
GNNAutoScale: Scalable and Expressive Graph Neural Networks
via Historical Embeddings

Matthias Fey 1 Jan Eric Lenssen 1 Frank Weichert 1 Jure Leskovec 2

Abstract
We present GNNAutoScale (GAS), a framework
for scaling arbitrary message-passing GNNs to
large graphs. GAS prunes entire sub-trees of the
computation graph by utilizing historical embed-
dings from prior training iterations, leading to
constant GPU memory consumption in respect to
input node size without dropping any data. While
existing solutions weaken the expressive power
of message passing due to sub-sampling of edges
or non-trainable propagations, our approach is
provably able to maintain the expressive power of
the original GNN. We achieve this by providing
approximation error bounds of historical embed-
dings and show how to tighten them in practice.
Empirically, we show that the practical realization
of our framework, PyGAS, an easy-to-use exten-
sion for PYTORCH GEOMETRIC, is both fast and
memory-efficient, learns expressive node repre-
sentations, closely resembles the performance of
their non-scaling counterparts, and reaches state-
of-the-art performance on large-scale graphs.

1. Introduction
Graph Neural Networks (GNNs) capture local graph struc-
ture and feature information in a trainable fashion to derive
powerful node representations suitable for a given task at
hand (Hamilton, 2020; Ma & Tang, 2020). As such, numer-
ous GNNs have been proposed in the past that integrate ideas
such as maximal expressiveness (Xu et al., 2019), anisotropy
and attention (Veličković et al., 2018), non-linearities (Wang
et al., 2019), or multiple aggregations (Corso et al., 2020)
into their message passing formulation. However, one of the
challenges that have so far precluded their wide adoption
in industrial and social applications is the difficulty to scale
them to large graphs (Frasca et al., 2020).

1Department of Computer Science, TU Dortmund University
2Department of Computer Science, Stanford University. Corre-
spondence to: Matthias Fey <matthias.fey@udo.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

While the full-gradient in a GNN is straightforward to com-
pute, assuming one has access to all hidden node embed-
dings in all layers, this is not feasible in large-scale graphs
due to GPU memory limitations (Ma & Tang, 2020). There-
fore, it is desirable to approximate its full-batch gradient
stochastically by considering only a mini-batch B ⊆ V of
nodes for loss computation. However, this stochastic gra-
dient is still expensive to obtain due to the exponentially
increasing dependency of nodes over layers; a phenomenon
framed as neighbor explosion (Hamilton et al., 2017). Due
to neighbor explosion and since the whole computation
graph needs to be stored on the GPU, deeper architectures
can not be applied to large graphs. Therefore, a scalable
solution needs to make the memory consumption constant
or sub-linear in respect to the number of input nodes.

Recent works aim to alleviate this problem by proposing
various sampling techniques based on the concept of drop-
ping edges (Ma & Tang, 2020; Rong et al., 2020): Node-
wise sampling (Hamilton et al., 2017; Chen et al., 2018b;
Markowitz et al., 2021) recursively samples a fixed number
of 1-hop neighbors; Layer-wise sampling techniques inde-
pendently sample nodes for each layer, leading to a constant
sample size in each layer (Chen et al., 2018a; Zou et al.,
2019; Huang et al., 2018); In subgraph sampling (Chiang
et al., 2019; Zeng et al., 2020b;a), a full GNN is run on an
entire subgraph G[B] induced by a sampled batch of nodes
B ⊆ V . These techniques get rid of the neighbor explosion
problem by sampling the graph but may fail to preserve the
edges that present a meaningful topological structure. Fur-
ther, existing approaches are either still restricted to shallow
networks, non-exchangeable GNN operators or operators
with reduced expressiveness. In particular, they consider
only specific GNN operators and it is an open question
whether these techniques can be successfully applied to
the wide range of GNN architectures available (Veličković
et al., 2018; Xu et al., 2019; Corso et al., 2020; Chen et al.,
2020b). Another line of work is based on the idea of decou-
pling propagations from predictions, either as a pre- (Wu
et al., 2019; Klicpera et al., 2019a; Frasca et al., 2020; Yu
et al., 2020) or post-processing step (Huang et al., 2021).
While this scheme enjoys fast training and inference time,
it cannot be applied to any GNN, in particular because the
propagation is non-trainable, and therefore reduces model

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

expressiveness. A different scalability technique is based on
the idea of training each GNN layer in isolation (You et al.,
2020). While this scheme resolves the neighbor explosion
problem and accounts for all edges, it cannot infer complex
interactions across consecutive layers.

Here, we propose the GNNAutoScale (GAS) framework that
disentangles the scalability aspect of GNNs from their un-
derlying message passing implementation. GAS revisits and
generalizes the idea of historical embeddings (Chen et al.,
2018b), which are defined as node embeddings acquired in
previous iterations of training, cf. Figure 1. For a given mini-
batch of nodes, GAS prunes the GNN computation graph so
that only nodes inside the current mini-batch and their direct
1-hop neighbors are retained, independent of GNN depth.
Historical embeddings act as an offline storage and are used
to accurately fill in the inter-dependency information of
out-of-mini-batch nodes, cf. Figure 1c. Through constant
memory consumption in respect to input node size, GAS
is able to scale the training of GNNs to large graphs, while
still accounting for all available neighborhood information.

We show that approximation errors induced by historical
information are solely caused by the staleness of the history
and the Lipschitz continuity of the learned function, and pro-
pose solutions for tightening the proven bounds in practice.
Furthermore, we connect scalability with expressiveness
and theoretically show under which conditions historical
embeddings allow to learn expressive node representations
on large graphs. As a result, GAS is the first scalable solu-
tion that is able to keep the existing expressivity properties
of the used GNN, which exist for a wide range of models
(Xu et al., 2019; Morris et al., 2019; Corso et al., 2020).

We implement our framework practically as PyGAS1, an
extension for the PYTORCH GEOMETRIC library (Fey &
Lenssen, 2019), which makes it easy to convert common
and custom GNN models into their scalable variants and to
apply them to large-scale graphs. Experiments show that
GNNs utilizing GAS achieve the same performances as
their (non-scalable) full-batch equivalents (while requiring
orders of magnitude less GPU memory), and are able to
learn expressive node representations. Furthermore, GAS
allows the application of expressive and hard-to-scale-up
models on large graphs, leading to state-of-the-art results
on several large-scale graph benchmark datasets.

2. Scalable GNNs via Historical Embeddings

Background. Let G = (V, E) or A ∈ {0, 1}|V|×|V| de-
note a graph with node feature vectors xv for all v ∈ V .
In this work, we are mostly interested in the task of node
classification, where each node v ∈ V is associated with a
label yv, and the goal is to learn a representation hv from

1https://github.com/rusty1s/pyg_autoscale

which yv can be easily predicted. To derive such a repre-
sentation, GNNs follow a neural message passing scheme
(Gilmer et al., 2017). Formally, the (` + 1)-th layer of a
GNN is defined as (omitting edge features for simplicity)

h
(`+1)
v = f

(`+1)
θ

(
h
(`)
v ,
{{
h
(`)
w

}}
w∈N (v)

)

= UPDATE
(`+1)
θ

(
h
(`)
v ,

⊕
w∈N (v)

MSG
(`+1)
θ

(
h
(`)
w ,h

(`)
v

)
) (1)

where h(`)
v represents the embedding of node v obtained in

layer ` and N (v) defines the neighborhood set of v. We ini-
tializeh(0)

v = xv . Here, f (`+1)
θ operates on multisets {{. . .}}

and can be decomposed into differentiable MESSAGE
(`)
θ and

UPDATE
(`)
θ functions parametrized by weights θ, as well as

permutation-invariant aggregation functions
⊕

, e.g. taking
the sum, mean or maximum of features (Fey & Lenssen,
2019; Gilmer et al., 2017; Qi et al., 2017; Wang et al., 2019;
Xu et al., 2019; Kipf & Welling, 2017; Veličković et al.,
2018; Hamilton et al., 2017; Klicpera et al., 2019a; Chen
et al., 2020b; Xu et al., 2018). Our following scalability
framework is based on the general message passing formu-
lation given in Equation (1) and thus is applicable to this
wide range of different GNN operators.

Historical Embeddings. Let h(`)
v denote the node em-

bedding in layer ` of a node v ∈ B in a mini-batch B ⊆ V .
For the general message scheme given in Equation (1), the
execution of f (`+1)

θ can be formulated as:

h
(`+1)
v = f

(`+1)
θ

(
h
(`)
v ,
{{
h
(`)
w

}}
w∈N (v)

)

= f
(`+1)
θ

(
h
(`)
v ,
{{
h
(`)
w

}}
w∈N (v)∩B

∪
{{
h
(`)
w

}}
w∈N (v)\B

)

≈ f (`+1)
θ

(
h
(`)
v ,
{{
h
(`)
w

}}
w∈N (v)∩B

∪
{{
h̄(`)
w

}}
w∈N (v)\B︸ ︷︷ ︸

Historical embeddings

) (2)

Here, we separate the neighborhood information of the mul-
tiset into two parts: (1) the local information of neighbors
N (v) which are part of the current mini-batch B, and (2)
the information of neighbors which are not included in the
current mini-batch. For out-of-mini-batch nodes, we ap-
proximate their embeddings via historical embeddings ac-
quired in previous iterations of training (Chen et al., 2018b),
denoted by h̄(`)

w . After each step of training, the newly com-
puted embeddingsh(`+1)

v are pushed to the history and serve
as historical embeddings h̄(`+1)

w in future iterations. The
separation of in-mini-batch nodes and out-of-mini-batch
nodes, and their approximation via historical embeddings
represent the foundation of our GAS framework.

A high-level illustration of its computation flow is visualized
in Figure 1. Figure 1b shows the original data flow without

https://github.com/rusty1s/pyg_autoscale

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

v1

v2v3

v4v5

v6

v7
v8

Mini-batch B
1-hop neighborhood

⋃
v∈B

N (v) \ B

G

(a) Mini-batch selection

GPU

f
(3)
θ

f
(2)
θ

f
(1)
θ

v1 v2 v3 v4 v5 v6 v7 v8

v1 v2 v3 v4 v5 v6

v1 v2 v3 v4

v1 v2

(b) Original computation graph

H̄(1)

H̄(2)

GPU

CPU

f
(3)
θ

f
(2)
θ

f
(1)
θ

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2

(c) GAS computation graph

Figure 1. Mini-batch processing of GNNs with historical embeddings. � denotes the nodes in the current mini-batch and � represents
their direct 1-hop neighbors. For a given mini-batch (a), GPU memory and computation costs exponentially increase with GNN depth (b).
The usage of historical embeddings avoids this problem as it allows to prune entire sub-trees of the computation graph, which leads to
constant GPU memory consumption in respect to input node size (c). Here, nodes in the current mini-batch push their updated embeddings
to the history H̄(`), while their direct neighbors pull their most recent historical embeddings from H̄(`) for further processing.

historical embeddings. The required GPU memory increases
as the model gets deeper. After a few layers, embeddings
for the entire input graph need to be stored, even if only a
mini-batch of nodes is considered for loss computation. In
contrast, historical embeddings eliminate this problem by
approximating entire sub-trees of the computation graph,
cf. Figure 1c. The required historical embeddings are pulled
from an offline storage, instead of being re-computed in
each iteration, which keeps the required information for each
batch local. For a single batch B ⊆ V , the GPU memory
footprint for one training step is given byO(|⋃v∈BN (v)∪
{v}| · L) and thus only scales linearly with the number of
layers L. The majority of data (the histories) can be stored
in RAM or hard drive storage rather than GPU memory.

In the following, we are going to use h̃(`)
v to denote em-

beddings estimated via GAS (line 3 of Equation (2)) to
differentiate them from the exact embeddings obtained with-
out historical approximation (line 1 of Equation (2)). In
contrast to existing scaling solutions based on sub-sampling
edges, the usage of historical embeddings as utilized in GAS
provides the following additional advantages:

(1) GAS trains over all the data: In GAS, a GNN will
make use of all available graph information, i.e. no edges
are dropped, which results in lower variance and more ac-
curate estimations (since ‖h̄(`)

v − h(`)
v ‖ � ‖h(`)

v ‖). Impor-
tantly, for a single epoch and layer, each edge is still only
processed once, putting its time complexity O(|E|) on par
with its full-batch counterpart. Notably, more accurate esti-
mations will further strengthen gradient estimation during
backpropagation. Specifically, the model parameters will
be updated based on the node embeddings of all neighbors
since ∂h̃(`+1)

v /∂θ also depends on {{h̄(`)
w : w ∈ N (v) \ B}}.

(2) GAS enables constant inference time complexity:
The time complexity of model inference is reduced to a

constant factor, since we can directly use the historical em-
beddings of the last layer to derive predictions for test nodes.

(3) GAS is simple to implement: Our scheme does not
need to maintain recursive layer-wise computation graphs,
which makes its overall implementation straightforward and
comparable to full-batch training. Only minor modifications
are required to pull information from and push information
to the histories, cf. our training algorithm in the appendix.

(4) GAS provides theoretical guarantees: In particular, if
the model weights are kept fixed, h̃(`)

v eventually equals
h
(`)
v after a fixed amount of iterations (Chen et al., 2018b).

3. Approximation Error and Expressiveness

The advantages of utilizing historical embeddings h̄(`)
v to

compute an approximation h̃(`)
v of the exact embedding h(`)

v

come at the cost of an approximation error ‖h̃(`)
v − h(`)

v ‖,
which can be decomposed into two sources of variance:
(1) The closeness of estimated inputs to their exact values,
i.e. ‖h̃(`−1)

v − h(`−1)
v ‖ ≥ 0, and (2) the staleness of histori-

cal embeddings, i.e. ‖h̄(`−1)
v − h̃(`−1)

v ‖ ≥ 0. In the follow-
ing, we show concrete bounds for this error, which can be
then tightened using specific procedures. Here, our analysis
focuses on arbitrary f (`)

θ GNN layers as described in Equa-
tion (1), but we restrict both MESSAGE

(`)
θ and UPDATE

(`)
θ

to model k-Lipschitz continuous functions due to their po-
tentially highly non-linear nature. Proofs of all lemmas and
theorems can be found in the appendix.

Lemma 1 Let MESSAGE
(`)
θ and UPDATE

(`)
θ be Lipschitz

continuous functions with Lipschitz constants k1 and k2,
respectively. If, for all v ∈ V , the inputs are close to the
exact input, i.e. ‖h̃(`−1)

v − h(`−1)
v ‖ ≤ δ, and the historical

embeddings do not run too stale, i.e. ‖h̄(`−1)
v −h̃(`−1)

v ‖ ≤ ε,

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

then the output error is bounded by

‖h̃(`)
v − h(`)

v ‖ ≤ δ k2 + (δ + ε) k1 k2 |N (v)|.

Due to the behavior of Lipschitz constants in a series of
function compositions, we obtain an upper bound that is
dependent on k1, k2 and |N (v)|, as well as dependent on the
errors δ and ε of the inputs. Interestingly, sum aggregation,
the most expressive aggregation function (Xu et al., 2019),
introduces a factor of |N (v)| to the upper bound, while we
can obtain a much tighter upper bound for mean or max
aggregation, cf. its proof. Next, we take a look at the final
output error produced by a L-layered GNN:

Theorem 2 Let f (L)
θ be a L-layered GNN, containing only

Lipschitz continuous MESSAGE
(`)
θ and UPDATE

(`)
θ func-

tions with Lipschitz constants k1 and k2, respectively. If,
for all v ∈ V and all ` ∈ {1, . . . , L − 1}, the historical
embeddings do not run too stale, i.e. ‖h̄(`)

v − h̃(`)
v ‖ ≤ ε(`),

then the final output error is bounded by

‖h̃(L)
v,j − h

(L)
v,j ‖ ≤

L−1∑

`=1

ε(`) kL−`1 kL−`2 |N (v)|L−`.

Notably, this upper bound does not longer depend on
‖h̃(`)

v − h(`)
v ‖ ≤ δ(`), and is instead solely conditioned

on the staleness of histories ‖h̄(`)
v − h̃(`)

v ‖ ≤ ε(`). However,
it depends exponentially on the Lipschitz constants k1 and
k2 as well as |N (v)| with respect to the number of layers. In
particular, each additional layer introduces a less restrictive
bound since the errors made in the first layers get immedi-
ately propagated to later ones, leading to potentially high
inaccuracies for histories in deeper GNNs. We will later
propose solutions for tightening the proven bound in prac-
tice, allowing the application of GAS to deep and non-linear
GNNs. Furthermore, Theorem 2 lets us immediately derive
an upper error bound of gradients as well, i.e.

‖∇θL(h̃(L)
v)−∇θL(h(L)

v)‖ ≤ λ‖h̃(L)
v − h(L)

v ‖

in case L is λ-Lipschitz continuous. As such, GAS encour-
ages low variance and bias in the learning signal as well.
However, parameters are not guaranteed to converge to the
same optimum since we explicitely consider arbitrary GNNs
solving non-convex problems (Cong et al., 2020).

It is well known that the most powerful GNNs adhere to the
same representational power as the Weisfeiler-Lehman (WL)
test (Weisfeiler & Lehman, 1968) in distinguishing non-
isomorphic structures, i.e. h(L)

v 6= h
(L)
w in case c(L)v 6= c

(L)
w

(Xu et al., 2019; Morris et al., 2019), where c(L)v denotes a
node’s coloring after L rounds of color refinement. How-
ever, in order to leverage such expressiveness, a GNN needs

to be able to reason about structural differences across neigh-
borhoods directly during training. We now show that GNNs
that scale by sampling edges are not capable of doing so:

Proposition 3 Let f (L)
θ : V → Rd be a L-layered GNN

as expressive as the WL test in distinguishing the L-hop
neighborhood around each node v ∈ V . Then, there exists
a graph A ∈ {0, 1}|V|×|V| for which f (L)

θ operating on a

sampled variant Ã, ãv,w =

{ |N (v)|
|Ñ (v)| , if w ∈ Ñ (v)

0, otherwise
, pro-

duces a non-equivalent coloring, i.e. h̃(L)
v 6= h̃

(L)
w while

c
(L)
v = c

(L)
w for nodes v, w ∈ V .

While sampling strategies lose expressive power due to
sub-sampling of edges, scalable GNNs based on historical
embeddings are leveraging all edges during neighborhood
aggregation. Therefore, a special interest lies in the question
if historical-based GNNs are as expressive as their full-batch
counterpart. Here, a maximally powerful and scalable GNN
needs to fulfill the following two requirements: (1) It needs
to be as expressive as the WL test in distinguishing non-
isomorphic structures, and (2) it needs to account for the
approximation error ‖h̄(`−1)

v −h(`−1)
v ‖ induced by the usage

of historical embeddings. Since it is known that there exists
a wide range of maximally powerful GNNs (Xu et al., 2019;
Morris et al., 2019; Corso et al., 2020), we can restrict our
analysis to the latter question. Following upon Xu et al.
(2019), we focus on the case where input node features are
from a countable set Pd ⊂ Rd of bounded size:

Lemma 4 Let {{h(`−1)
v : v ∈ V}} be a countable multiset

such that ‖h(`−1)
v − h(`−1)

w ‖ > 2(δ + ε) for all v, w ∈ V ,
h
(`−1)
v 6= h

(`−1)
w . If the inputs are close to the exact input,

i.e. ‖h̃(`−1)
v − h(`−1)

v ‖ ≤ δ, and the historical embeddings
do not run too stale, i.e. ‖h̄(`−1)

v − h̃(`−1)
v ‖ ≤ ε, then there

exist MESSAGE
(`)
θ and UPDATE

(`)
θ functions, such that

‖f (`)
θ (h̃(`−1)

v)− f (`)
θ (h(`−1)

v)‖ ≤ δ + ε

and

‖f (`)
θ (h(`−1)

v)− f (`)
θ (h(`−1)

w)‖ > 2(δ + ε+ λ)

for all v, w ∈ V , h(`−1)
v 6= h

(`−1)
w and all λ > 0.

Informally, Lemma 4 tells us that if (1) exact input em-
beddings are sufficiently far apart from each other and (2)
historical embeddings are sufficiently close to the exact em-
beddings, there exist historical-based GNN operators which
can distinguish equal from non-equal inputs. Key to the
proof is that (δ + ε)-balls around exact inputs do not inter-
sect each other and are therefore well separated. Notably,
we do not require f (`)

θ to model strict injectivity since it is
sufficient for f (`)

θ to be 2(δ + ε)-injective (Seo et al., 2019).

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Following Xu et al. (2019), one can leverage MLPs to model
and learn such MESSAGE and UPDATE functions due to
the universal approximation theorem (Hornik et al., 1989;
Hornik, 1991). However, the theory behind Lemma 4 holds
for any maximally powerful GNN operator. Finally, we
can use this insight to relate the expressiveness of scalable
GNNs to the WL test color refinement procedure:

Theorem 5 Let f (L)
θ be a L-layered GNN in which all

MESSAGE
(`)
θ and UPDATE

(`)
θ functions fulfill the conditions

of Lemma 4. Then, there exists a map φ : Rd → Σ so that
φ(h̃

(L)
v) = c

(L)
v for all v ∈ V .

Theorem 5 extends the insights of Lemma 4 to multi-layered
GNNs, and indicates that scalable GNNs using historical em-
beddings are able to distinguish non-isomorphic structures
(that are distinguishable by the WL test) directly during
training, which is what makes reasoning about structural
properties possible. It should be noted that recent proposals
such as DROPEDGE (Rong et al., 2020) are still applicable
for data augmentation and message reduction. However,
through the given theorem, we disentangle scalability and
expressiveness from regularization via edge dropping.

While sampling approaches lose expressiveness compared
to their original counterparts (cf. Proposition 3), Theorem 5
tells us that, in theory, there exist message passing func-
tions that are as expressive as the WL test in distinguishing
non-isomorphic structures while accounting for the effects
of approximation in stored embeddings. In practice, we
have two degrees of freedom to tighten the upper bounds
given by Lemma 1 and Theorem 2, leading to a lower ap-
proximation error and higher expressiveness in return: (1)
Minimizing the staleness of historical embeddings, and (2)
maximizing the closeness of estimated inputs to their exact
values by controlling the Lipschitz constants of UPDATE
and MESSAGE functions. In what follows, we derive a list
of procedures to achieve these goals:

Minimizing Inter-Connectivity Between Batches. As
formulated in Equation (2) in Section 2, the output em-
beddings of f (`+1)

θ are exact if |⋃v∈BN (v) ∪ {v}| = |B|,
i.e. all neighbors of nodes in B are as well part of B. How-
ever, in practice, this can only be guaranteed for full-batch
GNNs. Motivated by this observation, we aim to mini-
mize the inter-connectivity between sampled mini-batches,
i.e. min |⋃v∈BN (v) \ B|, which minimizes history access,
and increases closeness and reduces staleness in return.

Similar to CLUSTER-GCN (Chiang et al., 2019), we make
use of graph clustering techniques, e.g., METIS (Karypis &
Kumar, 1998; Dhillon et al., 2007), to achieve this goal. It
aims to construct partitions over the nodes in a graph such
that intra-links within clusters occur much more frequently
than inter-links between different clusters. Intuitively, this

results in a high chance that neighbors of a node are lo-
cated in the same cluster. Notably, modern graph clustering
methods are both fast and scalable with time complexities
given by O(|E|), and only need to be applied once, which
leads to an unremarkable computational overhead in the
pre-processing stage. In general, we argue that the METIS
clustering technique is highly scalable, as it is in the heart
of many large-scale distributed graph storage layers such as
(Zhu et al., 2019; Zheng et al., 2020) that are known scale to
billion-sized graphs. Furthermore, the additional overhead
in the pre-processing stage is quickly compensated by an
acceleration of training, since the number of neighbors out-
side of B is heavily reduced, and pushing information to the
histories now leads to contiguous memory transfers.

Enforcing Local Lipschitz Continuity. To guide our
neural network in learning a function with controllable error,
we can enforce its intermediate output layers f (`)

θ to be in-
variant to small input perturbations. In particular, following
upon Usama & Chang (2018), we found it useful to apply
the auxiliary loss

L(`)
reg = ‖f (`)

θ (h̃(`−1)
v)− f (`)

θ (h̃(`−1)
v + ε)‖ (3)

in highly non-linear message passing phases, e.g., in GIN
(Xu et al., 2019). Such regularization enforces equal out-
puts for small pertubations ε ∼ Bδ(0) inside closed balls
of radius δ. Notably, we do not restrict UPDATE

(`)
θ and

MESSAGE
(`)
θ to separately model global k-Lipschitz contin-

uous functions, but rather aim for local Lipschitz continuity
at each h(`−1)

v for f (`)
θ as a whole. For other message

passing GNNs, e.g., in GCN (Kipf & Welling, 2017), L2

regularization is usually sufficient to ensure closeness of
historical embeddings. Further, we found gradient clipping
to be an effective method to restrict the parameters from
changing too fast, regularizing history changes in return.

4. Related Work
Our GAS framework utilizes historical embeddings as an
affordable approximation. The idea of historical embed-
dings was originally introduced in VR-GCN (Chen et al.,
2018b). VR-GCN aims to reduce the variance in estima-
tion during neighbor sampling (Hamilton et al., 2017), and
avoids the need to sample a large amount of neighbors in re-
turn. Cong et al. (2020) further simplified this scheme into a
one-shot sampling scenario, where nodes no longer need to
recursively explore neighborhoods in each layer. However,
these approaches consider only a specific GNN operator
which prevent their application to the wide range of GNN
architectures available. Furthermore, they only consider
shallow architectures and do not account for the increas-
ing approximation error induced by deeper and expressive
GNNs, which is well observable in practice, cf. Section 6.1.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Time

H2D Data

Kernel f
(1)
θ f

(2)
θ f

(3)
θ

(a) Full-batch execution

Main Pull Pull

H2D Data H̄(1) H̄(2)

Kernel f
(1)
θ f

(2)
θ f

(3)
θ

D2H H̄(1) H̄(2)

(b) Serial mini-batch execution

Worker Pull Pull

H2D Data H̄(1) H̄(2)

Kernel f
(1)
θ f

(2)
θ f

(3)
θ

D2H H̄(1) H̄(2)

(c) Concurrent mini-batch execution

2x performance
improvement

Figure 2. Illustrative runtime performances of a serial and con-
current mini-batch execution in comparison to a full-batch
GNN execution. In the full-batch approach (a), all necessary
data is first transferred to the device via the HOST2DEVICE (H2D)
engine, before GNN layers are executed in serial inside the kernel
engine. As depicted in (b), a serial mini-batch execution suffers
from an I/O bottleneck, in particular because each kernel engine
has to wait for memory transfers to complete. The concurrent mini-
batch execution (c) avoids this problem by leveraging an additional
worker thread and overlapping data transfers, leading to two times
performance improvements in comparison to a serial execution,
which is on par with the standard full-batch approach.

In order to minimize the inter-connectivity between mini-
batches, we utilize graph clustering techniques for mini-
batch selection, as first introduced in the subgraph sampling
approach CLUSTER-GCN (Chiang et al., 2019). CLUSTER-
GCN leverages clustering in order to infer meaningful sub-
graphs, while we aim to minimize history accesses. Fur-
thermore, CLUSTER-GCN limits message passing to intra-
connected nodes, and therefore ignores potentially useful
information outside the current mini-batch. This inherently
limits the model to learn from nodes nearby. In contrast, our
GAS framework makes use of all available neighborhood
data for aggregation, and therefore avoids this downside.

5. PyGAS: Auto-Scaling GNNs in PyG
We condense our GAS framework and theoretical findings
into a tool named PyGAS that implements all the presented
techniques in practice.2 PyGAS is built upon PYTORCH
(Paszke et al., 2019) and utilizes the PYTORCH GEOMET-

2https://github.com/rusty1s/pyg_autoscale

RIC (PyG) library (Fey & Lenssen, 2019). It provides an
easy-to-use interface to convert common and custom GNN
models from PYTORCH GEOMETRIC into their scalable
variants. Furthermore, it provides a fully deterministic test
bed for evaluating models on large-scale graphs. An exam-
ple of the interface is shown in the appendix.

Fast Historical Embeddings. Our approach accesses his-
tories to account for any data outside the current mini-batch,
which requires frequent data transfers to and from the GPU.
Therefore, PyGAS optimizes pulling from and pushing to
histories via non-blocking device transfers. Specifically, we
immediately start pulling historical embeddings for each
layer asynchronously at the beginning of each optimization
step, which ensures that GPUs do not run idle while waiting
for memory transfers to complete. A separate worker thread
gathers historical information into one of multiple pinned
CPU memory buffers (denoted by PULL), from where it can
be transfered to the GPU via the usage of CUDA streams
without blocking any CPU or CUDA execution. Synchro-
nization is done by synchronizing the respective CUDA
stream before inputting the transferred data into the GNN
layer. The same strategy is applied for pushing informa-
tion to the history. Considering that the device transfer of
H̄(`−1) is faster than the execution of f (`)

θ , this scheme
does not lead to any runtime overhead when leveraging his-
torical embeddings and can be twice as fast as its serial
non-overlapping counterpart, cf. Figure 2. We have im-
plemented our non-blocking transfer scheme with custom
C++/CUDA code to avoid Python’s global interpreter lock.

6. Experiments
In this section, we evaluate our GAS framework in practice
using PyGAS, utilizing 6 different GNN operators and 15
datasets. Please refer to the appendix for a detailed descrip-
tion of the used GNN operators and datasets, and to our
code for hyperparameter configurations. All models were
trained on a single GeForce RTX 2080 Ti (11 GB). In our
experiments, we hold all histories in RAM, using a machine
with 64GB of CPU memory.

6.1. GAS resembles full-batch performance

First, we analyze how GAS affects the robustness and ex-
pressiveness of our method. We compare GAS against two
different baselines: a regular full-batch variant and a history
baseline, which naively integrates history-based mini-batch
training without any of the additional GAS techniques. To
evaluate, we make use of a shallow 2-layer GCN (Kipf &
Welling, 2017) and two recent state-of-the-art models: a
deep GCNII network with 64 layers (Chen et al., 2020b),
and a maximally expressive GIN network with 4 layers (Xu
et al., 2019). We evaluate those models on tasks for which

https://github.com/rusty1s/pyg_autoscale

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Full-batch Historical-based Baseline GAS

Accuracy 100 200 300

0.8

0.9

Epochs

(a) 2-GCN on CORA

Accuracy 300 600 900

0.8

0.9

Epochs

(b) 64-GCNII on CORA

Accuracy 50 100 150

0.5

0.6

Epochs

(c) 4-GIN on CLUSTER

Figure 3. Model performance comparison between full-batch, an unoptimized history-based baseline and our GAS approach. In
contrast to the historical-based baseline, GAS reaches the quality of full-batch training, especially for (b) deep and (c) expressive models.

Table 1. Full-batch vs GAS performance on small transductive graph benchmark datasets across 20 different initializations. Pre-
dictive performance of models trained via GAS closely matches those of full-batch gradient descent on all models for all datasets.

† Results omitted due to unstable performance across different weight initializations, cf. Shchur et al. (2018)

Dataset GCN GAT APPNP GCNII
Full GAS Full GAS Full GAS Full GAS

CORA 81.88±0.75 82.29±0.76 82.80±0.47 83.32±0.62 83.28±0.60 83.19±0.58 85.04±0.53 85.52±0.39

CITESEER 70.98±0.66 71.18±0.97 71.72±0.91 71.86±1.00 72.13±0.73 72.63±0.82 73.06±0.81 73.89±0.48

PUBMED 78.73±1.10 79.23±0.62 78.03±0.40 78.42±0.56 80.21±0.20 79.82±0.52 79.72±0.78 80.19±0.49

COAUTHOR-CS 91.08±0.59 91.22±0.45 90.31±0.49 90.38±0.42 92.51±0.47 92.44±0.58 92.45±0.35 92.52±0.31

COAUTHOR-PHYSICS 93.10±0.84 92.98±0.72 92.32±0.86 92.80±0.61 93.40±0.92 93.68±0.61 93.43±0.52 93.61±0.41

AMAZON-COMPUTER 81.17±1.81 80.84±2.26 —† —† 81.79±2.00 81.66±1.81 83.04±1.81 83.05±1.16

AMAZON-PHOTO 90.25±1.66 90.53±1.40 —† —† 91.27±1.26 91.23±1.34 91.42±0.81 91.60±0.78

WIKI-CS 79.08±0.50 79.00±0.41 79.44±0.41 79.56±0.47 79.88±0.40 79.75±0.53 79.94±0.67 80.02±0.43

∆ Mean Accuracy +0.13 +0.29 -0.01 +0.29

they are well suitable: classifying academic papers in a cita-
tion network (CORA), and identifying community clusters
in Stochastic Block Models (CLUSTER) (Yang et al., 2016;
Dwivedi et al., 2020), cf. Figure 3. Since CLUSTER is a node
classification task containing multiple graphs, we first con-
vert it into a super graph (holding all the nodes of all graphs),
and partition this super graph using twice as many partitions
as there are initial graphs. It can be seen that especially
for deep (64-GCNII, cf. Figure 3b) and expressive (4-GIN,
cf. Figure 3c) architectures, the naive historical-based base-
line fails to reach the desired full-batch performance. This
can be contributed to the high approximation error induced
by deep and expressive models. In contrast, GAS shows
far superior performance, reaching the quality of full-batch
training in both cases.

In general, we expect the model performances of our GAS
mini-batch training to closely resemble the performances of
their full-batch counterparts, except for the variance intro-
duced by stochastic optimization (which is, in fact, known
to improve generalization (Bottoue & Bousquet, 2007)). To
validate, we compare our approach against full-batch perfor-
mances on small transductive benchmark datasets for which
full-batch training is easily feasible. We evaluate on four
GNN models that significantly advanced the field of graph

representation learning: GCN (Kipf & Welling, 2017), GAT
(Veličković et al., 2018), APPNP (Klicpera et al., 2019a)
and GCNII (Chen et al., 2020b). For all experiments, we
tried to follow the hyperparameter setup of the respective
papers as closely as possible and perform an in-depth grid
search on datasets for which best performing configurations
are not known. We then apply GAS mini-batch training on
the same set of hyperparameters. As shown in Table 1, all
models that utilize GAS training perform as well as their
full-batch equivalents (with slight gains overall), confirming
the practical effectiveness of our approach. Notably, even
for deep GNNs such as APPNP and GCNII, our approach
is able to closely resemble the desired performance.

We further conduct an ablation study to highlight the indi-
vidual performance improvements of our GAS techniques
within a GCNII model, i.e. minimizing inter-connectivity
and applying regularization techniques. Table 2 shows the
relative performance improvements of individual GAS tech-
niques in percentage points, compared to the corresponding
model performance obtained by full-batch training. Notably,
it can be seen that both techniques contribute to resembling
full-batch performance, reaching their full strength when
used in combination. We include an additional ablation
study for training an expressive GIN model in the appendix.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 2. Relative performance improvements of individual GAS techniques within a GCNII model. The performance improvement
is measured in percentage points in relation to the corresponding model performance obtained by full-batch training.

CORA CITESEER PUBMED
COAUTHOR- AMAZON- WIKI-CSCS PHYSICS COMPUTER PHOTO

Baseline -3.26 -5.66 -3.20 -0.79 -0.50 -5.76 -4.16 -3.19
Regularization -2.12 -1.03 -1.24 -0.46 -0.24 -3.02 -1.19 -0.74
METIS -1.57 -3.12 -1.50 -0.47 +0.13 -2.75 -1.02 -0.24
GAS +0.48 +0.83 +0.47 +0.07 +0.18 +0.01 +0.18 +0.08

Table 3. GPU memory consumption (in GB) and the amount
of data used (%) across different GNN execution techniques.
GAS consumes low memory while making use of all available
neighborhood information during a single optimization step.

nodes 717K 169K 2.4M
edges 7.9M 1.2M 61.9M

Method YELP
ogbn- ogbn-
arxiv products

2-
la

ye
r Full-batch 6.64GB/100% 1.44GB/100% 21.96GB/100%

GRAPHSAGE 0.76GB/ 9% 0.40GB/ 27% 0.92GB/ 2%
CLUSTER-GCN 0.17GB/ 13% 0.15GB/ 40% 0.16GB/ 16%
GAS 0.51GB/100% 0.22GB/100% 0.36GB/100%

3-
la

ye
r Full-batch 9.44GB/100% 2.11GB/100% 31.53GB/100%

GRAPHSAGE 2.19GB/ 14% 0.93GB/ 33% 4.34GB/ 5%
CLUSTER-GCN 0.23GB/ 13% 0.22GB/ 40% 0.23GB/ 16%
GAS 0.79GB/100% 0.34GB/100% 0.59GB/100%

4-
la

ye
r Full-batch 12.24GB/100% 2.77GB/100% 41.10GB/100%

GRAPHSAGE 4.31GB/ 19% 1.55GB/ 37% 11.23GB/ 8%
CLUSTER-GCN 0.30GB/ 13% 0.29GB/ 40% 0.29GB/ 16%
GAS 1.07GB/100% 0.46GB/100% 0.82GB/100%

6.2. GAS is fast and memory-efficient

For training large-scale GNNs, GPU memory consumption
will directly dictate the scalability of the given approach.
Here, we show how GAS maintains a low GPU memory
footprint while, in contrast to other scalability approaches,
accounts for all available information inside a GNN’s re-
ceptive field in a single optimization step. We compare the
memory usage of GCN+GAS training with the memory
usage of full-batch GCN, and mini-batch GRAPHSAGE
(Hamilton et al., 2017) and CLUSTER-GCN (Chiang et al.,
2019) training, cf. Table 3. Notably, GAS is easily able to fit
the required data on the GPU, while memory consumption
only increases linearly with the number of layers. Although
CLUSTER-GCN maintains an overall lower memory foot-
print than GAS, it will only utilize a fraction of available
information inside its receptive field, i.e. ≈23% on average.

We now analyze how GAS enables large-scale training due
to fast mini-batch execution. Specifically, we are interested
in how our concurrent memory transfer scheme (cf. Sec-
tion 5) reduces the overhead induced by accessing historical
embeddings from the offline storage. For this, we evalu-
ate runtimes of a 4-layer GIN model on synthetic graph
data, which allows fine-grained control over the ratio be-

Serial Access Concurrent Access

Computational Overhead I/O Overhead

0 2 4 6

100

200

300

400

Inter-/Intra-connectivity Ratio

R
u
n
ti
m
e
O
v
er
h
ea
d
[%

]

Figure 4. Runtime overhead in relation to the inter-/intra-
connectivity ratio of mini-batches, both for serial and concur-
rent history access patterns. The overall runtime overhead is
further separated into computational overhead (overhead of aggre-
gating additional messages) and I/O overhead (overhead of pulling
from and pushing to histories). Our concurrent memory transfer
reduces I/O overhead caused by histories by a wide margin.

tween inter- and intra-connected nodes, cf. Figure 4. Here,
a given mini-batch consists of exactly 4,000 nodes which
are randomly intra-connected to 60 other nodes. We vary
the number of inter-connections (connections to nodes out-
side of the batch) by adding out-of-batch nodes that are
randomly inter-connected to 60 nodes inside the batch. No-
tably, the naive serial memory transfer increases runtimes
up to 350%, which indicates that frequent history accesses
can cause major I/O bottlenecks. In contrast, our concurrent
access pattern incurs almost no I/O overhead at all, and
the overhead in execution time is solely explained by the
computational overhead of aggregating far more messages
during message propagation. Note that in most real-world
scenarios, the additional aggregation of history data may
only increase runtimes up to 25%, since most real-world
datasets contain inter-/intra-connectivity ratios between 0.1
and 2.5, cf. appendix. Further, the additional overhead of
computing METIS partitions in the pre-processing stage is
negligible and is quickly mitigated by faster training times:
Computing the partitioning of a graph with 2M nodes takes
only about 20–50 seconds (depending on the number of
clusters).

Next, we compare runtimes and memory consumption of
GAS to the recent GTTF proposal (Markowitz et al., 2021),

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 4. Efficiency of GCN with GTTF and GAS.

Dataset Runtime (s) Memory (MB)
GTTF GAS GTTF GAS

CORA 0.077 0.006 18.01 2.13
PUBMED 0.071 0.006 28.79 2.19
PPI 0.976 0.007 134.86 12.37
FLICKR 1.178 0.007 325.97 16.32

which utilizes a fast neighbor sampling strategy based on
tensor functionals. For this, we make use of a 4-layered
GCN model with equal mini-batch and receptive field sizes.
As shown in Table 4, GAS is both faster and consumes
less memory than GTTF. Although GTTF makes use of a
fast vectorized sampling procedure, its underlying recursive
neighborhood construction still scales exponentially with
GNN depth, which explains the observable differences in
runtime and memory consumption.

6.3. GAS scales to large graphs

In order to demonstrate the scalability and generality of our
approach, we scale various GNN operators to common large-
scale graph benchmark datasets. Here, we focus our analysis
on GNNs that are notorious hard to scale-up but have the
potential to leverage the increased amount of available data
to make more accurate predictions. In particular, we bench-
mark deep GNNs, i.e. GCNII (Chen et al., 2020b), and ex-
pressive GNNs, i.e. PNA (Corso et al., 2020). Note that it is
not possible to run those models in full-batch mode on most
of these datasets as they will run out of memory on com-
mon GPUs. We compare with 10 scalable GNN baselines:
GRAPHSAGE (Hamilton et al., 2017), FASTGCN (Chen
et al., 2018a), LADIES (Zou et al., 2019), VR-GCN (Chen
et al., 2018b), MVS-GNN (Cong et al., 2020), CLUSTER-
GCN (Chiang et al., 2019), GRAPHSAINT (Zeng et al.,
2020b), SGC (Wu et al., 2019), SIGN (Frasca et al., 2020)
and GBP (Chen et al., 2020a). Since results are hard to com-
pare across different approaches due to differences in frame-
works, model implementations, weight initializations and
optimizers, we additionally report a shallow GCN+GAS
baseline. GAS is able to train all models on all datasets on a
single GPU, while holding corresponding histories in CPU
memory. On the largest dataset, i.e. ogbn-products,
this will consume ≈ L· 2GB of storage for L layers, which
easily fits in RAM on most modern workstations.

As can be seen in Table 5, the usage of deep and expressive
models within our framework advances the state-of-the-art
on REDDIT and FLICKR, while it performs equally well for
others, e.g., PPI. Notably, our approach outperforms the
two historical-based variants VR-GCN and MVS-GNN
by a wide margin. Interestingly, our deep and expressive
variants reach superior performance than our GCN baseline

Table 5. Performance on large graph datasets. GAS is both scal-
able and general while achieving state-of-the-art performance.
nodes 230K 57K 89K 717K 169K 2.4M
edges 11.6M 794K 450K 7.9M 1.2M 61.9M

Method REDDIT PPI FLICKR YELP
ogbn- ogbn-
arxiv products

GRAPHSAGE 95.40 61.20 50.10 63.40 71.49 78.70
FASTGCN 93.70 — 50.40 — — —
LADIES 92.80 — — — — —
VR-GCN 94.50 85.60 — 61.50 — —
MVS-GNN 94.90 89.20 — 62.00 — —
CLUSTER-GCN 96.60 99.36 48.10 60.90 — 78.97
GRAPHSAINT 97.00 99.50 51.10 65.30 — 79.08
SGC 96.40 96.30 48.20 64.00 — —
SIGN 96.80 97.00 51.40 63.10 — 77.60
GBP — 99.30 — 65.40 — —

Fu
ll-

ba
tc

h GCN 95.43 97.58 53.73 OOM 71.64 OOM
GCNII OOM OOM 55.28 OOM 72.83 OOM
PNA OOM OOM 56.23 OOM 72.17 OOM

G
A

S GCN 95.45 98.92 54.00 62.94 71.68 76.66
GCNII 96.77 99.50 56.20 65.14 73.00 77.24
PNA 97.17 99.44 56.67 64.40 72.50 79.91

on all datasets, which highlights the benefits of evaluating
larger models on larger scale.

7. Conclusion and Future Work
We proposed a general framework for scaling arbitrary mes-
sage passing GNNs to large graphs without the necessity to
sub-sample edges. As we have shown, our approach is able
to train both deep and expressive GNNs in a scalable fashion.
Notably, our approach is orthogonal to many methodologi-
cal advancements, such as unifying GNNs and label prop-
agation (Shi et al., 2020), graph diffusion (Klicpera et al.,
2019b), or random wiring (Valsesia et al., 2020), which we
like to investigate further in future works. While our exper-
iments focus on node-level tasks, our work is technically
able to scale the training of GNNs for edge-level and graph-
level tasks as well. However, this still needs to be verified
empirically. Another interesting future direction is the fu-
sion of GAS into a distributed training algorithm (Jia et al.,
2020; Ma et al., 2019; Zhu et al., 2016; Tripathy et al., 2020;
Wan et al., 2020; Angerd et al., 2020; Zheng et al., 2020),
and to extend our framework in accessing histories from
disk storage rather than CPU memory. Overall, we hope
that our findings lead to the development of sophisticated
and expressive GNNs evaluated on large-scale graphs.

Acknowledgements
This work has been supported by the German Research As-
sociation (DFG) within the Collaborative Research Center
SFB 876 Providing Information by Resource-Constrained
Analysis, projects A6 and B2.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

References
Angerd, A., Balasubramanian, K., and Annavaram, M. Dis-

tributed training of graph convolutional networks using
subgraph approximation. ICLR submission, 2020.

Bottoue, L. and Bousquet, O. The tradeoffs of large scale
learning. In NIPS, 2007.

Chen, J., Ma, T., and Xiao, C. FastGCN: Fast learning with
graph convolutional networks via importance sampling.
In ICLR, 2018a.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph
convolutional networks with variance reduction. In ICML,
2018b.

Chen, M., Wei, Z., Ding, B., Li, Y., Yuan, Y., Du, X., and
Wen, J. R. Scalable graph neural networks via bidirec-
tional propagation. In NeurIPS, 2020a.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In ICML, 2020b.

Chiang, W. L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C. J. Cluster-GCN: An efficient algorithm for training
deep and large graph convolutional networks. In KDD,
2019.

Cong, W., Forsati, R., Kandemir, M., and Mahdavi, M.
Minimal variance sampling with provable guarantees for
fast training of graph neural networks. In KDD, 2020.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
In NeurIPS, 2020.

Dhillon, I. S., Guan, Y., and Kulis, B. Weighted graph cuts
without eigenvectors: A multilevel approach. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 29
(11):1944–1957, 2007.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. CoRR,
abs/2003.00982, 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR-W, 2019.

Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bron-
stein, M. M., and Monti, F. SIGN: Scalable inception
graph neural networks. In ICML-W, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Hamilton, W. L. Graph representation learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
14(3):1–159, 2020.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In NIPS, 2017.

Hornik, K. Approximation capabilities of multilayer feed-
forward networks. Neural Networks, 4(2):251–257, 1991.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

Huang, Q., He, H., Singh, A., Lim, S. N., and Benson,
A. R. Combining label propagation and simple models
out-performs graph neural networks. In ICLR, 2021.

Huang, W., Zhang, T., Rong, Y., and Huang, J. Adaptive
sampling towards fast graph representation learning. In
NeurIPS, 2018.

Jia, Z., Lin, S., Gao, M., Zaharia, M., and Aiken, A. Improv-
ing the accuracy, scalability, and performance of graph
neural networks with ROC. Proceedings of Machine
Learning and Systems, pp. 187–198, 2020.

Karypis, G. and Kumar, V. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal
on Scientific Computing, 20(1):359—-392, 1998.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
PageRank. In ICLR, 2019a.

Klicpera, J., Weißenberger, S., and Günnemann, S. Diffu-
sion improves graph learning. In NeurIPS, 2019b.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L., and
Dai, Y. NeuGraph: Parallel deep neural network com-
putation on large graphs. In USENIX Annual Technical
Conference, 2019.

Ma, Y. and Tang, J. Deep Learning on Graphs. Cambridge
University Press, 2020.

Markowitz, E., Balasubramanian, K., Mirtaheri, M., Abu-
El-Haija, S., Perozzi, B., Ver Steeg, G., and Galstyan,
A. Graph traversal with tensor functionals: A meta-
algorithm for scalable learning. In ICLR, 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman
go neural: Higher-order graph neural networks. In AAAI,
2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

L., Bai, J., and Chintala, S. PyTorch: An imperative
style, high-performance deep learning library. In NeurIPS,
2019.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. PointNet++: Deep
hierarchical feature learning on point sets in a metric
space. In NIPS, 2017.

Rong, Y., Huang, W., Xu, T., and Huang, J. DropEdge:
Towards deep graph convolutional networks on node clas-
sification. In ICLR, 2020.

Seo, Y., Loukas, A., and Perraudin, N. Discriminative
structural graph classification. CoRR, abs/1905.13422,
2019.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. In NeurIPS-
W, 2018.

Shi, Y., Huang, Z., Wang, W., Zhong, H., Feng, S., and
Sun, Y. Masked label prediction: Unified message pass-
ing model for semi-supervised classification. CoRR,
abs/2009.03509, 2020.

Tripathy, A., Yelick, K., and Buluc, A. Reducing com-
muncation in graph neural network training. CoRR,
abs/2005.03300, 2020.

Usama, M. and Chang, D. E. Towards robust neural net-
works with lipschitz continuity. CoRR, abs/1811.09008,
2018.

Valsesia, D., Fracastoro, G., and Magli, E. Don’t stack
layers in graph neural networks, wire them randomly.
ICLR submission, 2020.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Wan, C., Li, Y., Kim, N. S., and Lin, Y. BDS-GCN: Effi-
cient full-graph training of graph convolutional nets with
partition-parallelism and boundary sampling. ICLR sub-
mission, 2020.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph CNN for learning
on point clouds. ACM Transactions on Graphics (TOG),
2019.

Weisfeiler, B. and Lehman, A. A. A reduction of a graph
to a canonical form and an algebra arising during this
reduction. Nauchno-Technicheskaya Informatsia, 2(9),
1968.

Wu, F., Zhang, T., de Souza Jr., A. H., Fifty, C., Yu, T.,
and Weinberger, K. Q. Simplifying graph convolutional
networks. In ICML, 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In ICML, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019.

Yang, Z., Cohen, W., and Salakhutdinov, R. Revisiting semi-
supervised learning with graph embeddings. In ICML,
2016.

You, Y., Chen, T., Wang, Z., and Shen, Y. L2-GCN: Layer-
wise and learned efficient training of graph convolutional
networks. In CVPR, 2020.

Yu, L., Shen, J., Li, J., and Lerer, A. Scalable graph
neural networks for heterogeneous graphs. CoRR,
abs/2011.09679, 2020.

Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Kannan, R.,
Prasanna, V., Jin, L., Malevich, A., and Chen, R. Deep
graph neural networks with shallow subgraph samplers.
CoRR, abs/2012.01.380, 2020a.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. GraphSAINT: Graph sampling based in-
ductive learning method. In ICLR, 2020b.

Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X.,
Gan, Q., Zhang, Z., and Karypis, G. DistDGL: Dis-
tributed graph neural network for training for billion-scale
graphs. CoRR, abs/2010.05337, 2020.

Zhu, R., Zhao, K., Yang, H., Lin, W., Zhou, C., Ai, B., Li,
Y., and Zhou, J. AliGraph: A comprehensive graph neural
network platform. In KDD, 2019.

Zhu, X., Chen, W., Zheng, W., and Ma, X. Gemini: A
computation-centric distributed graph processing system.
In USENIX Symposium on Operating Systems Designand
Implementation, 2016.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q.
Layer-dependent importance sampling for training deep
and large graph convolutional networks. In NeurIPS,
2019.

GNNAutoScale: Scalable and Expressive Graph Neural Networks
via Historical Embeddings

1. Proofs
Lemma 1. Let MESSAGE

(`)
θ and UPDATE

(`)
θ be Lipschitz continuous functions with Lipschitz constants k1 and k2, respec-

tively. If, for all v ∈ V , the inputs are close to the exact input, i.e. ‖h̃(`−1)
v −h(`−1)

v ‖ ≤ δ, and the historical embeddings do
not run too stale, i.e. ‖h̄(`−1)

v − h̃(`−1)
v ‖ ≤ ε, then the output error is bounded by

‖h̃(`)
v − h(`)

v ‖ ≤ δ k2 + (δ + ε) k1 k2 |N (v)|.

Proof. By triangular inequality, it holds that ‖h̄(`−1)
v − h(`−1)

v ‖ ≤ δ + ε. Since both MESSAGE
(`)
θ and UPDATE

(`)
θ denote

Lipschitz continuous functions with Lipschitz constants k1 and k2, respectively, it further holds that for any x,y:

‖MESSAGE
(`)
θ (x)−MESSAGE

(`)
θ (y)‖ ≤ k1‖x− y‖

‖UPDATE
(`)
θ (x)− UPDATE

(`)
θ (y)‖ ≤ k2‖x− y‖

Furthermore, the Lipschitz constants for the aggregations
∑
x∈X x, 1

|X |
∑
x∈X x and maxx∈X x are given as |X |, 1 and 1,

respectively. Then,

‖UPDATE
(`)
θ (h̃(`−1)

v ,
⊕

w∈N (v)

MESSAGE
(`)
θ (h̄(`−1)

w))− UPDATE
(`)
θ (h(`−1)

v ,
⊕

w∈N (v)

MESSAGE
(`)
θ (h(`−1)

w))‖

≤ k2 (δ + |N (v)| (k1 (δ + ε))) = δ k2 + (δ + ε) k1 k2 |N (v)|.

Theorem 2. Let f (L)
θ be a L-layered GNN, containing only Lipschitz continuous MESSAGE

(`)
θ and UPDATE

(`)
θ functions

with Lipschitz constants k1 and k2, respectively. If, for all v ∈ V and all ` ∈ {1, . . . , L− 1}, the historical embeddings do
not run too stale, i.e. ‖h̄(`)

v − h̃(`)
v ‖ ≤ ε(`), then the final output error is bounded by

‖h̃(L)
v,j − h

(L)
v,j ‖ ≤

L−1∑
`=1

ε(`) kL−`1 kL−`2 |N (v)|L−`.

Proof. For layer ` = 1, the inputs do not need to be estimated, i.e. δ(0) = ‖h̃(0)
v − h(0)

v ‖ = 0, and, as a result, the output is
exact, i.e. δ(1) = ‖h̃(1)

v − h(1)
v ‖ = 0. With ‖h̄(1)

v − h̃(1)
v ‖ ≤ ε(1), it directly follows via Lemma 1 that the approximation

error of layer ` = 2 is bounded by ‖h̃(2)
v − h(2)

v ‖ ≤ ε(1) k1 k2 |N (v)| = δ(2). Recursively replacing

δ(`) = δ(`−1) k2 + (δ(`−1) + ε(`−1)) k1 k2 |N (v)|

in ‖h̃(L)
v − h(L)

v ‖ ≤ δ(L−1) k2 + (δ(L−1) + ε(L−1)) k1 k2 |N (v)| (cf. Lemma 1) yields

‖h̃(L)
v − h(L)

v ‖ ≤
L−1∑
`=1

ε(`) kL−`1 kL−`2 |N (v)|L−`.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Proposition 3. Let f (L)
θ : V → Rd be a L-layered GNN as ex-

pressive as the WL test in distinguishing the L-hop neighbor-
hood around each node v ∈ V . Then, there exists a graph
A ∈ {0, 1}|V|×|V| for which f (L)

θ operating on a sampled variant

Ã, ãv,w =

{ |N (v)|
|Ñ (v)| , if w ∈ Ñ (v)

0, otherwise
, produces a non-equivalent

coloring, i.e. h̃(L)
v 6= h̃

(L)
w while c(L)v = c

(L)
w for nodes v, w ∈ V .

Proof. Consider the colored graphA and its sampled variant Ã
as shown on the right. Here, it holds that h(1)

v1 = h
(1)
v4 while

h̃
(1)
v1 6= h̃

(1)
v4 .

v1

v2

v3

v4

v5A

1

1

1

1

1

1

v1

v2

v3

v4

v5Ã

2

1
2

1
2

1

Lemma 4. Let {{h(`−1)
v : v ∈ V}} be a countable multiset such that ‖h(`−1)

v −
h
(`−1)
w ‖ > 2(δ+ ε) for all v, w ∈ V , h(`−1)

v 6= h
(`−1)
w . If the inputs are close

to the exact input, i.e. ‖h̃(`−1)
v − h(`−1)

v ‖ ≤ δ, and the historical embeddings
do not run too stale, i.e. ‖h̄(`−1)

v − h̃(`−1)
v ‖ ≤ ε, then there exist MESSAGE

(`)
θ

and UPDATE
(`)
θ functions, such that

‖f (`)
θ (h̃(`−1)

v)− f (`)
θ (h(`−1)

v)‖ ≤ δ + ε

and
‖f (`)
θ (h(`−1)

v)− f (`)
θ (h(`−1)

w)‖ > 2(δ + ε+ λ)

for all v, w ∈ V , h(`−1)
v 6= h

(`−1)
w and all λ > 0.

Proof. Define φ : Rd → Rd as the Voronoi tessellation induced by exact
inputs {h(`−1)

v : v ∈ V}:

φ(x) = h(`−1)
v if ‖x− h(`−1)

v ‖ ≤ ‖x− h(`−1)
w ‖ for all v 6= w ∈ V

(1)
Furthermore, we know that there exists Message(`)θ and UPDATE

(`)
θ func-

tions so that f (`)
θ is injective for all countable multisets (Zaheer et al.,

2017; Xu et al., 2019; Morris et al., 2019; Maron et al., 2019). There-
fore, it holds that ‖f (`)

θ

(
φ
(
h̃
(`−1)
v

))
− f (`)

θ

(
φ
(
h
(`−1)
v

))
‖ = 0 ≤ δ. Since

{{h(`−1)
v : v ∈ V}} is countable and f (`)

θ is injective, there exists a κ > 0

such that ‖f (`)
θ

(
φ
(
h
(`−1)
v

))
− f (`)

θ

(
φ
(
h
(`−1)
w

))
‖ > κ for all v, w ∈ V ,

h
(`−1)
v 6= h

(`−1)
w . Due to the homogeneity of ‖ · ‖, it directly follows that

there must exists α > 0 so that

‖αf (`)
θ

(
φ
(
h(`−1)
v

))
− αf (`)

θ

(
φ
(
h(`−1)
w

))
‖ > ακ ≥ 2(δ + ε+ λ)

for all v, w ∈ V , h(`−1)
v 6= h

(`−1)
w and all λ > 0.

Layer `− 1

h3
δε

h1
δε

h2
δεh̃1

h̄1

Layer `

h1

δ + ε

h2

δ + ε

h̃1

h̄1

Theorem 5. Let f (L)
θ be a L-layered GNN in which all MESSAGE

(`)
θ and UPDATE

(`)
θ functions fulfill the conditions of

Lemma 4. Then, there exists a map φ : Rd → Σ so that φ(h̃
(L)
v) = c

(L)
v for all v ∈ V .

Proof. Define φ : Rd → Σ as the Voronoi tessellation induced by exact outputs {h(L)
v : v ∈ V}:

φ(x) = c(L)v if ‖x− h(L)
v ‖ ≤ ‖x− h(L)

w ‖ for all v 6= w ∈ V

Since each GNN layer f (`)
θ is injective for exact inputs, we know that such a function needs to exist (Xu et al., 2019;

Morris et al., 2019). Therefore, it is sufficient to show that there exists a δ(L) > 0 so that ‖h̃(L)
v − h(L)

v ‖ ≤ δ(L) and
‖h(L)

v − h(L)
w ‖ > 2δ(L) for all v, w ∈ V , h(L)

v 6= h
(L)
w . Following upon Theorem 2, we know that ‖h̃(1)

v − h(1)
v ‖ = 0. Due

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

to Lemma 4, it holds that ‖h̃(2)
v −h(2)

v ‖ ≤ ε(1). The next layer introduces an increased error, i.e. ‖h̄(2)
v −h(2)

v ‖ ≤ ε(1) + ε(2),
and to compensate, we set λ(2) = ε(2) so that ‖h(2)

v − h(2)
w ‖ > 2 (ε(1) + ε(2)) for all v, w ∈ V , h(L)

v 6= h
(L)
w . By

recursively applying Lemma 4 with λ(`) = ε(`), it immediately follows that ‖h̃(L)
v − h(L)

v ‖ ≤
∑L−1
`=1 ε

(`) = δ(L), and
‖h̃(L)

v − h(L)
w ‖ >

∑L−1
`=1 2 ε(`) for all v, w ∈ V , h(L)

v 6= h
(L)
w .

2. Algorithm
Our GAS mini-batch training algorithm is given in Algorithm 1:

Algorithm 1 GAS Mini-batch Execution

Input: Graph G = (V, E), input node featuresH(0), number of batches B, number of layers L

{B1, . . . ,BB} ← SPLIT(G, B)

Vb ←
⋃
v∈Bb

N (v) ∪ {v} ∀b ∈ {1, . . . , B}

Gb ← G[Vb] ∀b ∈ {1, . . . , B}

for Bb ∈ {B1, . . . ,BB} do

for ` ∈ {1, . . . , L− 1} do

h
(`)
v ← f

(`)
θ (h

(`−1)
v , {{h(`−1)

w : w ∈ N (v)}}) ∀v ∈ Bb
PUSH(`)(h

(`)
v) ∀v ∈ Bb

h
(`)
w ← PULL(`)(w) ∀w ∈ Vb \ Bb

end for

h
(L)
v ← f

(L)
θ (h

(L−1)
v , {{h(L−1)

w : w ∈ N (v)}}) ∀v ∈ Bb
end for

3. GNN Operators
We briefly recap the details of all graph convolutional layers used in our experiments. We omit final non-linearities and edge
features due to simplicity.

Graph Convolutional Networks (GCN) use a symmetrically normalized mean aggregation followed by linear transfor-
mation (Kipf & Welling, 2017)

h(`)
v =

∑
w∈N (v)∪{v}

1

cw,v
Wh(`−1)

w ,

where cw,v =
√

deg(w) + 1
√

deg(v) + 1.

Graph Attention Networks (GAT) perform an anisotropic aggregation (Veličković et al., 2018)

h(`)
v =

∑
w∈N (v)∪{v}

αw,vWh(`−1)
w ,

where normalization is achieved via learnable attention coefficients

αw,v =
exp

(
LeakyReLU

(
a>
[
Wh

(`−1)
v ,Wh

(`−1)
w

]))
∑
k∈N (v)∪{v} exp

(
LeakyReLU

(
a>
[
Wh

(`−1)
v ,Wh

(`−1)
k

])) .

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Approximate Personalized Propagation of Neural Predictions (APPNP) networks first perform a graph-agnostic
prediction of node labels, i.e. h(0)

v = MLP(xv), and smooth initial label predictions via propagation afterwards (Klicpera
et al., 2019)

h(`) = αh(0) + (1− α)
∑

w∈N∪{v}

1

cw,v
h(`−1)
w ,

where α ∈ [0, 1] denotes the teleport probability and cw,v is defined as in GCN. Notably, the final propagation layers are
non-trainable, and predictions are solely conditioned on node features (while gradients of model parameters are not).

Simple and Deep Graph Convolutional Networks (GCNII) extend the idea of APPNP to a trainable propgation
scheme which leverages initial residual connections (Chen et al., 2020)

h(`)
v = αWh(0)

v + (1− α)
∑

w∈N (v)∪{v}

1

cw,v
Wh(`−1)

w ,

andW makes use of identity maps, i.e.W ← (1− β)I + βW for β ∈ [0, 1].

Graph Isomorphism Networks (GIN) make use of sum aggregation and MLPs to obtain a maximally powerful GNN
operator (Xu et al., 2019)

h(`)
v = MLPθ

(1 + ε)h(`−1)
v +

∑
w∈N (v)

h(`−1)
w

 ,

where ε ∈ R is a trainable parameter in order to distinguish neighbors from central nodes.

Principal Neighborhood Aggregation (PNA) networks leverage mulitple aggregators combined with degree-scalers to
capture graph structural properties (Corso et al., 2020)

h(`)
v = W2

h(`−1)
v ,

⊕
w∈N (v)

W1

[
h(`−1)
v ,h(`−1)

w

] ,
where ⊕

=

 1
s(deg(v), 1)
s(deg(v),−1)

︸ ︷︷ ︸

Scalers

⊗

mean
min
max

︸ ︷︷ ︸
Aggregators

,

with ⊗ being the tensor product and

s(d, α) =

(
log(d+ 1)

1
|V|
∑
v∈V log(deg(v) + 1)

)α
denoting degree-scalers.

4. PyGAS Programming Interface
To highlight the ease-of-use of our framework, we showcase the necessary changes to convert a common GCN architecture
(Kipf & Welling, 2017) implemented in PYTORCH GEOMETRIC (Fey & Lenssen, 2019) (cf. Listing 1) to its corresponding
scalable version (cf. Listing 2). In particular, our model now inherits from ScalableGNN, which takes care of creating
all history embeddings (accessible via self.histories) and provides an efficient concurrent history access pattern
via push and pull(). Notably, the forward() execution method of our model now takes in the additional n id
parameter, which holds the global node index for each node in the current mini-batch. This assignment vector is necessary
to push and pull the intermediate mini-batch embeddings to and from the global history embeddings.

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 1. Inter-/intra-connectivity ratio for real-world datasets with different mini-batch sampling strategies. Utilizing METIS

heavily minimizes inter-connectivity between mini-batches, which reduces history accesses and tightens approximation errors in return.

Sampling CORA CITESEER PUBMED
COAUTHOR- AMAZON- WIKI-CSScheme CS PHYSICS COMPUTER PHOTO

Random 1.33 1.24 3.17 6.81 9.94 9.05 5.61 5.85
METIS 0.14 0.02 0.52 2.77 2.26 2.27 1.03 1.12

CLUSTER PATTERN REDDIT PPI FLICKR YELP
ogbn- ogbn-
arxiv products

Random 36.64 51.02 6.58 6.79 1.82 6.74 3.02 26.18
METIS 1.57 1.61 2.80 1.27 1.07 2.52 0.48 1.94

from torch_geometric.nn import GCNConv

class GNN(Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers):

super(GNN, self).__init__()

self.convs = ModuleList()
self.convs.append(GCNConv(in_channels, hidden_channels))
for _ in range(num_layers - 2):

self.convs.append(GCNConv(hidden_channels, hidden_channels))
self.convs.append(GCNConv(hidden_channels, out_channels))

def forward(self, x, adj_t):
for conv in self.convs[:-1]:

x = conv(x, adj_t).relu()
return self.convs[-1](x, adj_t)

Listing 1. Full-batch GCN (Kipf & Welling, 2017) model within PYTORCH GEOMETRIC (Fey & Lenssen, 2019).

from torch_geometric.nn import GCNConv

from torch_geometric_autoscale import ScalableGNN

w

class GNN(ScalableGNN):
def __init__(self, num_nodes, in_channels, hidden_channels, out_channels, num_layers):

super(GNN, self).__init__(num_nodes, hidden_channels, num_layers)

self.convs = ModuleList()
self.convs.append(GCNConv(in_channels, hidden_channels))
for _ in range(num_layers - 2):

self.convs.append(GCNConv(hidden_channels, hidden_channels))
self.convs.append(GCNConv(hidden_channels, out_channels))

w

def forward(self, x, adj_t, n_id):
for conv, history in zip(self.convs[:-1], self.histories):

x = conv(x, adj_t).relu()

x = self.push_and_pull(history, x, n_id)

return self.convs[-1](x, adj_t)

Listing 2. Mini-batch GCN (Kipf & Welling, 2017) model within PYTORCH GEOMETRIC (Fey & Lenssen, 2019) and our proposed
PyGAS framework. � denotes lines that require changes, while � refers to newly added lines. Only minimal changes are required to
auto-scale GCN (or any other model) to large graphs.

5. Addtional Ablation Studies
We report additional ablation studies to further strengthen the motivation of our GAS framework:

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Table 2. Ablation study for a 4-layer GIN (Xu et al., 2019) model on the CLUSTER dataset (Dwivedi et al., 2020). Combining both
GAS techniques help in resembling full-batch performance for expressive models with highly non-linear message passing phases.

Accuracy
Training Validation Test

Full-batch Baseline 60.49 58.17 58.49

Minimizing Enforcing
Inter-Connectivity Lipschitz Continuity

G
A

S % % 55.66 54.86 55.15
" % 58.97 57.79 57.82
" " 60.67 58.21 58.51

Table 3. Dataset statistics.
Dataset Task Nodes Edges Features Classes Label Rate

Sm
al

l-
sc

al
e

CORA multi-class 2,708 5,278 1,433 7 5.17%
CITESEER multi-class 3,327 4,552 3,703 6 3.61%
PUBMED multi-class 19,717 44,324 500 3 0.30%
COAUTHOR-CS multi-class 18,333 81,894 6,805 15 1.64%
COAUTHOR-PHYSICS multi-class 34,493 247,962 8,415 5 0.29%
AMAZON-COMPUTER multi-class 13,752 245,861 767 10 1.45%
AMAZON-PHOTO multi-class 7,650 119,081 745 8 2.09%
WIKI-CS multi-class 11,701 215,863 300 10 4.96%

L
ar

ge
-s

ca
le

CLUSTER multi-class 1,406,436 25,810,340 6 6 83.35%
REDDIT multi-class 232,965 11,606,919 602 41 65.86%
PPI multi-label 56,944 793,632 50 121 78.86%
FLICKR multi-class 89,250 449,878 500 7 50.00%
YELP multi-label 716,847 6,977,409 300 100 75.00%
ogbn-arxiv multi-class 169,343 1,157,799 128 40 53.70%
ogbn-products multi-class 2,449,029 61,859,076 100 47 8.03%

Minimizing Inter-Connectivity Between Batches. We make use of graph clustering methods (Karypis & Kumar, 1998;
Dhillon et al., 2007) in order to minimize the inter-connectivity between batches, which minimizes history accesses and
therefore increases closeness and reduces staleness in return. To evaluate this impact in practice, Tabel 1 lists the inter-/intra-
connectivity ratio of all real-world datasets used in our experiments, both for randomly sampled mini-batches as well as for
utilizing METIS partitions as mini-batches. Notably, applying METIS beforehand reduces the overall inter-/intra-connectivity
ratio by a factor of 4 on average, which results in only a fraction of history accesses. Furthermore, most real-world datasets
come with inter-/intra-connectivity ratios between 0.1 and 2.5, leading to only marginal runtime overheads when leveraging
historical information, as confirmed by our runtime analysis.

Analysis of Gains for Obtaining Expressive Node Representations. Next, we highlight the impacts of minimizing
the inter-connectivity between mini-batches and enforcing Lipschitz continuity of the learned function in order to derive
expressive node representations. Here, we benchmark a 4-layer GIN model (Xu et al., 2019) on the CLUSTER dataset
(Dwivedi et al., 2020), cf. Table 2. Notably, both solutions achieve significant gains in training, validation and test
performance, and together, they are able to closely resemble the performance of full-batch training. However, we found that
Lipschitz continuity regularization only helps in non-linear message passing phases, while it does not provide any additional
gains for linear operators such as GCN (Kipf & Welling, 2017).

6. Datasets
We give detailed statistics for all datasets used in our experiments, cf. Table 3, which include the following tasks:

1. classifying academic papers in citation networks (CORA, CITESEER, PUBMED) (Sen et al., 2008; Yang et al., 2016)

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

2. categorizing computer science articles in Wikipedia graphs (WIKI-CS) (Mernyei & Cangea, 2020)
3. predicting active research fields of authors in co-authorshop graphs (COAUTHOR-CS, COAUTHOR-PHYSICS) (Shchur

et al., 2018)
4. predicting product categories in co-purchase graphs (AMAZON-COMPUTER, AMAZON-PHOTO) (Shchur et al., 2018)
5. identifying community clusters in Stochastic Block Models (CLUSTER, PATTERN) (Dwivedi et al., 2020)
6. predicting communities of online posts based on user comments (REDDIT) (Hamilton et al., 2017)
7. classifying protein functions based on the interactions of human tissue proteins (PPI) (Hamilton et al., 2017)
8. categorizing types of images based on their descriptions and properties (FLICKR) (Zeng et al., 2020)
9. classifying business types based on customers and friendship relations (YELP) (Zeng et al., 2020)

10. predicting subject areas of ARXIV Computer Science papers (ogbn-arxiv) (Hu et al., 2020)
11. predicting product categories in an AMAZON product co-purchasing network (ogbn-products) (Hu et al., 2020)

References
Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple and deep graph convolutional networks. In ICML, 2020.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. Principal neighbourhood aggregation for graph nets. In
NeurIPS, 2020.

Dhillon, I. S., Guan, Y., and Kulis, B. Weighted graph cuts without eigenvectors: A multilevel approach. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(11):1944–1957, 2007.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. Benchmarking graph neural networks. CoRR,
abs/2003.00982, 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. In ICLR-W, 2019.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learning on large graphs. In NIPS, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open Graph Benchmark: Datasets for
machine learning on graphs. In NeurIPS, 2020.

Karypis, G. and Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1):359—-392, 1998.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In ICLR, 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict then propagate: Graph neural networks meet personalized
PageRank. In ICLR, 2019.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y. Provably powerful graph networks. In NeurIPS, 2019.

Mernyei, P. and Cangea, C. Wiki-CS: A wikipedia-based benchmark for graph neural networks. In ICML-W, 2020.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman go neural:
Higher-order graph neural networks. In AAAI, 2019.

Sen, G., Namata, G., Bilgic, M., and Getoor, L. Collective classification in network data. AI Magazine, 29, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. Pitfalls of graph neural network evaluation. In NeurIPS-W,
2018.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. Graph attention networks. In ICLR, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? In ICLR, 2019.

Yang, Z., Cohen, W., and Salakhutdinov, R. Revisiting semi-supervised learning with graph embeddings. In ICML, 2016.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov, R., and Smola, A. J. Deep sets. In NIPS, 2017.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V. GraphSAINT: Graph sampling based inductive learning
method. In ICLR, 2020.

