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Abstract
Sound decision-making relies on accurate prediction for tangible outcomes rang-
ing from military conflict to disease outbreaks. To improve crowdsourced fore-
casting accuracy, we developed SAGE, a hybrid forecasting system that combines
human and machine generated forecasts. The system provides a platform where
users can interact with machine models and thus anchor their judgments on
an objective benchmark. The system also aggregates human and machine fore-
casts weighting both for propinquity and based on assessed skill while adjusting
for overconfidence. We present results from the Hybrid Forecasting Competi-
tion (HFC)—larger than comparable forecasting tournaments—including 1085
users forecasting 398 real-world forecasting problems over 8 months. Our main
result is that the hybrid system generated more accurate forecasts compared to a
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human-only baseline, which had no machine generated predictions. We found
that skilled forecasters who had access to machine-generated forecasts out-
performed those who only viewed historical data. We also demonstrated
the inclusion of machine-generated forecasts in our aggregation algorithms
improved performance, both in terms of accuracy and scalability. This sug-
gests that hybrid forecasting systems, which potentially require fewer human
resources, can be a viable approach for maintaining a competitive level of
accuracy over a larger number of forecasting questions.

INTRODUCTION

From military conflicts to disease outbreak to eco-
nomic disruption, accurate prediction is vital for sound
intelligence-based decision-making. However, the prob-
lem of making accurate predictions for geopolitical events
is notoriously difficult due to too much or too little data,
rare event occurrences, or large levels of uncertainty. Pre-
dictionmethods range from expert and/or group judgment
to individual and ensembled statistical models (Zellner
et al. 2022). It is often challenging to identify a consis-
tent, superior predictionmethod (Meehl 1954; Zellner et al.
2022). Stakeholders confidently misidentify the benefits
of competing methods, such as trusting human clinical
judgment over statistical or algorithmic judgment (Dawes,
Faust, and Meehl 1989). Two common forecasting meth-
ods, crowdsourcing and machine learning, have comple-
mentary strengths and competing weaknesses. Here we
present a hybrid forecasting model—a system that aims
to exploit the proficiencies of each while circumventing
their deficiencies.
Recent forecasting tournaments such as IARPA’s

Aggregative Contingent Estimation (ACE) (IARPA 2011)
have led to advances in crowdsourcing methods, sta-
tistical aggregation, and ultimately improvements in
accuracy (Atanasov et al. 2017; Mellers et al. 2014). Crowd-
sourced aggregation pools a breadth of knowledge while
canceling independent errors (Budescu 2006) and is most
successful when individual performance can be tracked
over time. However, social influences can harm opinion
pools, and individual (rewards) versus group incentives
can be difficult to balance. Individuals must choose to
share their private information and trust others.
Advances in statistical and machine learning methods

lead to accuracy gains due to their ability to handle troves
of data with heterogeneous input and identify complex
relationships (Ghoddusi, Creamer, and Rafizadeh 2019).
Data-driven, algorithmic forecasting can be used to pre-
dict various political outcomes, such as terrorism, conflict,
insurgency, and similar (Enders and Sandler 2002;Hossain
et al. 2020; Pilster and Böhmelt 2014; Schrodt 2010; Schutte

2017; Vasanthan et al. 2013). However, machine learning
requires large amounts of data to be available and accessi-
ble. If data are not in a standard format, there can be large
costs to preprocessing data.
Statistical models perform well under the right circum-

stances (Leigh andWolfers 2006), and human crowds suc-
ceed when deftly combined (Atanasov et al. 2017). Factors
like amount, availability, and structure of data determine
how these methods perform (Seifert and Hadida 2013).
Machine-based forecastingmethods typically performwell
on problems for which there is sufficient historical data,
but are ill-suited to forecast rare or idiosyncratic events for
which such data may not exist, or when the underlying
context has changed in ways not reflected by the histori-
cal data. Machine predictions handle data in a consistent,
structured manner, and avoid computational errors, like
violating probability axioms (Dellermann et al. 2019).
Human analysts, on the other hand, can often accu-

rately forecast outcomes without exclusively depending
on the availability of historical data, by leveraging their
domain knowledge and prior experience. Further, human
expertise and domain knowledge can be valuable as inputs
into machine models. These benefits are most efficient
when data are sparse and/or unstructured (Dellermann
et al. 2019). However, even the best analysts may not
match machine performance where solid historical data
are available and can be cognitively overwhelmed when
addressing a large number of problems within time con-
straints, thereby limiting the scalability of a forecasting
system that relies solely on human judgment. Unfortu-
nately, there are few direct comparisons between models
and crowds in similar settings.
Here we describe our Synergistic Anticipation of Geopo-

litical Events (SAGE) system, which was developed
under IARPA’s hybrid forecasting competition (HFC) pro-
gram (IARPA 2017). The system is designed to make
verifiable probabilistic predictions of outcomes from a
broad set of domains, such as politics and international
relations (i.e., the quantity of battle deaths or piracy in
a region or attributable to a specified actor), health and
disease (i.e, flu or dengue fever case counts), economics
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and finance (i.e., exchange rates or oil prices), and science
and nature (i.e., the number of earthquakes or cybersecu-
rity breaches) (see Section 4.1 for an overview of the types
of questions). A human–computer system can achieve
“hybrid intelligence” when applied in a setting with a
high degree of digitization and human expertise (Rafner
et al. 2021). SAGE is a hybrid forecasting platform that
allows human forecasters to combine model-based fore-
casts with their own judgment. The SAGE system provides
forecasters automated statistical predictions and free-
dom to choose if and how much weight to assign to
model predictions when submitting their personal fore-
casts since formal models can increase the skill of human
judges (Rafner et al. 2021).
Our system is designed to test the conceptual hypothesis

that machine model forecasts embedded in a crowd-
sourced forecasting platformcan improve the accuracy and
efficiency of established crowdsourced forecasting meth-
ods. We embed machine models in a system designed to
balance (a) the diversity required to achieve the “wisdom
of the crowd” by not restricting users’ responses with (b)
anchoring forecasters to an impartial benchmark to min-
imize noise and outliers. This paper tests how machine
models lead to improvements. We experimentally test var-
ious informational conditions to determine which type
of information—historical data, model output, or inter-
activity with the models—leads to optimal accuracy and
user engagement (see Section 3 for details). We also test if
machine models improve system efficiency. We hypothe-
size that machine models can help increase the number of
questions SAGE can answer without decreasing accuracy.
We test methods of allocating a fixed number of human
forecasters to questions where they are most needed.
Inwhat follows,we test if our hybrid systemcan improve

accuracy, engagement, or scalability compared to estab-
lished crowdsourcing methods. First, we discuss relevant
literature related to hybrid intelligence and scalability.
Then, we describe the main components of SAGE fol-
lowed by a description of HFC guidelines. Finally, we
present our experimental results from a 8-month long
Randomized Controlled Trial (RCT) conducted under the
HFC program.

RELATEDWORKS

The main motivation behind developing a “hybrid” fore-
casting system is to harness the strengths of crowdsourced
and statistical forecasts by combining them with machine
learning models as input for both human forecasters
and aggregation methods. This type of hybrid intelligence
occurs when human and machine components each
contribute to a solution that outperforms and/or is more

efficient than either source on its own (Dellermann et al.
2019; Kamar 2016). Machine models, which excel at
identifying patterns from data and leveraging them for
making predictions, can help human judges overcome
certain errors and inconsistencies. Human experts, which
do not require structured input data, are capable of ad
hoc feature selection, often quicker than variables can be
formalized when data sources are yet unavailable.
While there is a growing field discussing the current

state of hybrid intelligence, there is limited work explor-
ing how such systems work and in what settings they
excel. To date, most work explicitly discussing hybrid intel-
ligence is theoretical (e.g., Dellermann, Lipusch, and Ebel
2017; Rafner et al. 2021, 2022). Developing an efficient
and effective hybrid system to solve complex, dynamic
tasks requires a carefully designed and tested machine
component, a skilled human component, and principled,
dynamic methods for combining them. In the current
study, we address the challenges of balancing effective-
ness with flexibility. Artificial intelligence exceeds when
tasks are well-defined (e.g., Dellermann et al. 2019).
Machinemodels can underperformwhen tasks are loosely
defined, data are sparse, or environments are complex
and/or changing. A forecasting tournament provides an
opportunity to collect data in a structured, yet chaotic,
environment. On one hand, the general question and
response format is consistent and practiced users pro-
vide consistent response data. On the other hand, it is
a difficult setting to generalize because new question
types, sources, and datasets could be introduced after
system development.
One key limitation of the previous work on crowd-

sourced forecasting and hybrid intelligence is that use
cases are limited and often applied to a business envi-
ronment (e.g., Dellermann et al. 2019; Dellermann,
Lipusch, and Ebel 2017; Rafner et al. 2022). The current
study is designed to provide data-driven support for
the effectiveness of a hybrid system in the geopolitical
forecasting domain. While there are established methods
showing how crowdsourced forecasting succeeds, there
are not established methods for a hybrid forecasting sys-
tem (Mellers et al. 2014). Previous crowdsourced methods
rely on adjustments, such as statistical recalibration, to
adjust for measurable biases in human forecasters like
overconfidence (Atanasov et al. 2017). It remains an open
questionwhether the same or new cognitive biases emerge
when human users interact with machine model output.
Research suggests that presenting time-series data as a
forecasting aid improves individual forecasts by reducing
random error (De Baets and Harvey 2018). When there
are detectable trends in a time series, forecasts made
while viewing graphical data are more accurate than
from viewing tabular data (Harvey and Bolger 1996). In
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this setting, a hybrid system must account for potential,
yet unmeasured, biases to effectively combine machine
models and crowd predictions.
The success of machine models is driven by complex-

ity and volatility. When predicting on real data, machine
learning models face a tradeoff between the complexity of
the data and the number of model parameters required
to predict accurately (Parmezan, Souza, and Batista 2019).
Hence, tuning and returning become cumbersome when
properties of the event or dataset change. The prob-
lem becomes more challenging when predicting several
periods into the future and requires methods that pro-
duce multiple outcomes (Souhaib et al. 2012). Known
(simple) statisticalmethods often outperformmore sophis-
ticated methods (e.g., based on deep neural networks)
because real-world time-series are often nonstationary.
Changes from training to testing often impede how well
sophisticatedmodels generalize (Makridakis, Spiliotis, and
Assimakopoulos 2018). It is yet not knownwhether human
judgment can help identify the shifts in time-series over
time that make statistical and machine model predic-
tions miss the mark. Further, while the main focus of
the machine models considered here is on quantitative,
time-series data, there is also an emerging line of work,
which intends to use unstructured textual data for mak-
ing predictions. For example, Hossain et al. (2022) aim to
extract possible precursors of certain events from docu-
ments, while Jin et al. (2021) formulate forecasting as a
Question Answering (QA) problem on an appropriately
selected textual dataset.
A key aspect in achieving an efficient and effective

hybrid system is how to allocate both the human and
machine resources. Intelligent task allocation can bring
out the best in both sources (e.g., in classification (Beck
et al. 2018); in consensus (Kamar 2016). In a review of 208
articles over 50 years, task allocation is identified as one
of the key issues to making hybrid system work (Janssen
et al. 2019). It is challenging to allocate tasks when it is
not knowable in advance at which tasks machines and
humans will outperform each other. As the task becomes
more difficult and the system becomesmore complex, task
allocation becomes more difficult (Trouille, Lintott, and
Fortson 2019). Introducing machine elements into crowd
systems comes with trade-offs. Misallocation can dimin-
ish engagement and shift attention away from desired
tasks. The “wisdom of the crowd” effect relies on sufficient
expertise and diversity of knowledge. In this setting, the
introduction of statistical models could diminish diversity
if human participants are too trusting in themodels and do
not feel empowered ormotivated to add their private infor-
mation into the system. Intelligent task allocation must
balance finding the best individual sources for a given task
with maintaining a diverse pool of knowledge.

METHODS

SAGE system

The SAGE system was developed to combine automated
statistical forecasts with a pool of human knowledge
by allowing users access to machine model output and
by algorithmically combining human and machine
forecasts (Morstatter et al. 2019). The SAGE platform
allowed users to interact with machine models to
anchor their judgments on an objective benchmark.
Simultaneously, users had the freedom to choose if
and how they combined model forecasts with their
own judgment striving for the diversity of knowledge
needed for the “wisdom of the crowd” effect (Abeliuk
et al. 2020). To proactively mitigate skepticism with
and over-reliance on the models, we trained users in
how to evaluate and consolidate information from
multiple sources.
The SAGE system was developed by integrating five

areas of engineering and design (see Figure 1). After log-
ging both machine and human forecasts, our aggregation
algorithms computed aggregate forecasts in real time by
dynamically combining human and machine forecasts.
Over time, our system determined optimal weights for
each source based on assessed skill, adjusting for over-
confidence, and for propinquity to question resolution.
We also developed a number of machine models allowing
the system to choose reliable models for various ques-
tion types. Finally, our system adaptively filtered questions
balancing users’ preferences and abilities with the sys-
tems’ needs. Our recommender system filtered questions
to the top that individuals were more likely to answer
and/or were unpopular, while hiding questions that were
overly popular.

Forecasting platform

The SAGE system included search and filtering func-
tionality to help users find forecasting questions (IFPs)
about which they felt knowledgeable. At any point in
time, there were dozens of IFPs available. Users had to
complete at least five forecasts per week; an example
of an IFP is shown in Figure 2. After choosing which
question to answer, an IFP page included the following
from top to bottom: question text, resolution criteria
(including the source used to resolve a given question,
value of interest and/or criteria for an occurrence, and
timing), automated information including data graph,
statistical forecast, and interactive features (depending
on their experimental condition), forecast sliders that
forced responses to add to 100%, a textbox to justify the
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F IGURE 1 Schematic of SAGE system organized into five topic areas. Platform engineering is in pink, recruitment and retention is in
blue, machine-based forecasting is in yellow, human–machine interaction is in green, and diagnostics and feedback is in purple. SAGE,
Synergistic Anticipation of Geopolitical Events.

F IGURE 2 Screen capture of an IFP with resolution criteria. IFP, individual forecasting problem.

forecast, and a comments thread to view and respond to
fellow users’ justifications. Additional features included
a leaderboard, consensus charts, a research tool, a profile
page including their personal accomplishments, and
training and tournament information.

Data pipeline and model development

The SAGE machine model pipeline can be broken down
into two parts based on the kinds of questions that were
covered. Approximately 45% of IFPs (AKA data-driven
IFPs) were clearly associated with a univariate time series,
like OECD interest rates for a country (Organisation for
Economic Co-operation and Development 2022). These
questions were covered by automated data-acquisition and
univariate time-series forecasting systems. The remain-
ing questions did not have clearly associated data. Some,
about election results and country leader resignations,
were covered by tailored models that could leverage more
complicated, nontime-series data. Others were covered
by tools that leveraged resolved answers to other, simi-
lar, previous questions, or extracted relevant information

from the ICEWS event data (Boschee et al. 2018). The
nontime-series models either only covered a very small
set of questions, or did not perform well in terms of accu-
racy, so the rest of this section will focus on the time-series
forecasting system.
The time-series forecasting system consisted of a data

platform thatmaintained a continuously updated database
of relevant time-series data sets and could map them
to questions as appropriate, and a forecasting platform
that would then parse a question and apply a univariate
time-series model to derive probabilities for the ques-
tion answers. Our system was developed to automate data
extraction based on reading the question text and find-
ing the applicable data. Many data sources were known in
advance and several were not.
A significant challenge was to identify the time-series

models to use for generating the forecasts that would be
shown to users and sent to the aggregation models. Four
core models were displayed to users in the question charts:
the auto ARIMA model, a similar automated exponential
smoothing model (ETS) (Hyndman and Athanasopou-
los 2018; Hyndman and Khandakar 2008), a simple
random walk model, and the M4-Metalearning model
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(Montero-Manso et al. 2020). The DCT Ensemble model,
drawing on forecasts fromautoARIMA,M4-Metalearning,
or a AR(1) neural net model based on an analysis of the
input series discrete cosine transformation was used to
provision forecasts for aggregation. Model performance
suffered from a “cold-start problem” as the number of IFP
resolutions were limited over the first several months of
the competition. Further, HFC guidelines required our
system to make predictions for new datasets and sources
on the fly, often with only a couple hours notice before
users could access the IFPs. Therefore, simple time-series
models tended to outperformmore complex, topic-specific
models—a result supported by the general success of con-
servative forecasting approaches (Armstrong, Green, and
Graefe 2015; Makridakis, Spiliotis, and Assimakopoulos
2018). Initially, all forecasts were based on the Auto
ARIMA model (Hyndman and Athanasopoulos 2018), but
later, this was supplanted by an ensemble (labeled “PHE2”
below) of Auto ARIMA and an exponential smoothing
state space model (Hyndman and Athanasopoulos 2018),
which emerged from an overall pool of 28 candidate
models. We do not report results from poor performing
models. Choosing adequate models was hard because
interquestion performance is very noisy (variable), yet
only relatively small numbers of resolved questions
were available for testing and several models did not
have adequate information to specify them consistently.
Only later did enough resolved questions accumulate for
model-to-model performance to stabilize.

Experimental conditions

We conducted a controlled experiment to better under-
stand the benefits of exposing forecasters to different
hybridization components. We randomly assigned our
547 participants to one of three experimental conditions,
which we labeled B, C, D to reflect the increasing level
of complexity of and interactivity with the hybridization
model.

1. Condition B: This condition exposed users to histori-
cal data about the target item. Data included relevant
news articles from the research tool, and historical
figures that pertain to the question. Historical charts
were available for 177 of the 398 items.

2. Condition C: This condition supplemented the data
charts from Condition B with machine model predic-
tions, when available. More specifically, we exposed
the forecasters to predictions from the ARIMA model,
which has been determined to be a good general model.
ARIMA model predictions were available for 177 of the
398 items.

3. Condition D: This is a variation on condition C that
allows the forecasters to tweak the parameters of the
visualization, including the type of model and range of
data used for model training. We also provided a simple
method that allowed the judges to adjust the model’s
forecast by selecting themean and variance of the target
value and directly translating that into a forecast1.

Figure 3 presents examples of screenshots from con-
ditions B, C, and D. Control (see below) and condition
B quantified the ability of human forecasters to predict
the various items and provide natural baselines to com-
pare forecasters in conditions C and D that had access to
machine models. The benefit of this access is measured by
the improvement in accuracy, compared to the controls. In
addition to the three treatment conditions above, there was
a control condition that was run separately by the HFC
test and evaluation team. This control condition used a
different platform with a different sample of 538 respon-
dents selected from the same pool. The control condition
did not offer any historical charts nor machine predictions
to the participants. The main objective of the program was
shown that the hybridized conditions could generate more
accurate aggregate forecasts than the control.

Forecast aggregation

By combining human and machine model forecasts, we
aimed to leverage the collective intelligence of human and
model judgments. The advantage of human judgment was
its flexibility and ability to reason with qualitative and
mixed-source data. Humans can forecast when data are
sparse or difficult to interpret and can seek out information
that only indirectly relates to the question at hand. On the
other hand, the advantages ofmodels included expeditious
forecasting, which improved scalability. Statistical models
dutifully forecasted on any number of questions and their
accuracy tends to improve as more data became available.
The key challenge for aggregation was that many fac-

tors related to human and model judgment were not
known a priori. For each particular forecasting problem,
the total number of human forecasts was not knowable
in advance. On any particular day the forecasting prob-
lem was available, a handful of human forecasts might be
produced but in some extreme cases, no human judgment
might be available for the entire duration of the forecast-
ing problem. In addition, at the start of the forecasting
project, it was not known what the relative accuracy is
of the model and human judgments for certain types of
forecasting problems. Every introduction of a new type
of forecasting problem injected new uncertainty about
the relative capabilities of human and model forecasting
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F IGURE 3 Schematic illustration of information presented to participants in each experimental condition.

accuracy. This cold-start problem made it challenging to
apply machine-learning approaches that can learn opti-
mal combinations of human and model judgment as large
quantities of human judgments were initially not avail-
able and yet accurate forecasts needed to be produced from
the start of the project. Therefore, the goal for aggregation
was to develop a robust framework for integrating human
and model judgment with the potential to scale to large
numbers of forecasting questions.
To combine the human forecasts, we employed a combi-

nation of tested methods and new strategies to maximize
performance. The aggregation of human-only forecasts
accounted for three factors: recency, individual skill, and
miscalibration. First, our algorithms diminished each fore-
casts’ value over time as new information accumulates.
To account for this recency effect, we kept only the most
recent 40%of forecasts for a question at any given time, and
further applied exponential decay to down-weight older
forecasts included in the aggregation. Second, we placed
higher weights on forecasters with better accuracy track
records, those who updated their forecasts in frequent,
small increments (Atanasov et al. 2020), and those who
wrote longer text rationales, with more sources and quan-
titative information. Finally, we recalibrated forecasts to
correct for the general tendency toward overconfidence by
individual forecasters, and underconfidence of aggregated
crowd judgments, especially when aggregated using the
mean. This was done by making forecasts by individual
forecasts less extreme, but aggregate-level forecasts more
extreme (closer to 0 or 100%). The overall effect was to
make final aggregate estimates slightly more extreme than
the equivalent estimates with no recalibration. The best-
performing slot used a variant of this aggregation model
which made (a) forecaster weights more unequal over
time, and (b) extremization parameters larger over time,
making season-end aggregated forecasts more extreme
than those at season-start.
Human forecasts were then combined with machine

model estimates. Each model forecast was also given
weights based on the historical performance of the model
that generated it. Our initial strategy for human–machine
aggregationwas to assessmachineweights relative to those

of crowd estimates (e.g., amodel estimatemay beweighted
1/4 as much as the crowd). The more advanced alternative
that was used in most slots in the last season (includ-
ing the best-performing slot), placed weights on model
forecasts equal to those of several average-skill individ-
ual human forecasters. Initial human–machine weights
were set based on backcasting analyses, and were allowed
to vary over time based on relative within-season perfor-
mance in some slots. As a consequence, the aggregate
forecast was heavily weighted toward when few human
forecasters had placed estimates on the question, when the
human forecasts were out of date, or when most active
human forecasters on the question were considered low-
skill. We also tested more sophisticated ensemble aggre-
gation methods, which used multiple machine models
as inputs as well as machine learning-based aggregation,
which included additional inputs such as the statistical
traits of the community forecast, linguistic features of the
IFPs and forecast justifications, and so forth. In a separate
paper, we present a neural machine translation aggrega-
tion method, which assigns anchor attention weights to
forecast–user–datetime combinations (Huang et al. 2020).
We report results from the best performing aggregation
method thatwas run in real time during the forecast season
below, which is based on the method described above.

Training

We sought to understand whether training could improve
predictive accuracy under conditions in which forecasters
had to balance trust in a model with their own judg-
ment. OurHABIT trainingmethod combined probabilistic
reasoning with hybridization concepts using a character-
based narrative device rendered in a cartoon format. Our
training was designed to extend previous vignette-based
methods, which focused on core tenets of probabilistic esti-
mation (Mellers et al. 2014), to teach about the machine
models involved in the hybridized ensembles and aggre-
gations and how to integrate model forecasts with one’s
personal knowledge. We hypothesized that the cognitive
burden of whether to integrate or reject machine model
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data could be mitigated by briefly explaining how each
model works and how to balance too little and too much
trust in models. We tested both whether or not mandating
training improved accuracy and whether the presentation
format, whether animated or static, led to gains.

Matching participants with forecasting
problems

The SAGE system aimed to optimize two seemingly con-
flicting objectives: (1) allow users choice of questions based
on their expertise and interests with (2) timely coverage of
all questions with limited human forecasters. We devel-
oped an IFP recommender system, which presented a
personalized ranking of the IFPs on the question page,
based on the specific characteristics of a forecaster. We
develop a recommender system based on the wide and
deep learningmodel (Cheng et al. 2016). Thismodel identi-
fies preferences using known IFP features, and generalizes
to other IFPs via IFP embeddings. As features, we took into
account the performance of the given forecaster on similar
past IFPs (based on an IFP semantic similarity model we
developed using BERT (Devlin et al. 2019)) and the user
activity on the other IFPs (based on a collaborative filtering
scheme). When designing the SAGE recommender sys-
tem, BERT proved to be the more accurate, most efficient
model because it captured the subtleties in the differences
between IFP texts. To gauge the similarity among IFP texts,
we used cosine similarity, a common distance metric used
in embedding spaces. We balanced individual with system
performance by also capping popular IFPs where consen-
sus was already reached, freeing up human resources to
forecast on other IFPs.

Data availability

SAGE platform data including machine model output and
experimental user forecasts, activity, and scores can be
found on the Harvard Dataverse (Morstatter 2021). Con-
trol user forecasts, question metadata, and resolutions can
be found on a separate Harvard Dataverse page (Hilliard
2020).

HFC BACKGROUND AND RULES

IARPA’s hybrid forecasting competition (IARPA 2017)
was a multiyear research program developed to test if
and how machine models could improve upon previous
crowd-sourced geopolitical forecasting tournaments
such as ACE (IARPA 2011). As stated in the program

announcement, “the goal of HFC was to integrate the
strengths of human cognitive and reasoning abilities with
those ofmachine-driven systems to producemaximally accu-
rate forecasts of geopolitical and economic events” (IARPA
2017). The evaluation of hybrid forecasting system was
conducted via randomized controlled trials (RCT-s). There
were two RCT-s during the lifetime of the HFC program.
Here we focus our analysis on the second evaluation,
referred to as RCT-B, which took place from April to
November 2019.
Like all forecasting tournaments, competitors must

abide by rules provided by the sponsor and test and
evaluation teams. Some rules governed how forecasting
questions were developed, to which datasets they were
linked, and how and when they would be resolved and
scored. Some rules governed the activities of the human
users including how they were recruited and assigned
to competitor teams. Other rules governed the develop-
ment andupkeep ofmachine-model components aswell as
how the machine models could be combined with human
forecasts and when responses must be submitted.

Individual forecasting problems

During RCT-B, forecasts were conducted on 398 questions,
broadly referred to as individual forecasting problem (IFP).
The questions covered a broad set of domains, such as poli-
tics and international relation, science, health and disease,
microeconomics and finance (see Hilliard for a detailed
description of different IFP types). New IFPs were pub-
lished on the same day eachweek. Each IFPwas associated
with 𝐶mutually exclusive and exhaustive outcome events,
where 2 ≤ C ≤ 5. Participants submitted their forecasts
for a given IFP by entering a probability for each out-
come, where the probabilities across all 𝐶 outcomes were
required to total 100%. All IFPs had a start date and an
end date during which participants could make forecasts
for that questions as often as they liked (see Figure 2 for
a screen capture). IFPs ranged from 2 weeks, to the full 8-
month season in duration. IFPs had a mean duration of
87.07 days (SD = 55.85). Two hundred and five IFPs had
only two response options, the remaining 193 had more
than two possible responses. Of these 193, 154were ordinal,
in that there was a meaningful ordering to the C events,
while the remaining 39 were nominal.

Participants

Human participants were recruited via Amazon Mechani-
cal Turk. CloudResearch filtered the participants to ensure
a high level of engagement both prior to the start of the
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forecasting season by only including users with longitudi-
nal study experience, and mid-season by removing users
with low quality responses by assessing the content of their
justifications (Moss 2022). The sample consisted of 547
participants, 229 women (42%), with a mean age of 36.68
(SD = 10.88). A forecasting session consisted of weekly
human intelligence tasks (HITs), where each forecaster
was required to make at least five forecasts. If possible,
three of these five were required to be updates of previ-
ous forecasts. For each completed HIT, Participants were
paid $20 per HIT. Participants were permitted to make
additional forecasts beyond these five but were not paid
for these additional forecasts. Participants were also eligi-
ble for accuracy awards if they participated enough. They
could earn a portion of a fixed prize pool at themidway and
final points. The pool was divided among three prize tiers
of $200, $100, or $50 for observed accuracy—as measured
with mean daily Brier (MDB) scores.

Machine models

A key component of the HFC was the requirement for
systems to produce model-based forecasts. In previous
comparisons of human andmodel forecasts, the latterwere
generated in a traditional fashion by analysts (e.g., Tet-
lock 2017). In contrast, model-based forecasts for the HFC
competition had to be generated by an automated system
with restrictions on manual interventions into the pro-
cess. Fixing system issues, that is, bugs and similar errors,
was allowed, butmanualmodel development like deciding
what data andmodel(s) to use for a question, tuningmodel
parameters, and so forth was not permitted. Some data
sources were introduced mid-season. Sometimes notice
about new data sources came only a couple hours prior to
the associated IFPs getting published for human responses.
Thus, performer teams were required to quickly produce
model forecasts to aid users, and there was insufficient
time to build specialized models tuned to specific datasets.

Response submissions

Each team was allotted 40 official and up to an addi-
tional 60 experimental slots for submitting forecasts on
each IFP. These slots allowed teams to test multiple theo-
retical ideas as well as fine-tuning the application of those
ideas, such as including inputs or tuning key parame-
ters in systematic ways. A total of 100 official slots were
locked prohibiting changes by performers, and 30 were
unlocked allowing for changing to key model param-
eters. The experimental slots encouraged testing more
novel, higher risk ideas. Performer teams were required

to submit one forecast per IFP per submission slot from
the day an IFP was originally published to the day it
resolved, either on its stated resolution date or due to an
event occurrence. For each slot, performer teams had to
develop aggregation algorithms that combined the various
machine and human inputs and IFP metadata for a single
probability forecast.

Scoring

The accuracy of submitted forecasts were measured using
Brier scores (Brier 1950), the squared distance of the fore-
cast from the result, coded as 1 if the event/quantity was
realized, and 0 otherwise. We use Brier scores to mea-
sure accuracy because they are specifically designed to
assess the accuracy of probabilistic information (unlike
other metrics, like F1). As a variation of squared-error,
Brier scores penalize more egregious errors more severely.
In addition to scoring accuracy, a Brier score is also
a proper scoring rule meaning it incentivizes respond-
ing honestly. Practically, the HFC test and evaluation
team chose Brier scores as their primary accuracy met-
ric. Using the same metric allowed us to efficiently track
our performance compared to control and the other HFC
competitors. Briers scores can be interpreted similarly as
mean squared error. A minimal baseline for accuracy is
to show improvement over an uninformed judge, who
assigns equal probabilities to all C bins (prob= 1/C), earns
a Brier score of (C−1)/C. Brier scores are also commonly
described as improvement over a known comparator.
Below we compare to control using Cohen’s d, a standard-
ized mean difference, and in some instances display the
percent improvement.
We used formulations of the Brier score based on

the number of response options and ordinality of the
IFP (Merkle and Hartman 2018). This Brier score variant
ranged from0 (perfect accuracy) to 2 (worst possible score).
The accuracy of each forecasting slot for a given IFP was
characterized by the mean daily Brier score (MDB), for
example, the Brier score averaged over the active days of
that IFP. Usually, the SAGE system submitted daily fore-
casts for each open IFP. If for whatever reason a forecast
was not submitted on any given day (e.g., system outage),
the last submitted forecast was carried forward. If a slot did
not submit any forecasts at all for a given IFP, a uniform
prior was used to calculate the score.
A similar approach was used to score individual fore-

casters. A forecast for a given user was carried forward
until that user chose to revise the forecast. If a forecaster
did not place an estimate on the first day of a question,
we imputed the median score across all forecasters
in a condition for each day an IFP was open prior to
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TABLE 1 The Brier scores of the best performing official and
experimental methods for both the SAGE and control platforms.

Condition Official Experimental
Best Performing control 0.3398 0.3325
Best Performing SAGE 0.3065 0.3052

the first forecast. A user’s score across IFPs was the
mean of MDBs or MMDB. To adjust for the difficulty
of individual IFPs and aid in interpreting comparisons
across conditions, we standardized Brier scores to have
a mean of zero and standard deviation of 1 for each
IFP-day.

RESULTS

Aggregate performance

First, we report our main result that compares the aggre-
gate performance of the SAGE system with the nonhybrid
control. As we mentioned above, each method was allo-
cated 40 official and 60 experimental slots for submitting
aggregated forecasts. Table 1 summarizes our results for
both official and experimental slots across 398 IFPs. The
best official SAGEmethod led to an improvement in mean
accuracy of a Cohen’s d of 0.126 over control.
SAGE’s best-perfoming aggregation slot had the fol-

lowing properties. First, it used both control and SAGE
human forecaster data as inputs. Second, it applied a time-
varying weighted mean human aggregation algorithm,
which made forecaster weights more unequal over time;
aggregate forecasters were de-extremized at the start of
the season and extremization parameter value increased
over time, resulting in light extremization by the end of
the season. Third, human and machine-model forecasts
were combined using a rule that produced a weight of
a machine model forecast as equivalent to eight average-
skill human forecasters on time-series questions, and four
average-skill human forecasters on other questions that
used less sophisticated models.
SAGE outperformed the control condition both for the

official and experimental slots. We ran backcasting anal-
yses to estimate the impact that different aspects of our
system, including SAGE forecasters, human aggregation,
and machine forecasts, contributed to SAGE outperform-
ing the best control method, a Brier score difference of
0.0333. Results showed that applying the SAGE human-
aggregation algorithm to control human forecasts would
have resulted in a Brier score advantage of 0.01, approx-
imately 31% of the full difference. In retrospect, the dis-
tinguishing feature of the best-performing human aggre-
gation model was that it extremized aggregate forecasts

TABLE 2 Number of unique forecasters and generated
forecasts in each experimental condition.

Condition Users Forecasts Forecasts/User
B 190 25,163 132.4
C 158 20,782 131.5
D 199 27,348 137.4
Total (SAGE) 547 73,293 134.0
A (control) 538 79,611 148.0

TABLE 3 Comparison of standardized (at IFP level) Brier
scores across conditions including mean, median, and 25%
percentile for each.

Condition Mean Std. dev. 25th percentile Median
A (Control) −0.021 0.958 −0.486 −0.259
B (Data) 0.051 0.987 −0.472 −0.156
C (Models) 0.039 1.143 −0.537 −0.198
D (Interactive) 0.002 0.989 −0.508 −0.196

Bolded values represent the lowest (most accurate) score within each column.

less, especially at the start of the season. Applying this
human-aggregation algorithm to the combination of con-
trol and SAGE human forecasts resulted in a Brier score
advantage for SAGE of 0.032, approximately 97% of the
full difference. The further addition of machine models
at the aggregation stage rounded up the full 100% advan-
tage. For more details on the accuracy benefits of machine
models at the user interface versus aggregation stage
(see Section 5.4).

Individual performance across conditions

We analyzed user performance in the various conditions
across the 398 resolved questions. Table 2 lists the volume
of users and forecasts in each condition.
Since some questions were relatively easy and highly

predictable and others were more difficult, we expected
them to yield (possibly, very) different Brier scores. Thus,
whenever comparing, or aggregating, Brier scores across
multiple items, it was important to adjust for inherent
imbalance in difficulty. Our approach to this problem was
to standardize the Brier scores for every question to have a
mean of 0 and a SD of 1, across all the responses in all con-
ditions, before combining them. Thus, we report results
in terms of mean, median, and 25th percentile standard-
ized Brier scores. The lower (and more negative) a score
is, the more accurate it is. The results of all conditions are
presented in Table 3.
Our results indicated that users in conditions C and D

outperform those in condition B, but only the most skilled
forecasters outperformed the control (no data) condition.
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We confirmed the hypothesis that having access to model
predictions indeed helps skilled, but not average, forecast-
ers. The greatest improvement came when data charts
were available, and skilled forecasters viewed model
predictions, zBrier = −0.618 versus −0.545 for control.
Note that the availability of more models and interactive
features, provided in condition D, did not necessarily
help with performance. Indeed, while condition D had a
better mean score across all the questions, users in this
condition did not perform well on questions where data
charts were available. This suggests that the availability
of multiple models and/or interactive features do not
help the users to generate more accurate forecasts. In
fact, users used the various options available to them
very rarely.
Here we present overall performance of our system

and experimental conditions. For an analysis of individ-
ual conditions, see Himmelstein, Atanasov, and Budescu
(2021). We only find consistent differences by major IFP
format, but not by traits like topic area, region, or ques-
tion duration. Our model was most accurate for binary
questions, zBrier = −0.107 (SD = 1.10), and least accu-
rate for nonordinal IFPs, zBrier = 0.180 (SD = 0.97). As
discussed in Section 3.5, we did include certain IFP and
linguistic traits when testing more complex aggregation
methods, but in most instances, they underperformed our
interpretable aggregation methods except in the anchor
attention model (Huang et al. 2020).

Model-based forecasts

We also analyzed the performance of the machine models
outlined in Section 3.3. Overall, simple ensemble mod-
els worked well. The best performing model (“PHE2”)
was an ensemble that averaged the forecasts from Auto
ARIMA and an exponential smoothing state-space model
(ETS) (Hyndman and Athanasopoulos 2018). It slightly
outperformed the M4-Meta model Montero-Manso et al.
(2020) that ranked 2nd highest in the M4 time series
forecasting competition, and clearly outperformed more
complex methods like a recurrent neural network and
custom-coded regularized auto-regressivemodel. Even the
auto ARIMA model itself did reasonably well through-
out. From a practical standpoint, the simpler ensembles
were computationally less expensive, had fewer software
dependencies, and were less likely to break.
Model forecasts relative to the human forecasts were

overall near or at parity with human forecasts. Figure 4
shows the distributions of mean daily Brier scores for
the auto ARIMA and PHE2 models, as well as a sim-
ple average of human forecasts and the best-performing
aggregation model of human forecasters from condition

F IGURE 4 Relative performance of two model-based forecasts
compared to average human performance and the best human
forecast-only aggregation model. Auto ARIMA was a mainstay
model throughout; PHE2 emerged later as a top performer. This
figure includes performance on 153 IFPs for which all models had
forecasts. Red points mark IFPs with known quality issues that were
retained for the sake of coverage. IFP, individual forecasting
problem.

B, which were not exposed to machine model predictions.
Both models outperformed the average human forecast
but lagged slightly behind the best aggregation model of
human-only forecasts. In part, this is because they had a
small number of very bad forecasts. Some of these were
caused by IFPs with known data quality issues, which
tended to lead to extreme forecasts with either very low
or very high Brier scores. Some of these—the more eas-
ily identifiable ones—are marked with the red points.
Last, despite similar average performance, the model and
human forecasts did well or poorly on different questions.
For example, the interquestion correlation of performance
for the PHE2 and aggregation benchmark models was
only 0.3.
After enough IFP results were observed, we developed a

meta-model for the relative performance of the time-series
model and human forecasts. Overall, there were no clear
bivariate ormultivariate relationships between a large vari-
ety of question and data features and the relative model
to human forecast performance, which for example could
have led us to identify a subset of IFPs in which one consis-
tently outperformed the other. However, towards the end
of our experiment, enough performance data had accu-
mulated so that a random forest model trying to identify
forecasts that were clearly worse than a uniform fore-
cast, or forecasts that can beat the aggregation benchmark,
achieved slightly informative accuracy levels, with out-of-
sample AUC–ROC values of 0.69 and 0.60, respectively.
This may have been sufficient to implement a filter for
likely bad forecasts, if the experiment continued.
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Using machine models for scalable
forecasting

We analyzed aggregate performance on the IFPs for which
our strongest machine model was available, a discrete-
cosine transform (DCT) ensemble. We found incorporat-
ing machine models during aggregation led to improve-
ments at several stages, which accounted for our team’s
overall advantage. Although these accuracy gains were
consistent throughout the competition, effects at indi-
vidual stages were modest and none were statistically
significant on their own. The results showed that provid-
ing forecasters access to model projections led to modest
improvements in aggregate accuracy. Forecasters who
could view model forecasts before making their estimates
produced aggregate forecasts with 6% better Brier scores,
compared to aggregations of forecasters with no access to
model projections. Injecting model estimates at the aggre-
gation stage also led to small improvements in accuracy
(i.e., reductions in Brier score) of 2%–3% points.
The benefits of including model forecasts in the aggre-

gate became more salient when considering the issue of
scale. Scaling up the number of questions in a human-
only pool means fewer human forecasts for each question,
which is expected to degrade aggregate performance. To
simulate this effect, we made human forecasts sparser by
deleting a random subset of users from the aggregate. The
results demonstrated that including model forecasts insu-
lated the aggregate forecast against the negative effects of
sparse human judgments that would occur when scaling
to large numbers of questions (see Figure 5).

Impact of training

Participants were randomly assigned to either a brief
(about 30 min) training or a control condition in which
they read popular articles about forecasting, but without
tips for boosting accuracy. Training occurred once, during
their second active week, and was accessible for review
on the platform menu. We assessed accuracy and activity
to see if trained forecasters worked harder than untrained
users. We first compared forecast accuracy before and
after training exposure to ensure that trained forecast-
ers were not randomly better from the start. We found
trained forecasters outperformed control forecasters post-
exposure (d= 0.56). We further assessed whether accuracy
could be improved via the delivery method of the training
material. Forecasters who saw animated material signifi-
cantly outperformed forecasters who saw static material
in average accuracy (t(410) = 3.55, p < .001), generated
slightly more forecasts per IFP than the static group, (d =
0.20, t(342)= 1.98, p= .049), and attempted approximately

F IGURE 5 Average aggregate performance (Brier score) as a
function of the proportion of human forecasts removed from the
forecasting pool (Sparsity). Higher Brier scores correspond to worse
aggregate accuracy. Each point corresponds to aggregate
performance for a random subset of censored forecasts. The line
plots the linear regression of these points and the shaded region is
the 95% confidence interval based on N = 20 simulations.

5% more IFPs than static-trained counterparts, a signifi-
cant difference (d = 0.23, t(342) = 1.98, p = .018). More
details can be found in Joseph and Atanasov (2019).

IFP recommendation

We measured the performance benefit of users assigned
to questions ordered using the IFP recommender system,
described in Section 3.7, versus the global ranking based
on resolution date and popularity (SWIFT ordering). As
shown in Figure 6, we obtained a statistically significant
improvement, up to a 7% relative decrease in Brier score
by the end of the experimental phase.
We further assessed the IFP recommender system in

terms of effective resource allocation by simulating differ-
ent allocation strategies. First, since we could not foresee
who the best performers would be before the phase ends,
we implemented a greedy approach to improve our cohort
of users by periodically excluding a certain percentage of
worst performers every time a batch of IFP closed (i.e.,
got resolved) (termed GreedyIFP). Second, we addition-
ally capped the number of forecasts on popular IFPs to
reallocate forecasts of diminishing return after consensus
was reached. We compared these methods using simple
averaging of the human forecasts, omitting our aggregation
algorithms and machine forecasts, to control for effects
beyond resource allocation (termed GreedyIFP++). As
shown in Table 4, both greedy strategies obtained a small
improvement in the global Brier score, while reducing
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F IGURE 6 The IFP recommender system learns over time the
skills and preferences of each forecaster. After 2 months into the
experiment, the forecasters who received the recommendations
start to consistently outperform the forecasters in the control
condition (SWIFT), with a relative improvement that stabilizes
around 7%. IFP, individual forecasting problem.

TABLE 4 Brier score of different IFP recommender systems.
All results are averaged over 10 runs.

Method Brier score Budget (% of forecasts)
All forecasts 0.397 100
Random forecasts 0.402 62
GreedyIFP 0.376 61.4
GreedyIFP++ 0.375 37.8

the forecasting budget, respectively, by 38 and 62%. In
contrast, we showed naively decreasing the number of
forecasts (“Random forecasts”) negatively affected the
global Brier Score.

DISCUSSION

In the above, we show how a hybrid forecasting system
can outperform established crowd-sourced forecasting sys-
tems. The SAGE hybrid system consistently outperforms
the human-only control condition. Our hybrid system
improves the accuracy in the aggregate, although improve-
ments were modest. Beyond the proven methods for
aggregating human forecasts (Atanasov et al. 2017), we find
the inclusion of machine models in the user interface and
the aggregation algorithms was key to improving accuracy.
Individually, access to model predictions only improves
the accuracy of highly skilled forecasters. While this is
evidence of their value, it provides further evidence that
forecasters must have enough expertise to knowwhen and
how to use this information (Abeliuk et al. 2020). Predict-
ing the future is difficult, especially for deeply uncertain,
impactful geopolitical events. Humans and machines are
both limited by the irreducible uncertainty of the setting.

Combining human andmachine predictions leads to gains
in accuracy by helping protect against some of the most
egregious errors, especially when the two sources disagree.
In addition to better forecasting accuracy, another criti-

cal advantage of SAGE over crowdsourcing-based systems
is its scalability. We find evidence that the SAGE hybrid
system helps answer more questions with the same num-
ber of human users without losing accuracy, although the
scope of these improvements remains an open hypothesis.
Adaptive question-user assignment increases the ability
to scale by limiting the number of users who can access
each IFP once consensus is achieved. Our recommender
system succeeds based on three primary features. First, it
provides a unique question ranking for each user based
on the IFPs they previously chose to answer. Second, it
excludes users who tend to forecast early and perform
poorly. Third, it identifies an optimized number of users
per IFP and capped each IFP that exceeded thatmaximum,
thus shifting forecasts from popular to unpopular IFPs and
increasing the utility of post-consensus forecasts.
Our results are subject to a number limitations, most

of which are a function of participating in a forecasting
tournament managed by a third-party test and evalua-
tion team. Notably, our machine models needed to be
robust and flexible since new datasets and question for-
mats were regularly published unannounced. Our system
was successfully able to ingest large amounts of, often
unformatted, data in the window between question pub-
lication and user recruitment—often just a few hours.
Thus, our results might not generalize to more stable sit-
uations with highly developed models tuned to a specific
environment or dataset.
We highlight two keys lessons about the model contri-

bution to the “hybrid” system. First, aim for depth, not
breadth. Our initial strategy, in the spirit of the hybrid
part of the competition, was to try to cover as many IFPs
as possible. This led to several decisions to use marginal
or noncanonical data. The quality issues tended to lead
to extreme forecasts that sometimes were really good
(achieved a low Brier score), but more often were really
bad and thus reduced average quality. A better strategy
would have been to focus on a smaller subset of ques-
tions where good performance can be achieved, and spend
more time on quality control rather than coverage. Better
average quality also simplifies downstreamuse of forecasts
in aggregation.
Second, data is king (or more familiarly, “garbage in,

garbage out”). Themain cause of poormodel forecasts was
data quality issues. Some sources, like the OECD Organ-
isation for Economic Co-operation and Development
(2022) and OPEC Organization of the Petroleum Export-
ing Countries (2022), alter historic data values when
updating. There were also many questions that required
data transformations or had marginal data ill-suited for
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time series. For example, count series based on trans-
formed ACLED event data (Armed Conflict Location
and Event Data 2022) were plagued by inaccuracies due
to idiosyncratic technical issues in the data platform
back-end. Unlike errors at the modeling stage, these kinds
of data problems usually were hard to identify without
labor-intensive manual reconstruction of a series from its
source. Selecting good-enough time series models, which
had been the focus of our efforts in the beginning, in the
end turned to be easier than these two issues.
Similarly, the success of our simpler, interpretable aggre-

gation methods is most likely due to model training. The
greater complexity of the aggregation method, the more
training data it required. Complex aggregation methods
suffered from training during burn-in due to limitations in
the number of IFPs that resolved earlier in the season and
variability between sources in format, frequency, and avail-
ability of data. Such methods suffered more inefficiency
due to retraining mid-season due to the requirement
that our system be able to handle newly introduced data
sources on the fly. In complex settings, simpler, traditional
statisticalmethods often outperformnovel, complexmeth-
ods (Makridakis, Spiliotis, and Assimakopoulos 2018).
Research on forecast combinations supports the success
of simple conservative methods (Armstrong, Green, and
Graefe 2015).
The recruitment of human forecasters for such long-

term engagement is also innately challenging. Recruit-
mentwasmanaged by a third party according toHFC rules.
This system prioritized retention over accuracy incentives,
and HFC rules limited our ability to add performance-
based incentives beyond those offered by the recruitment
team. Changing the retention-accuracy incentive balance
is likely to alter the quality of human performance.
In conclusion, gains from hybridizing are consistent,

but modest in this setting. The SAGE system’s success
relies on both computer-in-the-loop hybridization includ-
ing the information (historical data and model predic-
tions) shown to users and mandated narrative graphi-
cal training, as well as human-in-the-loop hybridization
including human inputs into the aggregation algorithms
and strategic user-IFP assignment, to name a few. It is
important to engineer such a complex system to opti-
mize the interactions between each component, since
each improves accuracy slightly. The optimal system must
balance several tradeoffs, like using models that are no
more complex than the tuning parameters that can be
confidently estimated, and anchoring users on objec-
tive, data-driven benchmarks while eliciting the diversity
required for crowd wisdom. The real advantage is not
boundless improvements in accuracy. Instead it is the
ability to tackle a greater burden without needing to
increase human resources. When human-question bal-
ance is sparse, it is important to view users as a labor

pool and use adaptive question assignment to maximize
human coverage.

ACKNOWLEDGMENTS
The authors would like to thank Seth Goldstein, Peter
Haglich, Rob Hartman, Daniel Horn, and Steven Rieber
for their helpful feedback during the HFC program. This
research is based uponwork supported in part by theOffice
of the Director of National Intelligence (ODNI), Intelli-
gence Advanced Research Projects Activity (IARPA), via
2017-17071900005. The views and conclusions contained
herein are those of the authors and should not be inter-
preted as necessarily representing the official policies,
either expressed or implied, of ODNI, IARPA, or the U.S.
Government. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

CONFL ICT OF INTEREST STATEMENT
The authors declare that there is no conflict.

ORCID
AramGalstyan https://orcid.org/0000-0003-4215-0886

ENDNOTE
1Behavioral decision making researchers have repeatedly docu-
mented a pattern of “Algorithm Aversion (AA for short)” (e.g., Bur-
ton, Stein, and Jensen 2020; Dietvorst, Simmons, and Massey
2015))—the tendency of humans to prefer and value advice and
information from human sources over machine counterparts, even
when the information provided by humans and algorithms is iden-
tical (e.g., Dietvorst, Simmons, and Massey 2015; Önkal et al. 2009).
In general, judges tend to be less tolerant of errors made by algo-
rithms, compared to humans (e.g., Dietvorst, Simmons, andMassey
2015; Prahl and Swol 2017). One way to reduce AA is to allow people
to have more control over the algorithm by tweaking it, or some of
its predictions (Dietvorst, Simmons, andMassey 2018). Condition D
was implemented to test this expectation.
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