
Identity-aware Graph Neural Networks

Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, Jure Leskovec
Department of Computer Science, Stanford University

{jiaxuan, jgs8, rexy, jure}@cs.stanford.edu

Abstract

Message passing Graph Neural Networks (GNNs) provide
a powerful modeling framework for relational data. How-
ever, the expressive power of existing GNNs is upper-bounded
by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test,
which means GNNs that are not able to predict node clustering
coefficients and shortest path distances, and cannot differen-
tiate between different d-regular graphs. Here we develop a
class of message passing GNNs, named Identity-aware Graph
Neural Networks (ID-GNNs), with greater expressive power
than the 1-WL test. ID-GNN offers a minimal but powerful
solution to limitations of existing GNNs. ID-GNN extends
existing GNN architectures by inductively considering nodes’
identities during message passing. To embed a given node, ID-
GNN first extracts the ego network centered at the node, then
conducts rounds of heterogeneous message passing, where
different sets of parameters are applied to the center node than
to other surrounding nodes in the ego network. We further
propose a simplified but faster version of ID-GNN that injects
node identity information as augmented node features. Alto-
gether, both versions of ID-GNN represent general extensions
of message passing GNNs, where experiments show that trans-
forming existing GNNs to ID-GNNs yields on average 40%
accuracy improvement on challenging node, edge, and graph
property prediction tasks; 3% accuracy improvement on node
and graph classification benchmarks; and 15% ROC AUC im-
provement on real-world link prediction tasks. Additionally,
ID-GNNs demonstrate improved or comparable performance
over other task-specific graph networks.

Introduction
Graph Neural Networks (GNNs) represent a powerful learn-
ing paradigm that have achieved great success (Scarselli et al.
2008; Li et al. 2016; Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Velickovic et al. 2018; Xu et al. 2019;
You, Ying, and Leskovec 2020). Among these models, mes-
saging passing GNNs, such as GCN (Kipf and Welling 2017),
GraphSAGE (Hamilton, Ying, and Leskovec 2017), and GAT
(Velickovic et al. 2018), are dominantly used today due to
their simplicity, efficiency and strong performance in real-
world applications (Zitnik and Leskovec 2017; Ying et al.
2018; You et al. 2018a, 2019b, 2020a,b). The central idea
behind message passing GNNs is to learn node embeddings
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via the repeated aggregation of information from local node
neighborhoods using non-linear transformations (Battaglia
et al. 2018).

Although GNNs represent a powerful learning paradigm, it
has been shown that the expressive power of existing GNNs is
upper-bounded by the 1-Weisfeiler-Lehman (1-WL) test (Xu
et al. 2019). Concretely, a fundamental limitation of existing
GNNs is that two nodes with different neighborhood struc-
ture can have the same computational graph, thus appearing
indistinguishable. Here, a computational graph specifies the
procedure to produce a node’s embedding. Such failure cases
are abundant (Figure 1): in node classification tasks, exist-
ing GNNs fail to distinguish nodes that reside in d-regular
graphs of different sizes; in link prediction tasks, they cannot
differentiate node candidates with the same neighborhood
structures but different shortest path distance to the source
node; and in graph classification tasks, they cannot differ-
entiate d-regular graphs (Chen et al. 2019; Murphy et al.
2019). While task-specific feature augmentation can be used
to mitigate these failure modes, the process of discovering
meaningful features for different tasks is not generic and can,
for example, hamper the inductive power of GNNs.

Several recent methods aim to overcome these limitations
in existing GNNs. For graph classification tasks, a collection
of works propose novel architectures more expressive than
the 1-WL test (Chen et al. 2019; Maron et al. 2019a; Murphy
et al. 2019). For link level tasks, P-GNNs are proposed to
overcome the limitation of existing GNNs (You, Ying, and
Leskovec 2019). While these methods have a rich theoretical
grounding, they are often task specific (either graph or link
level) and often suffer from increased complexity in compu-
tation or implementation. In contrast, message passing GNNs
have a track record of high predictive performance across
node, link, and graph level tasks, while being simple and
efficient to implement. Therefore, extending message passing
GNNs beyond the expressiveness of 1-WL test, to overcome
current GNN limitations, is a problem of high importance.
Present work. Here we propose Identity-aware Graph Neu-
ral Networks (ID-GNNs), a class of message passing GNNs
with expressive power beyond the 1-WL test1. ID-GNN pro-
vides a universal extension and makes any existing message
passing GNN more expressive. ID-GNN embeds each node

1Project website with code: http://snap.stanford.edu/idgnn

http://snap.stanford.edu/idgnn


Figure 1: An overview of the proposed ID-GNN model. We consider node, edge and graph level tasks, and assume nodes do not
have discriminative features. Across all examples, the task requires an embedding that allows for the differentiation of nodes
labeledA vs. B in their respective graphs. However, across all tasks, existing GNNs, regardless of their depth, willalways
assign the same embedding to both nodesA andB , because for all tasks the computational graphs are identical (middle row). In
contrast, the colored computational graphs provided by ID-GNN allow for clear differentiation between the nodes of labelA and
labelB , as the colored computational graphs are no longer identical across the tasks.

by inductivelytaking into account its identity during mes-
sage passing. The approach is different from labeling each
node with a one-hot encoding, which istransductive(can-
not generalize to unseen graphs). As shown in Figure 1, we
use aninductive identity coloringtechnique to distinguish a
node itself (the root node in the computational graph) from
other nodes in its local neighborhood, within its respective
computational graph. This added identity information allows
ID-GNN to distinguish what would be identical computa-
tional graphs across node, edge and graph level tasks, and
this way overcome the previously discussed limitations.

We propose two versions of ID-GNN. As a general ap-
proach, identity information is incorporated by applying
rounds ofheterogeneous message passing. Speci�cally, to
embed a given node, ID-GNN �rst extracts the ego network
centered at that node, then applies message passing, where
the messages from the center node (colored nodes in Figure 1)
and the rest of the nodes are computed usingdifferent sets of
parameters. This approach naturally applies to applications
involving node or edge features. We also consider a simpli-
�ed version of ID-GNN, where we inject identity information
via cycle counts originating from a given node as augmented
node features. These cycle counts capture node identity in-
formation by counting the colored nodes within each layer
of the ID-GNN computational graph, and can be ef�ciently
computed by powers of a graph's adjacency matrix.

We compare ID-GNNs against GNNs across 8 datasets
and 6 different tasks. First, we consider a collection of
challenging graph property prediction tasks where existing
GNNs fail, including predicting node clustering coef�cient,
predicting shortest path distance, and differentiating ran-

domd-regular graphs. Then, we further apply ID-GNNs to
real-world datasets. Results show that transforming existing
GNNs to their ID-GNN versions yields on average 40% ac-
curacy improvement on challenging node, edge, and graph
property prediction tasks; 3% accuracy improvement on node
and graph classi�cation benchmarks; and 15% ROC AUC im-
provement on real-world link prediction tasks. Additionally,
we compare ID-GNNs against other expressive graph net-
works that are speci�cally designed for edge or graph-level
tasks. ID-GNNs demonstrate improved or comparable perfor-
mance over these models, further emphasizing the versatility
of ID-GNNs.

Our key contribution includes:(1) We show that message
passing GNNs can have expressive power beyond 1-WL test.
(2) We propose ID-GNNs as a general solution to the limita-
tions in existing GNNs, with rich theoretical and experimen-
tal results.(3) We present synthetic and real world tasks to
reveal the failure modes of existing GNNs and demonstrate
the superior performance of ID-GNNs over both existing
GNNs and other powerful graph networks.

Related Work
Expressive neural networks beyond 1-WL test. Recently,
many neural networks have been proposed with expressive
power beyond the 1-WL test, including (Chen et al. 2019;
Maron et al. 2019a; Murphy et al. 2019; You, Ying, and
Leskovec 2019; Li et al. 2020). However, these papers intro-
duce extra, often task/domain speci�c, components beyond
standard message passing GNNs. For example, P-GNN's
embeddings are tied with random anchor-sets and, thus, are
not applicable to node/graph level tasks which require deter-
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