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ABSTRACT
As predictive models increasingly assist human experts (e.g., doc-

tors) in day-to-day decision making, it is crucial for experts to be

able to explore and understand how such models behave in differ-

ent feature subspaces in order to know if and when to trust them.

To this end, we propose Model Understanding through Subspace
Explanations (MUSE), a novel model agnostic framework which

facilitates understanding of a given black box model by explaining

how it behaves in subspaces characterized by certain features of

interest. Our framework provides end users (e.g., doctors) with the

flexibility of customizing the model explanations by allowing them

to input the features of interest. The construction of explanations is

guided by a novel objective function that we propose to simultane-

ously optimize for fidelity to the original model, unambiguity and

interpretability of the explanation. More specifically, our objective

allows us to learn, with optimality guarantees, a small number of

compact decision sets each of which captures the behavior of a given
black box model in unambiguous, well-defined regions of the fea-

ture space. Experimental evaluation with real-world datasets and

user studies demonstrate that our approach can generate customiz-

able, highly compact, easy-to-understand, yet accurate explanations

of various kinds of predictive models compared to state-of-the-art

baselines.
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1 INTRODUCTION
The successful adoption of predictive models for real world decision

making hinges on how much decision makers (e.g., doctors, judges)

can understand and trust their functionality. Only if decisionmakers

have a clear understanding of the behavior of predictive models,

they can evaluate when and how much to depend on these models,

detect potential biases in them, and develop strategies for further

model refinement. However, the increasing complexity and the

proprietary nature of predictive models employed today is making

this problem harder [9], thus, emphasizing the need for tools which

can explain these complex black boxes in a faithful and interpretable

manner.

Prior research on explaining black box models can be catego-

rized as: 1) Local explanations, which focus on explaining individual
predictions of a given black box classifier [4, 9, 10] and 2) Global
explanations, which focus on explaining model behavior as a whole,

often by summarizing complex models using simpler, more inter-

pretable approximations such as decision sets or lists [5, 7]. In this

paper, we focus on a new form of explanation that is designed to

help end users (e.g., decision makers such as judges, doctors) gain

deeper understanding of model behavior: a differential explanation
that describes how the model logic varies across different subspaces

of interest in a faithful and interpretable fashion. To illustrate, let us

consider a scenario where a doctor is trying to understand a model

which predicts if a given patient has depression or not. The doctor

might be keen on understanding how the model makes predictions

for different patient subgroups (See Figure 1 left). Furthermore,

she might be interested in asking questions such as "how does

the model make predictions on patient subgroups associated with

different values of exercise and smoking?" and might like to see

explanations customized to her interest (See Figure 1 right). The

problem of constructing such explanations has not been studied by

previous research aimed at understanding black box models.

Here, we propose a novel framework, Model Understanding
through Subspace Explanations (MUSE), which constructs global
explanations of black box classifiers which highlight their behav-

ior in subspaces characterized by features of user interest. To the

best of our knowledge, this is the first work to study the notion of

incorporating user input when generating explanations of black

box classifiers while successfully trading off notions of fidelity, un-

ambiguity and interpretability. Our framework takes as input a

dataset of instances with semantically meaningful or interpretable

features (e.g. age, gender), and the corresponding class labels as-

signed by the black box model. It also accepts as an optional input

a set of features that are of interest to the end user in order to
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Figure 1: Explanations generated by our framework MUSE to describe the behavior of a 3-level neural network trained on
depression dataset. MUSE generates explanation of the model without user input (left). It automatically selects features for
defining subspaces by optimizing for fidelity, unambiguity, and interpretability. MUSE generates customized explanations
based on the features of interest input by the end user - exercise and smoking (right).

generate explanations tailored to user preferences. Our framework

then maps these inputs to a customized, faithful, and interpretable

explanation which succinctly summarizes the behavior of the given

model. We employ a two-level decision set representation, where

the if-then clauses at the outer level describe the subspaces, and

the inner if-then clauses explain the decision logic employed by the

black box model within the corresponding subspace (See Figure 1

left). The two-level structure which decouples the descriptions of

subspaces from the decision logic of the model naturally allows for

incorporating user input when generating explanations. In order

to construct an explanation based on the above representation, we

formulate a novel objective function which can jointly reason about

various relevant considerations: fidelity to the original model (i.e.,

mimicking the original model in terms of assigning class labels

to instances), unambiguity in describing the model logic used to

assign labels to instances, and interpretability by favoring lower

complexity (i.e., fewer rules and predicates etc.). While exactly op-

timizing our objective is an NP-hard problem, we prove that our

optimization problem is a non-normal, non-monotone submodular

function with matroid constraints which allows for provably near

optimal solutions.

We evaluated the fidelity and interpretability of the explanations

generated by our approach on three real world datasets: judicial

bail decisions, high school graduation outcomes, and depression

diagnosis. Experimental results indicate that our approach can gen-

erate much less complex and high fidelity explanations of various

kinds of black box models compared to state-of-the-art baselines.

We also carried out user studies in which we asked human subjects

to reason about a black boxmodel’s behavior using the explanations

generated by our approach and other state-of-the-art baselines. Re-

sults of this study demonstrate that our approach allows humans

to accurately and quickly reason about the behavior of complex

predictive models.

2 RELATEDWORK
Explaining Model Behavior: One approach for interpretability

is learning predictive models which are human understandable

(e.g., decision trees [11], decision lists [7], decision sets [5], linear

models, generalized additive models [8]). Recent research focused

on explaining individual predictions of black box classifiers [4, 9].

Ribeiro et. al.,’s approach of approximating global behavior of black

box models through a collection of locally linear models create

ambiguity as it does not clearly specify which local model applies

to what part of the feature space. Global explanations can also be

generated by approximating the predictions of black box models

with interpretable models such as decision sets, decision trees. How-

ever, the resulting explanations are not suitable to answer deeper

questions about model behavior (e.g., ’how the model logic differs

across patient subgroups associated with various values of exercise

and smoking?’). Furthermore, existing frameworks do not jointly

optimize for fidelity, unambiguity, and interpretability.

Visualizing and Understanding Specific Models: The problem
of visualizing how certain classes of models such as deep neural

networks are making predictions has attracted a lot of attention in

the recent past [14, 15]. Zintgraf et. al. [15] focused on visualizing

how a deep neural network responds to a given input. Shrikumar

et. al. [12] proposed an approach to determine the important fea-

tures of deep neural networks. Furthermore, there exist tools and

frameworks to visualize the functionality of different classes of

models such as decision trees [13], SVMs etc. [2]. However, unlike

our framework, these approaches are tailored to a particular class

of models and do not generalize to any black box model.

3 OUR FRAMEWORK
Here, we describe our framework, Model Understanding through

Subspace Explanations (MUSE), which is designed to address the

problem of explaining black box models while highlighting their

behavior w.r.t. specific subspaces of interest. As part of this dis-

cussion, we examine how to: (1) design a representation which



enables us to not only construct faithful, unambiguous, and inter-

pretable explanations but also readily incorporate user input for

customization, (2) quantify the notions of fidelity, unambiguity,

and interpretability in the context of the representation we choose,

(3) formulate an optimization problem which effectively trade-offs

fidelity, unambiguity, and interpretability, (4) solve the optimization

problem efficiently, and (5) customize explanations based on user

preferences (See Figure 2 for a sketch of MUSE workflow).

3.1 Our Representation: Two Level Decision
Sets

The most important criterion for choosing a representation is that it

should be understandable to decision makers who are not experts in

machine learning, readily approximate complex black box models,

and allow us to incorporate human input when generating explana-

tions. We choose two level decision sets as our representation. The

basic building block of this structure is a decision set, which is a set

of if-then rules that are unordered. The two level decision set can

be regarded as a set of multiple decision sets, each of which is em-

bedded within an outer if-then structure, such that the inner if-then

rules represent the decision logic employed by the black box model

while labeling instances within the subspace characterized by the

conditions in the outer if-then clauses. Consequently, we refer to

the conditions in the outer if-then rules as subspace descriptors and
the inner if-then rules as decision logic rules (See Figure 1). This two
level nested if-then structure allows us to clearly specify how the

model behaves in which part of the feature space. Furthermore, the

decoupling of the subspace descriptors and the decision logic rules

allows us to readily incorporate user input and describe subspaces

that are of interest to the user in a compact fashion.

Definition 1. A two level decision setR is a set of rules {(q1, s1, c1),
(q2, s2, c2) · · · (qM , sM , cM )} where qi and si are conjunctions of

predicates of the form (f eature,operator ,value) (eg., aдe ≥ 50)

and ci is a class label. qi corresponds to the subspace descriptor

and (si , ci ) together represent the inner if-then rules (decision logic

rules) with si denoting the condition and ci denoting the class label
(See Figure 1). A two level decision set assigns a label to an instance

x as follows: if x satisfies exactly one of the rules i i.e., x satisfies

qi ∧si , then its label is the corresponding class label ci . If x satisfies

none of the rules in R, then its label is assigned using a default

function and if x satisfies more than one rule in R then its label is

assigned using a tie-breaking function.

In our experiments, we employ a default function which com-

putes the majority class label (assigned by the black box model)

of all the instances in the training data which do not satisfy any

rule in R and assigns them to this majority label. For each instance

which is assigned to more than one rule in R, we break ties by

choosing the rule which has a higher agreement rate with the black

box model. Other forms of default and tie-breaking functions can

be easily incorporated into our framework.

3.2 Quantifying Fidelity, Unambiguity, and
Interpretability

Tomeaningfully describe the behavior of a given black box model, it

is important to construct an explanation that is not only faithful to

the original model but also unambiguous and interpretable. Below

we explore each of these desiderata in detail and discuss how to

quantify them w.r.t a two level decision set explanation R withM
rules (See Definition 1), a black box model B, and a dataset D =
{x1,x2 · · ·xN } where x i captures the feature values of instance
i . We treat the black box model B as a function which takes an

instance x ∈ D as input and returns a class label.

Fidelity: A high fidelity explanation should faithfully mimic the

behavior of the black box model. While different notions of fidelity

can be defined, our metric of choice quantifies the disagreement

between the labels assigned by the explanation and the labels as-

signed by the black box model. We define disagreement(R) as the
number of instances for which the label assigned by the black box

model B does not match the label c assigned by the explanation R
(Table 1).

Unambiguity: An unambiguous explanation should provide

unique deterministic rationales for describing how the black box

model behaves in various parts of the feature space. To quantify

this notion, we introduce two metrics: 1) ruleoverlap(R) which
captures the number of additional rationales (beyond 1) provided

by the explanation R for each instance in the data. Higher the value

of this metric, higher the ambiguity of the explanation (Table 1).

2) cover(R) which captures the number of instances in the data

that satisfy some rule in R. Our goal here would be to minimize

ruleoverlap(R) and maximize cover(R). These two notions to-

gether ensure that the explanation we generate describes as much

of the feature space as unambiguously as possible (Table 1).

Interpretability: Interpretability metric quantifies how easy it

is to understand and reason about the explanation.While we choose

an interpretable representation (e.g., two level decision sets), how

interpretable the explanation is depends on its complexity (For

example, a decisions set with many rules and high depth would not

be interpretable for a user).

We quantify the interpretability of explanation R using the fol-

lowing metrics (Table 1): size(R) is the number of rules (triples of

the form (q, s, c)) in the two level decision set R.maxwidth(R) is
the maximum width computed over all the elements in R, where
each element is either a condition of some decision logic rule s or a
subspace descriptor q, andwidth(s) is the number of predicates in

the condition s . Similarly,width(q) is defined as the total number

of predicates of the subspace descriptor q. numpreds(R) counts
the number of predicates in R including those appearing in both

the decision logic rules and subspace descriptors. Note that the

predicates of subspace descriptors are counted multiple times as a

subspace descriptor q could potentially appear alongside multiple

decision logic rules. numdsets(R) counts the number of unique

subspace descriptors (outer if-then clauses) in R.
In a two-level decision set, subspace descriptors and decision

logic rules have different semantic meanings i.e., each subspace

descriptor characterizes a specific region of the feature space, and

the corresponding inner if-then rules specify the decision logic of

the black box model within that region. To make the distinction

more clear, we minimize the overlap between the features that

appear in subspace descriptors and those that appear in decision

logic rules. To quantify this, we compute for each pair of subspace

descriptor q and decision logic rule s , the number of features that



Figure 2: Algorithmic flow of MUSE approach: MUSE takes data, black box model predictions and user’s features of interest.
It outputs customized explanations.

Table 1: Metrics used in the Optimization Problem

Fidelity disaдreement (R) =
M∑
i=1

|{x | x ∈ D, x satisfies qi ∧ si ,

B(x ) , ci }|

Unambiguity

ruleover lap(R) =
M∑
i=1

M∑
j=1,i,j

over lap(qi ∧ si , qj ∧ sj )

cover (R) = |{x | x ∈ D, x satisfies qi ∧ si where i ∈ {1 · · ·M }}|

Interpretability

size (R): number of rules (triples of the form (q, s, c )) in R

maxwidth(R) = max

e∈
M⋃
i=1

(qi∪si )

width(e )

numpreds (R) =
M∑
i=1

width(si ) +width(qi )

numdsets (R) = |dset (R)| where dset (R) =
M⋃
i=1

qi

f eatureover lap(R) = ∑
q∈dset (R)

M∑
i=1

f eatureover lap(q, si )

Algorithm 1: Optimization Procedure [6]

1: Input: Objective f , domain ND×DL× C, parameter δ , number of constraints

k
2: V1 = ND × DL × C
3: for i ∈ {1, 2 · · · k + 1} do ▷ Approximation local search procedure

4: X = Vi ; n = |X |; Si = ∅
5: Let v be the element with the maximum value for f and set Si = v
6: while there exists a delete/update operation which increases the value of Si

by a factor of at least (1 + δ
n4

) do

7: Delete Operation: If e ∈ Si such that f (Si \{e }) ≥ (1+ δ
n4

)f (Si ), then
Si = Si \e

8:

9: Exchange Operation If d ∈ X \Si and ej ∈ Si (for 1 ≤ j ≤ k ) such
that

10: (Si \ej ) ∪ {d } (for 1 ≤ j ≤ k ) satisfies all the k constraints and

11: f (Si \{e1, e2 · · · ek } ∪ {d }) ≥ (1 + δ
n4

)f (Si ), then Si =

Si \{e1, e2, · · · ek } ∪ {d }
12: end while
13: Vi+1 = Vi \Si
14: end for
15: return the solution corresponding to max{f (S1), f (S2), · · · f (Sk+1)}

occur in both q and s (f eatureoverlap(q, s)) and then sum up these

counts. The resulting sum is denoted as featureoverlap(R).

3.3 Optimization
3.3.1 Objective Function. We formulate an objective function that

can jointly optimize for fidelity to the original model, unambiguity

and interpretability of the explanation. We assume that we are

given as inputs a dataset D, labels assigned to instances in D by

black box model B, a set of possible class labels C, a candidate set
of conjunctions of predicates (Eg., Age ≥ 50 and Gender = Female)

ND from which we can pick the subspace descriptors, and another

candidate set of conjunctions of predicates DL from which we

can choose the decision logic rules. In practice, a frequent itemset

mining algorithm such as apriori [1] can be used to generate the

candidate sets of conjunctions of predicates. If the user does not

provide any input, both ND and DL are assigned to the same

candidate set generated by apriori.

To facilitate theoretical analysis, the metrics defined in Table 1

are expressed in the objective function either as non-negative re-

ward functions or constraints. To construct non-negative reward

functions, penalty terms (metrics in Table 1) are subtracted from

their corresponding upper bound values (Pmax , Omax , O′
max ,

Fmax ) which are computed with respect to the sets ND and DL.

f1(R) = Pmax − numpreds(R), where Pmax = 2 ∗ Wmax ∗ |ND | ∗ |DL |
f2(R) = Omax − f eatureover lap(R), where Omax =Wmax ∗ |ND | ∗ |DL |

f3(R) = O′
max − ruleover lap(R), where O′

max = N × (|ND | ∗ |DL |)2

f4(R) = cover (R)
f5(R) = Fmax − disaдreement (R), where Fmax = N × |ND | ∗ |DL |

whereWmax is the maximum width of any rule in either candi-

date sets. The resulting optimization problem is:

R⊆ND×DL×C

5∑
i=1

λi fi (R) (1)

s.t. size(R) ≤ ϵ1 ,maxwidth(R) ≤ ϵ2 , numdsets(R) ≤ ϵ3

λ1 · · · λ5 are non-negative weights which manage the relative

influence of the terms in the objective. These can be specified by an

end user or can be set using cross validation (details in experiments

section). The values of ϵ1, ϵ2, ϵ3 are application dependent and need

to be set by an end user.

Theorem 1. The objective function in Eqn. 1 is non-normal, non-
negative, non-monotone, submodular and the constraints of the opti-
mization problem are matroids.

Proof. See Appendix. □



3.3.2 Optimization Procedure. While exactly solving the optimiza-

tion problem in Eqn. 1 is NP-Hard [3], the specific properties of the

problem: non-monotonicity, submodularity, non-normality, non-

negativity and the accompanying matroid constraints allow for ap-

plying algorithms with provable optimality guarantees. We employ

an optimization procedure based on approximate local search [6]

which provides the best known theoretical guarantees for this class

of problems. The pseudocode for the optimization procedure is

shown in Algorithm 1 (more details in Appendix). This procedure

provides an optimality guarantee of
1

k+2+1/k+δ where k is the num-

ber of constraints and δ > 0. In the case of our problem with 3

constraints, this factor boils down to ∼ 1/5 approximation.

3.3.3 Incorporating User Input. A distinguishing characteristic of

our framework is being able to incorporate user feedback to cus-

tomize explanations. As Figure 1 demonstrates, customizing the

explanation based on features of interest, namely exercise and smok-

ing (Figure 1 right) makes it easier to understand how model logic

varies for different values of these features. When a user inputs a

set of features that are of interest to him, we simply restrict the

candidate set of predicates ND from which subspace descriptors

are chosen (See Objective Function) to comprise only of those pred-

icates with features that are of interest to the user. This will ensure

that the subspaces in the resulting explanations are characterized by

the features of interest. Furthermore, themetric featureoverlap(R)
and the term f2(R) of our objective function ensure that the features
that appear in subspace descriptors do not appear in the decision

logic rules there by creating a clear demarcation.

4 EXPERIMENTAL EVALUATION
We begin this section by comparing our approach with state-of-the-

art baselines on real-world datasets w.r.t the fidelity vs. interpretabil-

ity trade-offs and unambiguity of the generated explanations. We

then discuss the results of a user study that we carried out to evalu-

ate how easy it is for humans to reason about the behavior of black

box models using the explanations generated by our framework.

DatasetsWeevaluate our framework on the following real world

datasets: 1) A dataset of bail outcomes collected from various U.S.

courts during 1990-2009 [5] comprising of demographic information

and details of past criminal records for about 86K defendants. Each

defendant is assigned a class label based onwhether he/she has been

released on bail or locked up. 2) A dataset of about 21K high school

student performance [5] records collected from a school district

between 2012-2013 with various details such as grades, absence

rates, suspension history. The class label of each student indicates if

he/she graduated high school on time, dropped out, or encountered

a delay in graduation. 3) Depression diagnosis dataset collected
by an online health records portal comprising of medical history,

symptoms, and demographic information of about 33K individuals.

Each individual has either been diagnosed with depression or is

healthy.

Baselines We benchmark the performance of our framework

against the following baselines: 1) Locally interpretable model

agnostic explanations (LIME) [9] 2) Interpretable Decision Sets

(IDS) [5] 3) Bayesian Decision Lists (BDL) [7]. While IDS and BDL

were developed as stand alone interpretable classifiers, we employ

them to explain other black box models by treating the instance la-

bels assigned by black box models as the ground truth labels. Since

LIME approximates black box classifiers using multiple locally lin-

ear models, the approximations created by LIME and our approach

have representational differences. To facilitate fair comparison, we

construct a variant of LIME known as LIME-DS where each local

model is a decision set (a set of if-then rules) instead of being a

linear model.

Experimental Setup We generate explanations of multiple

classes of models: deep neural networks, gradient boosted trees,

random forests, decision trees, SVM. Due to space constraints, we

present results with a deep neural network of 5 layers in this section,

however our findings generalize to other model classes. Our opti-

mization problem has the following parameters λ1 · · · λ5 (scaling
coefficients) and ϵ1 · · · ϵ3 (constraint values). We employed a simple

tuning procedure to set these parameters (details in Appendix). We

set other parameters as follows: ϵ1 = 20, ϵ2 = 7, and ϵ3 = 5. Support

threshold for Apriori algorithm was set to 1%.

4.1 Experimentation with Real World Data
Analyzing the Tradeoffs between Fidelity and Interpretabil-
ity To understand how effectively different approaches trade-off

fidelity with interpretability, we plot fidelity vs. various metrics of

interpretability (as outlined in the previous section) for explana-

tions generated by our framework (without user input regarding

features of interest) and other baselines. We define fidelity as the

fraction of instances in the data for which the label assigned by

the explanation is the same as that of the black box model pre-

diction. Figures 3a and 3b show the plots of fidelity vs. number

of rules (size) and fidelity vs. average number of predicates (ratio

of numpreds to size) respectively for the explanations constructed

using MUSE, LIME-DS, IDS, and BDL. These results correspond

to explanations of a 5 layer deep neural network trained on the

depression diagnosis data. Similar results were observed with other

data sets and black box model types. It can be seen from Figure 3a

that our framework (MUSE) and IDS achieve the best trade-offs

between fidelity and number of rules. Furthermore, Figure 3b shows

that our framework MUSE significantly outperforms all the other

baselines when trading off fidelity with average number of predi-

cates per rule. For instance, at an average width of 10 predicates

per rule, explanations generated by MUSE already reach a fidelity

of about 80% whereas explanations output by other approaches

require at least 20 predicates per rule to attain this level of fidelity

(Figure 3b). These results demonstrate that the explanations pro-

duced by MUSE provide significantly better trade-offs of fidelity vs.

complexity compared to other state-of-the-art baselines.

Evaluating Unambiguity of Explanations We can readily

evaluate the unambiguity of approximations constructed by our

approach MUSE, IDS, BDL using two of the metrics outlined in

previous section, namely, ruleoverlap and cover. Note that decision
list representation by design achieves the optimal values of zero

for ruleoverlap and N for cover since each else-if clause ensures

that every instance satisfies a single rule in the list and else clause

ensures that no instance is left uncovered. We found that the ap-

proximations generated using IDS and our approach also result in

low values of ruleoverlap (between 1% and 2%) and high values for

cover (95% to 98%). LIME is excluded from this comparison since it



(a) Number of Rules (b) Avg. Number of Predicates

Approach Human Accuracy Avg. Time (in secs.)

MUSE 94.5% 160.1

(No customization)

IDS 89.2% 231.1

BDL 83.7% 368.5

MUSE 98.3% 78.3

(Customization)

(c) Results of User Study

Figure 3: Evaluating our framework MUSE: a & b) Fidelity vs. interpretability trade Offs for a 5-layer neural network trained
on depression diagnosis data. c) Results of user study.

does not even specify which local model is applicable to what part

of the feature space.

4.2 Evaluating Human Understanding of
Explanations

Here, we report the results of three user studies that were designed

to evaluate the ease with which users can understand and reason

about the behavior of black box models using our explanations. The

explanations that we showed to users have been constructed by

approximating a 5 layer deep neural network trained on depression

diagnosis data.

Comparing rule based approximations (task 1)Wedesigned

an online user study with 33 participants, where each participant

was randomly presented with the explanations generated by one

of the following approaches: 1) our approach MUSE 2) IDS 3) BDL.

Participants were asked 5 questions, each of which was designed

to test their understanding of the model behavior (as depicted by

the explanation) in different parts of feature space. An example

question is: Consider a patient who is female and aged 65 years. Based
on the approximation shown above, can you be absolutely sure that
this patient is Healthy? If not, what other conditions need to hold for
this patient to be labeled as Healthy? These questions closely mimic

decision making in real-world settings where decision makers such

as doctors, judges would like to reason about model behavior in

certain parts of the feature space. The answers to these questions

could be objectively judged as right or wrong based on the decision

logic encoded by the explanation. Based on this, we computed the

accuracy of the answers provided by users. We also recorded the

time taken to answer each question and used this to compute the

average time spent (in seconds) on each question. Figure 3c (top)

shows the results obtained using explanations from MUSE (without

customization), IDS, and BDL. It can be seen that user accuracy

associated with our approach was higher than that of IDS, BDL.

In addition, users were about 1.5 and 2.3 times faster when using

our explanations compared to those constructed by IDS and BDL

respectively.

Customizing ExplanationsWemeasured the benefit obtained

when the explanation presented to the user is customized w.r.t to

the question the user is trying to answer. For example, imagine the

question above now asking about a patient who smokes and does

not exercise. Whenever a user is asked this question, we showed

him/her an explanation where exercise and smoking appear in

the subspace descriptors (See Figure 1 (right)) thus simulating the

effect of the user trying to explore the model w.r.t these features.

We recruited 11 participants for this study and we asked each of

these participants the same 5 questions as those asked in task 1.

Table 3c (bottom row) shows the results of our model customized

to the question being answered. In comparison to the results given

in the first study, it can be seen that the time taken to answer

questions is almost reduced in half compared to the setting where

we showed users the same explanation (which is not customized to

the question being asked) each time. In addition, answers are also

more accurate, thus, demonstrating that allowing users to explore

the model behavior from different perspectives can be very helpful

in reasoning about its behavior in different parts of the feature

space.

Comparing our approach with LIME (task 2) In the final

study, our goal was to carry out the comparison outlined in task

1 between our approach and LIME. However, preliminary discus-

sions with few test subjects revealed that the ill-defined subspace

notions of LIME make it almost impossible to answer questions

of the form mentioned above. We therefore carried out an online

survey where we showed each participant explanations generated

using our model and LIME, and asked them which explanation

would they prefer to use to answer questions of the formmentioned

above. We recruited 12 participants for carrying out this survey

and they unanimously preferred using explanations generated by

our approach to reason about the model behavior.

5 CONCLUSIONS & FUTUREWORK
In this paper, we propose MUSE, a framework for explaining black

box classifiers by highlighting how they make predictions in sub-

spaces characterized by features of user interest. An interesting

research direction would be to combine our framework with on-

going efforts on extracting interpretable features from images. For

example, super-pixels [9] output by intermediate layers of deep

neural networks can be fed into our framework to enable expla-

nations of image classifiers. Furthermore, the notions of fidelity,

interpretability and unambiguity that we outline in this work can

be further enriched. For instance, we could imagine certain features

being more easy to understand than others in which case we can

associate costs with features, and choose explanations with smaller

costs (and more interpretable features). Our optimization frame-

work can easily incorporate these newer notions as long as they

satisfy the properties of non-negativity and submodularity.
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APPENDIX
Proof for Theorem 1
Statement: The optimization problem in Eqn. 1 is non-normal, non-
negative, non-monotone, submodular with matroid constraints.
Proof In order to prove that the objective function in Eqn. 1 is

non-normal, non-negative, non-monotone, and submodular, we

need to prove the following:

• Prove that any one of the terms in the objective is non-

normal

• Prove that all the terms in the objective are non-negative

• Prove that any one of the terms in the objective is non-

monotone

• Prove that all the terms in the objective are submodular

Non-normality. Let us choose the term f1(R). If f1 is normal,

then f1(∅) = 0. Let us check if this holds true:

It can be from the definition of f1 that f1(∅) = Pmax because the

numpreds metric would be 0 in this case as there are no rules in the

empty set. This also implies f1(∅) , 0. Therefore f1 is non-normal

and consequently the entire objective is non-normal.

Non-negativity. The functions f1, f2, f3, f5 are non-negative be-
cause first term in each of these is an upper bound on the second

term. Therefore, each of these will always have a value ≥ 0. In the

case of f4 which encapsulates the cover metric which is the number

of instances which satisfy some rule in the approximation. This

metric can never be negative by definition. Since all the functions

are non-negative, the objective itself is non-negative.

Non-monotonicity. Let us choose the term f1(R). Let us consider
two approximations A and B such that A ⊆ B. If f1 is monotonic

then, f1(A) ≤ f1(B). Let us see if this condition holds:

Based on the definition of numpreds metric, it is easy to note

that

numpreds(A) ≤ numpreds(B)
This is because B has at least as many rules as that of A. This

implies the following:

−numpreds(A) ≥ −numpreds(B)
Pmax − numpreds(A) ≥ Pmax − numpreds(B)

f1(A) ≥ f1(B)
This shows that f1 is non-monotone and therefore the entire objec-

tive is non-monotone.

Submodularity. Let us go over each of the terms in the objective

and show that each one of those is submodular.

Let us choose the term f1(R). Let us consider two approximations

A and B such that A ⊆ B. If f1 is submodular then, f1(A ∪ e) −
f1(A) ≥ f1(B ∪ e) − f1(B) where e = (q, s, c) < B

Let x be the number of predicates in the rule e = (q, s, c). This
implies that when e is added to either A or B, the value of the

numpred metric increases by x i.e.,

f1(A ∪ e) − f1(A) = x = f1(B ∪ e) − f1(B)
This implies that the function f1 is modular and consequently

submodular.

Let us choose the term f2(R). Let us consider two approximations

A and B such that A ⊆ B. If f2 is submodular then, f2(A ∪ e) −
f2(A) ≥ f2(B ∪ e) − f2(B) where e = (q, s, c) < B

By definition, f eatureoverlap(A) ≤ f eatureoverlap(B) because
B has at least as many rules as A.

Let f eatureoverlap(A) = x and f eatureoverlap(B) = x + ϵ
where ϵ ≥ 0. When we add e to A, let f eatureoverlap(A ∪ e) = y,
then f eatureoverlap(B ∪ e) = y + ϵ + ϵ ′ where ϵ ′ denotes the
feature overlap between the e and the rules that exist in B but not

in A Therefore, ϵ ′ ≥ 0.

f2(A ∪ e) − f2(A) = Omax − y − Omax + x = x − y

f2(B ∪ e) − f2(B) = Omax −y − ϵ − ϵ ′ −Omax +x + ϵ = x −y − ϵ ′

This implies that

f2(A ∪ e) − f2(A) ≥ f2(B ∪ e) − f2(B)
Therefore, f2 is submodular.

f3 has a very similar structure to f2 and it can be shown that it

is submodular by following analogous steps as above.

f4 is the cover metric which denotes the number of instances

that satisfy some rule in the approximation. This is clearly a dimin-

ishing returns function i.e., more additional instances in the data



are covered when we add a new rule to a smaller set compared to a

larger set. Therefore, this is submodular.

Consider the function f5, the metric disagreement is additive

/ modular which means each time a rule is added, the value of

disagreement is simply incremented by the number of data points

incorrectly labeled by this rule. Since the metric disagreement is

modular, the function f5 is also modular which implies submodu-

larity.

Constraints: A constraint is a matroid if it has the following

properties: 1) ∅ satisfies the constraint 2) if two sets A and B satisfy

the constraint and |A| < |B |, then adding an element e ∈ B, e < A
to A should result in a set that also satisfies the constraint. It can

be seen that these two conditions hold for all our constraints. For

instance, if an approximation B has ≤ ϵ1 rules and approximation

A has fewer rules than B, then the set resulting from adding any

element of B to the smaller set A will still satisfy the constraint.

Similarly, maxwidth and numdsets satisfy the aforementioned prop-

erties too.

Optimization Procedure
The crux of Algorithm 1 is shown in lines 4–12. The solution set is

initially empty (line 4) and then an element v with the maximum

value for the objective function is added (line 5). This is followed by

a sequence of delete and/or exchange operations (lines 6 – 12) until

there is no other element remaining to be deleted or exchanged from

the solution set. If there is an element e in the solution set which

when removed increases the value of the objective function by a

factor of at least (1+ δ
n4
) (n is the size of the candidate set), then it is

removed (line 7). Analogously, if there arek elements in the solution

set whose exchange with a new element d increases the value of the

objective function by the aforementioned factor, then the exchange

operation is performed (lines 9–11). This entire process is repeated

k + 1 times (line 13). Lastly, the objective function values of the

solution sets obtained from each of the k+1 iterations are compared

and the solution set with the maximum value is returned as the

final solution (line 15).

Experiments & Results
Parameter Tuning. We set aside 5% of the dataset as a validation set

to tune these parameters. We first initialize the value of each λi to
100. We then carry out a coordinate descent style approach where

we decrement the values of each of these parameters while keeping

others constant until one of the following conditions is violated: 1)

less than 95% of the instances in the validation set are covered by

the resulting approximation 2) more than 5% of the instances in the

validation set are covered by multiple rules in the approximation 3)

the labels assigned by the approximation do not match those of the

black box for more than 85% of the instances in the validation set.

We set the λ parameters of IDS in the same way as discussed

above. BDL has three hyperparameters: 1) α which is the dirichlet

prior on the distribution of the class labels. We set this to 1. 2) λ is

the prior on the number of rules in the decision list and we set it to

the same value as that ϵ1 in our approach 3) η is the prior on average
number of predicates per rule and we set to the same value as that

of ϵ2 in our approach. Our approach, IDS, and BDL take as input

candidate sets of conjunctions of predicates. These candidate sets

are generated using Apriori algorithm [] with a support threshold

of 1% which ensures that each conjunction holds true for at least

1% of the instances in the data.

Evaluating Interpretability of Customized Explanations. To evaluate

the interpretability of our explanations when features of interest are

input by end users, we performed a set of experiments in which we

simulate user input by randomly subsampling features of interest.

Note that the baselines IDS, BDL or LIME are not designed to

handle end user input when generating explanations. To benchmark

the performance of our approach with user input, we construct

variants of the baselines IDS and BDL where we first generate

subspaces and then run IDS and BDL independently on instances

belonging to each of these subspaces. Subspaces are generated by

enumerating every possible combination of values of the randomly

chosen subset of features (e.g., exercise = yes and smoking = yes,

exercise = yes and smoking = no, exercise = no and smoking = yes,

exercise = no and smoking = no). When averaged across 100 runs

(where we randomly subsample features of interest for each run),

we found that at the same level of fidelity, our explanations have

about 22.02% and 38.39% fewer rules compared to those produced by

variants of IDS and BDL respectively. Our framework also generated

explanations with 17.53% and 26.28% decrease in the average width

of rules compared to the variants of IDS and BDL respectively while

maintaining the same level of fidelity. These results clearly highlight

the importance of jointly optimizing the discovery of subspaces,

and the corresponding decision logic rules so that the resulting

explanation is both faithful to the original model and interpretable.
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