from Flickr, we
can enrich them with social network metadata, using Flickr’s publicly available
API. The four image collections we consider are described below:

– The PASCAL Visual Object Challenge (‘PASCAL’) consists of over 12,000
images collected since 2007, with additional images added each year [1].
Flickr sources are available only for training images, and for the test images
from 2007. Flickr sources were available for 11,197 images in total.

– The MIR Flickr Retrieval Evaluation (‘MIR’) consists of one million images,
25,000 of which have been annotated [2]. Flickr sources were available for
15,203 of the annotated images.

– The ImageCLEF Annotation Task (‘CLEF’) uses a subset of 18,000 images
from the MIR dataset, though the correspondence is provided only for 8,000
training images [3]. Flickr sources were available for 4,807 images.

– The NUS Web Image Database (‘NUS’) consists of approximately 270,000
images [4]. Flickr sources are available for all images.

Flickr sources for the above photos were provided by the dataset creators. Using
Flickr’s API we obtained the following metadata for each photo in the above
datasets:

– The photo itself
– Photo data, including the photo’s title, description, location, timestamp,

viewcount, upload date, etc.
– User information, including the uploader’s name, username, location, their

network of contacts, etc.
– Photo tags, and the user who provided each tag
– Groups to which the image was submitted (only the uploader can submit a

photo to a group)
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Table 1. Dataset statistics. The statistics reveal large differences between the
datasets, for instance images in MIR have more tags and comments than images
in PASCAL, presumably due to MIR’s bias towards ‘interesting’ images [2]; few
images in PASCAL belong to galleries, owing to the fact that most of the dataset
was collected before this feature was introduced in 2009. Note that the number
of tags per image is typically slightly higher than what is reported in [2,3,4],
as there may be additional tags that appeared in Flickr since the datasets were
originally created.

CLEF PASCAL MIR NUS ALL
Number of photos 4546 10189 14460 244762 268587
Number of users 2663 8698 5661 48870 58522
Photos per user 1.71 1.17 2.55 5.01 4.59
Number of tags 21192 27250 51040 422364 450003
Tags per photo 10.07 7.17 10.24 19.31 18.36
Number of groups 10575 6951 21894 95358 98659
Groups per photo 5.09 1.80 5.28 12.56 11.77
Number of comments 77837 16669 248803 9837732 10071439
Comments per photo 17.12 1.64 17.21 40.19 37.50
Number of sets 6066 8070 15854 165039 182734
Sets per photo 1.71 0.87 1.72 1.95 1.90
Number of galleries 1026 155 3728 100189 102116
Galleries per photo 0.23 0.02 0.27 0.67 0.62
Number of locations 1007 1222 2755 22106 23745
Number of labels 99 20 14 81 214
Labels per photo 11.81 1.95 0.93 1.89 2.04

– Collections (or sets) in which the photo was included (users create collections
from their own photos)

– Galleries in which the photo was included (a single user creates a gallery
only from other users’ photos)

– Comment threads for each photo

We only consider images from the above datasets where all of the above data was
available, which represents about 90% of the images for which the original Flickr
source was available (to be clear, we include images where this data is absent,
such as images with no tags, but not where it is missing, i.e., where an API call
fails, presumably due to the photo having been deleted from Flickr). Properties
of the data we obtained are shown in Table 1. Note in particular that the ratios
in Table 1 are not uniform across datasets, for example the NUS dataset favors
‘popular’ photos that are highly tagged, submitted to many groups, and highly
commented on; in fact all types of metadata are more common in images from
NUS than for other datasets. The opposite is true for PASCAL, which has the
least metadata per photo, which could be explained by the fact that certain
features (such as galleries) did not exist on Flickr when most of the dataset was
created. Details about these datasets can be found in [1,2,3,4].
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Fig. 2. Relationships between Flickr metadata and image labels provided by
external evaluators. All figures are best viewed in color. Scatterplots show the
number of images that share a pair of properties in common, with radii scaled
according to the logarithm of the number of images at each coordinate. All
pairs of properties have positive correlation coefficients. ImageCLEF data is
suppressed, as it is a subset of MIR and has similar behavior.

In Figure 2 we study the relationship between various types of Flickr meta-
data and image labels. Images sharing common tags are likely to share common
labels [15], though Figure 2 reveals similar behavior for nearly all types of meta-
data. Groups are similar to tags in quantity and behavior: images that share
even a single group or tag are much more likely to have common labels, and
for images sharing many groups or tags, it is very unlikely that they will not
share at least one label. The same observation holds for collections and galleries,
though it is rarer that photos have these properties in common. Photos taken
at the same location, or by the same user also have a significantly increased
likelihood of sharing labels [11]. Overall, this indicates that the image metadata
provided by the interactions of the Flickr photo-sharing community correlates
with image labels that are provided by the external human evaluators.

All code and data is available from the authors’ webpages.1

3 Model

The three tasks we shall study are label prediction (i.e., predicting groundtruth
labels using image metadata), tag prediction, and group recommendation. As

1 http://snap.stanford.edu/, http://i.stanford.edu/~julian/

http://snap.stanford.edu/
http://i.stanford.edu/~julian/
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Table 2. Notation

Notation Description

X = {xn . . . xN} An image dataset consisting of N images
L = {−1, 1}L A label space consisting of L categories.
yn ∈ L The groundtruth labeling for the image xn.
yn

c ∈ {−1, 1} The groundtruth for a particular category c.
Yc ∈ {−1, 1}N The groundtruth for the entire dataset for category c.
ȳc(xn;Θc) ∈ {−1, 1} The prediction made image xn and category c.
Ȳc(X;Θc) ∈ {−1, 1}N Predictions across the entire dataset for category c.

θnode
c ∈ RF1 Parameters of first-order features for category c.

θedge
c ∈ RF2 Parameters of second-order features for category c.

Θc = (θnode
c ; θedge

c ) Full parameter vector for category c.
φc(xi) ∈ RF1 Features of the image xi for category c.
φc(xi, xj) ∈ RF2 Features of the pair of images (xi, xj) for category c.
Φc(X, Y ) ∈ RF1+F2 Aggregate features for labeling the entire dataset X as Y ∈

{−1, 1}N for category c.
∆(Y, Yc) ∈ R+ The error induced by making the prediction Y when the

correct labeling is Yc.

we shall see, each of these tasks can be thought of as a problem of predicting
binary labels for each of the images in our datasets.

Briefly, our goal in this section is to describe a binary graphical model for
each image category (which might be a label, tag, or group), as depicted in
Figure 1. Each node represents an image; the weight wi encodes the potential
for a node to belong to the category in question, given its features; the weights
wij encode the potential for two images to have the same prediction for that
category. We first describe the ‘standard’ SVM model, and then describe how
we extend it to include relational features.

The notation we use throughout the paper is summarized in Table 2. Sup-
pose we have a set of images X = {xn . . . xN}, each of which has an associated
groundtruth labeling yn ∈ {−1, 1}L, where each ync indicates positive or nega-
tive membership to a particular category c ∈ {1 . . . L}. Our goal is to learn a
classifier that predicts ync from (some features of) the image xn.

The ‘Standard’ Setting. Max-margin SVM training assumes a classifier of the
form

ȳc(xn, Θc) = argmax
y∈{−1,1}

y · 〈φc(xn), Θc〉, (1)

so that xn has a positive label whenever 〈φc(xn), Θc〉 is positive. φc(xn) is a
feature vector associated with the image xn for category c, and Θc is a parameter
vector, which is selected so that the predictions made by the classifier of (eq. 1)
match the groundtruth labeling. Note that a different parameter vector Θc is
learned for each category c, i.e., the model makes the assumption that the labels
for each category are independent.
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Models similar to that of (eq. 1) (which we refer to as ‘flat’ models since
they consider each image independently and thus ignore relationships between
images) are routinely applied to classification based on image features [18], and
have also been used for classification based on image tags, where as features one
can simply create indicator vectors encoding the presence or absence of each
tag [2]. In practice this means that for each tag one learns its influence on the
presence of each label. For image tags, this approach seems well motivated, since
tags are categorical attributes. What this also means is that the tag vocabulary
– though large – ought to grow sublinearly with the number of photos (see Table
1), meaning that a more accurate model of each tag can be learned as the dataset
grows. Based on the same reasoning, we encode group and text information (from
image titles, descriptions, and comments) in a similar way.

Modeling Relational Metadata. Other types of metadata are more naturally
treated as relational, such as the network of contacts between Flickr users. More-
over, as we observed in Table 1, even for the largest datasets we only observe a
very small number of photos per user, gallery, or collection. This means it would
not be practical to learn a separate ‘flat’ model for each category. However, as
we saw in Figure 2, it may still be worthwhile to model the fact that photos from
the same gallery are likely to have similar labels (similarly for users, locations,
collections, and contacts between users).

We aim to learn shared parameters for these features. Rather than learning
the extent to which membership to a particular collection (resp. gallery, user)
influences the presence of a particular label, we learn the extent to which a pair
of images that belong to the same gallery are likely to have the same label. In
terms of graphical models, this means that we form a clique from photos sharing
common metadata (as depicted in Figure 1).

These relationships between images mean that classification can no longer
be performed independently for each image as in (eq. 1). Instead, our predictor
Ȳc(X, Θc) labels the entire dataset at once, and takes the form

Ȳc(X, Θc) = argmax
Y ∈{−1,1}N

NX
i=1

yi · 〈φc(xi), θ
node
c 〉| {z }

wi

+

NX
i,j=1

NX
j=1

δ(yi = yj) 〈φc(xi, xj), θedge
c 〉| {z }

wij

,

(2)

where φc(xi, xj) is a feature vector encoding the relationship between images
xi and xj , and δ(yi = yj) is an indicator that takes the value 1 when we make
the same binary prediction for both images xi and xj . The first term of (eq. 2)
is essentially the same as (eq. 1), while the second term encodes relationships
between images. Note that (eq. 2) is linear in Θc = (θnode

c ; θedge
c ), i.e., it can be

rewritten as
Ȳc(X, Θc) = argmax

Y ∈{−1,1}N

〈Φc(X, Y ), Θc〉. (3)

Since (eq. 2) is a binary optimization problem consisting of pairwise terms,
we can cast it as maximum a posteriori (MAP) inference in a graphical model,
where each node corresponds to an image, and edges are formed between images
that have some property in common.
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Despite the large maximal clique size of the graph in question, we note that
MAP inference in a pairwise, binary graphical model is tractable so long as the
pairwise term is supermodular, in which case the problem can be solved using
graph-cuts [17,19]. A pairwise potential f(yi, yj) is said to be supermodular if

f(−1,−1) + f(1, 1) ≥ f(−1, 1) + f(1,−1), (4)

which in terms of (eq. 2) is satisfied so long as

〈φc(xi, xj), θedge
c 〉 ≥ 0. (5)

Assuming positive features φc(xi, xj), a sufficient (but not necessary) condition
to satisfy (eq. 5) is θedge

c ≥ 0, which in practice is what we shall enforce when we
learn the optimal parameters Θc = (θnode

c ; θedge
c ). Note that this is a particularly

weak assumption: all we are saying is that photos sharing common properties
are more likely to have similar labels than different ones. The plots in Figure 2
appear to support this assumption.

We solve (eq. 2) using the graph-cuts software of [20]. For the largest dataset
we consider (NUS), inference using the proposed model takes around 10 sec-
onds on a standard desktop machine, i.e., less than 10−4 seconds per image.
During the parameter learning phase, which we discuss next, memory is a more
significant concern, since for practical purposes we store all feature vectors in
memory simultaneously. Where this presented an issue, we retained only those
edge features with the most non-zero entries up to the memory limit of our ma-
chine. Addressing this shortcoming using recent work on distributed graph-cuts
remains an avenue for future study [21].

4 Parameter Learning

In this section we describe how popular structured learning techniques can be
used to find model parameter values Θc so that the predictions made by (eq. 2)
are consistent with those of the groundtruth Yc. We assume an estimator based
on the principle of regularized risk minimization [22], i.e., the optimal parameter
vector Θ∗c satisfies

Θ∗c = argmin
Θ

[
∆(Ȳ (X;Θ), Yc)︸ ︷︷ ︸

empirical risk

+
λ

2
‖Θ‖2︸ ︷︷ ︸

regularizer

]
, (6)

where ∆(Ȳ (X;Θ), Yc) is some loss function encoding the error induced by pre-
dicting the labels Ȳ (X;Θ) when the correct labels are Yc, and λ is a hyperpa-
rameter controlling the importance of the regularizer.

We use an analogous approach to that of SVMs [22], by optimizing a convex
upper bound on the structured loss of (eq. 6). The resulting optimization problem
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is

[Θ∗, ξ∗] = argmin
Θ,ξ

[
ξ + λ ‖Θ‖2

]
(7a)

s.t. 〈Φ(X, Yc), Θ〉 − 〈Φ(X, Y ), Θ〉 ≥ ∆(Y, Yc)− ξ, (7b)

θedge
c ≥ 0 ∀Y ∈ {−1, 1}N .

Note the presence of the additional constraint θedge
c ≥ 0, which enforces that

(eq. 2) is supermodular (which is required for efficient inference).
The principal difficulty in optimizing (eq. 7a) lies in the fact that (eq. 7b)

includes exponentially many constraints – one for every possible output Y ∈
{−1, 1}N (i.e., two possibilities for every image in the dataset). To circumvent
this, [22] proposes a constraint generation strategy, including at each iteration
the constraint that induces the largest value of the slack ξ. Finding this constraint
requires us to solve

Ŷc(X;Θc) = argmax
Y ∈{−1,1}N

〈Φc(X, Y ), Θc〉+∆(Y, Yc), (8)

which we note is tractable so long as ∆(Y, Yc) is also a supermodular function
of Y , in which case we can solve (eq. 8) using the same approach we used to
solve (eq. 2). Note that since we are interested in making simultaneous binary
predictions for the entire dataset (rather than ranking), a loss such as the average
precision is not appropriate for this task. Instead we optimize the Balanced Error
Rate, which we find to be a good proxy for the average precision:

∆(Y, Yc) =
1
2

[ |Y pos \ Y pos
c |

|Y pos
c |︸ ︷︷ ︸

false positive rate

+
|Y neg \ Y neg

c |
|Y neg
c |︸ ︷︷ ︸

false negative rate

]
, (9)

where Y pos is shorthand for the set of images with positive labels (Y neg for neg-
atively labeled images, similarly for Yc). The Balanced Error Rate is designed to
assign equal importance to false positives and false negatives, such that ‘trivial’
predictions (all labels positive or all labels negative), or random predictions have
loss ∆(Y, Yc) = 0.5 on average, while systematically incorrect predictions yield
∆(Y, Yc) = 1.

Other loss functions, such as the 0/1 loss, could be optimized in our frame-
work, though we find the loss of (eq. 9) to be a better proxy for the average
precision.

We optimize (eq. 7a) using the solver of [23], which merely requires that we
specify a loss function ∆(Y, Yc), and procedures to solve (eq. 2) and (eq. 8). The
solver must be modified to ensure that θedge

c remains positive. A similar modifi-
cation was suggested in [24], where it was also used to ensure supermodularity
of an optimization problem similar to that of (eq. 2).

5 Experiments

We study the use of social metadata for three binary classification problems:
predicting image labels, tags, and groups. Note some differences between these



10 Julian McAuley and Jure Leskovec

three types of data: labels are provided by human annotators outside of Flickr,
who provide annotations based purely on image content. Tags are less structured,
can be provided by any number of annotators, and can include information that
is difficult to detect from content alone, such as the camera brand and the photo’s
location. Groups are similar to tags, with the difference that the groups to which
a photo is submitted are chosen entirely by the image’s author.

Data setup. As described in Section 3, for our first-order/node features φc(xi)
we construct indicator vectors encoding those words, groups, and tags that ap-
pear in the image xi. We consider the 1000 most popular words, groups, and
tags across the entire dataset, as well as any words, groups, and tags that occur
at least twice as frequently in positively labeled images compared to the overall
rate (we make this determination using only training images). As word features
we use text from the image’s title, description, and its comment thread, after
eliminating stopwords.

For our relational/edge features φc(xi, xj) we consider seven properties:

– The number of common tags, groups, collections, and galleries
– An indicator for whether both photos were taken in the same location (GPS

coordinates are organized into distinct ‘localities’ by Flickr)
– An indicator for whether both photos were taken by the same user
– An indicator for whether both photos were taken by contacts/friends

Where possible, we use the training/test splits from the original datasets,
though in cases where test data is not available, we form new splits using subsets
of the available data. Even when the original splits are available, around 10%
of the images are discarded due to their metadata no longer being available via
the Flickr API. This should be noted when we report results from other’s work.

Evaluation. Where possible we report results directly from published materials
on each benchmark, and from the associated competition webpages. We also re-
port the performance obtained using image tags alone (the most common form
of metadata used by multimodal approaches), and a ‘flat’ model that uses an in-
dicator vector to encode collections, galleries, locations, and users, and is trained
using an SVM; the goal of the latter model is to assess the improvement that
can be obtained by using metadata, but not explicitly modeling relationships
between images. To report the performance of ‘standard’ low-level image models
we computed 1024-dimensional features using the publicly-available code of [25];
although these features fall short of the best performance reported in competi-
tions, they are to our knowledge state-of-the-art in terms of publicly available
implementations.

We report the Mean Average Precision (MAP) for the sake of comparison
with published materials and competition results. For this we adopt an approach
commonly used for SVMs, whereby we rank positively labeled images followed
by negatively labeled images according to their first-order score 〈φc(xi), θnode

c 〉.
We also report performance in terms of the Balanced Error Rate ∆ (or rather,
1 − ∆ so that higher scores correspond to better performance).
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5.1 Image Labeling

Figure 3 (left) shows the average performance on the problem of predicting
image labels on our four benchmarks. We plot the performance of the tag-only
flat model, all-features flat model and our all-features graphical model.

For ImageCLEF, the graphical model gives an 11% improvement in Mean
Average Precision (MAP) over the tag-only flat model, and a 31% improvement
over the all-features flat model. Comparing our method to the best text-only
method reported in the ImageCLEF 2011 competition [3], we observe a 7%
improvement in MAP. Our method (which uses no image features) achieves
similar performance to the best visual-only method. Even though the images
were labeled by external evaluators solely based on their content, it appears
that the social-network data contains information comparable to that of the
images themselves. We also note that our graphical model outperforms the best
visual-only method for 33 out of 99 categories, and the flat model on all but 9
categories.

On the PASCAL dataset we find that the graphical model outperforms the
tag-only flat model by 71% and the all-features flat model by 19%. The perfor-
mance of our model on the PASCAL dataset falls short of the best visual-only
methods from the PASCAL competition; this is not surprising, since photos in
the dataset have by far the least metadata, as discussed in Section 2 (Table 1).

On the MIR dataset the graphical model outperforms the tag-only and all-
features flat models by 38% and 19%, respectively. Our approach also compares
favorably to the baselines reported in [26]. We observe a 42% improvement in
MAP and achieve better performance on all 14 categories except ‘night’.

On the NUS dataset our approach gives an approximately threefold improve-
ment over our baseline image features. While the graphical model only slightly
outperforms the tag-only flat model (by 5%), we attribute this to the fact that
some edges in NUS were suppressed from the graph to ensure that the model
could be contained in memory. We also trained SVM models for six baseline
features included as part of the NUS dataset [4], though we report results using
the features of [25], which we found to give the best overall performance.

Overall, we note that in terms of the Balanced Error Rate ∆ the all-features
flat model reduces the error over the tag-only model by 18% on average (the all-
features flat model does not fit in memory for the NUS data), and the graphical
model performs better still, yielding a 32% average improvement over the tag-
only model. In some cases the flat model exhibits relatively good performance,
though upon inspection we discover that its high accuracy is primarily due to
the use of words, groups, and tags, with the remaining features having little
influence. Our graphical model is able to extract additional benefit for an overall
reduction in loss of 17% over the all-features flat model. Also note that our
performance measure is a good proxy for the average precision, with decreases
in loss corresponding to increases in average precision in all but a few cases.

Although we experimented with simple methods for combining visual features
and metadata, in our experience this did not further improve the results of our
best metadata-only approaches.
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MAP (CLEF) MAP (PASCAL) MAP (MIR) MAP (NUS)
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.49

label prediction:

1−∆ (CLEF) 1−∆ (PASCAL) 1−∆ (MIR) 1−∆ (NUS)

.64
.74

.83

.61

best text-only methods (CLEF, from [4])
best visual-only methods (CLEF, PASCAL, from [2,4])
low-level features, SVM (MIR, from [3])
low-level features and tags, SVM (MIR, from [3])
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tag-only ‘flat’ model
all-features flat model
graphical model with social metadata

1−∆
(CLEF)

1−∆
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MAP
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(PASCAL)

MAP
(MIR)

.18
.15

.20

tag recommendation:

1−∆
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1−∆
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1−∆
(MIR)

.69 .74 .71

MAP
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.24

.22

group recommendation:

low-level image features
groups and words
graphical model
with social metadata

low-level image features
tags and words
graphical model
with social metadata

Fig. 3. Results in terms of the Mean Average Precision (top), and the Balanced
Error Rate (bottom). ‘Flat’ models use indicator vectors for all relational features
and are trained using an SVM. Recall that using our performance measure, a
score of 0.5 is no better than random guessing. Comparisons for the ImageCLEF
and PASCAL datasets are taken directly from their respective competition web-
pages; SVM comparisons for the MIR dataset are taken directly from [26].

5.2 Tag and Group Recommendation

We can also adapt our model to the problem of suggesting tags and groups for an
image, simply by treating them in the same way we treated labels in Section 5.1.
One difference is that for tags and groups we only have ‘positive’ groundtruth,
i.e., we only observe whether an image wasn’t assigned a particular tag or sub-
mitted to a certain group, not whether it couldn’t have been. Nevertheless, our
goal is still to retrieve as many positive examples as possible, while minimizing
the number of negative examples that are retrieved, as in (eq. 9). We use the
same features as in the previous section, though naturally when predicting tags
we eliminate tag information from the model (sim. for groups).

Figure 3 (center and right) shows the average performance of our model on
the 100 most popular tags and groups that appear in the ImageCLEF, PAS-
CAL, and MIR datasets. Using tags, groups, and words in a flat model already
significantly outperforms models that use only image features; in terms of the
Balanced Error Rate ∆, a small additional benefit is obtained by using relational
features.

While image labels are biased towards categories that can be predicted from
image contents (due to the process via which groundtruth is obtained), a variety
of popular groups and tags can be predicted much more accurately by using
various types of metadata. For example, it is unlikely that one could determine
whether an image is a picture of the uploader based purely on image contents, as
evidenced by the poor performance of image features the ‘selfportrait’ tag; using
metadata we are able to make this determination with high accuracy. Many of
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CLEF labels

Taken by friends
Taken by the same person
Taken in the same location

Number of common galleries
Number of common collections

Number of common groups
Number of common tags

PASCAL labels MIR labels NUS labels tags (MIR) groups (MIR)

Fig. 4. Relative importance of social features when predicting labels for all four
datasets, and groups, and tags on the MIR dataset (weight vectors for tags and
groups on the remaining datasets are similar). Vectors were first normalized to
have unit sum before averaging, as the models are scale-invariant.

the poorly predicted tags and groups correspond to properties of the camera
used (‘50mm’, ‘canon’, ‘nikon’, etc.). Such labels could presumably be predicted
from exif data, which while available from Flickr is not included in our model.

5.3 Social-Network Feature Importance

Finally we examine which types of metadata are important for the classification
tasks we considered. Average weight vectors for the relational features are shown
in Figure 4. Note that different types of relational features are important for
different datasets, due to the varied nature of the groundtruth labels across
datasets. We find that shared membership to a gallery is one of the strongest
predictors for shared labels/tags/groups, except on the PASCAL dataset, which
as we noted in Section 2 was mostly collected before galleries were introduced in
Flickr. For tag and group prediction, relational features based on location and
user information are also important. Location is important as many tags and
groups are organized around geographic locations. For users, this phenomenon
can be explained by the fact that unlike labels, tags and groups are subjective,
in the sense that individual users may tag images in different ways, and choose
to submit their images to different groups.
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