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Highlights 

• Higher-order connectivity patterns of large-scale neuronal communication networks were studied in 

zebrafish and mice 

 

• Control and epileptic networks were modeled from in vivo cellular resolution calcium imaging data 

 

 

• Rare ‘superhub’ cells unusually richly connected to the rest of the network through higher-order 

feedforward motifs were identified 

 

• Disconnecting single superhub neurons more effectively stabilized epileptic networks than targeting 

conventional hub cells defined by high connection count. 

 

• These data predict a maximally selective novel single cell target for minimally invasive seizure control 
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Abstract 

Neurological and psychiatric disorders are associated with pathological neural dynamics. The fundamental 

connectivity patterns of cell-cell communication networks that enable pathological dynamics to emerge remain 

unknown. We studied epileptic circuits using a newly developed integrated computational pipeline applied to 

cellular resolution functional imaging data. Control and preseizure neural dynamics in larval zebrafish and in 

chronically epileptic mice were captured using large-scale cellular-resolution calcium imaging. Biologically 

constrained effective connectivity modeling extracted the underlying cell-cell communication network. Novel 

analysis of the higher-order network structure revealed the existence of ‘superhub’ cells that are unusually 

richly connected to the rest of the network through feedforward motifs. Instability in epileptic networks was 

causally linked to superhubs whose involvement in feedforward motifs critically enhanced downstream 

excitation. Disconnecting individual superhubs was significantly more effective in stabilizing epileptic networks 

compared to disconnecting hub cells defined traditionally by connection count. Collectively, these results 

predict a new, maximally selective and minimally invasive cellular target for seizure control. 

Keywords: epilepsy; calcium imaging; effective connectivity; hub neurons; motifs 
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Introduction 

Methods in network science have been instrumental in deciphering neural communication associated with 

neurological disorders1,2. One such disorder, epilepsy, is characterized by spontaneous and recurrent seizures 

that arise from abnormal neural activity and synchronization across brain regions3,4. Epilepsy impacts over 60 

million individuals worldwide and many of these children and adults have medically uncontrolled seizures and 

suffer from debilitating cognitive and emotional comorbidities. One primary reason for this is that current anti-

epileptic treatments lack spatial, temporal and cell type-specificity and instead attempt to broadly restrict 

excitability that can at best mask symptoms while resulting in various side-effects5. Recently, a number of 

experimental studies demonstrated that it is possible to control spontaneous chronic seizures and 

comorbidities through closed-loop interventions. Importantly, these studies targeted specific cell ensembles in 

given brain regions and delivered intervention stimuli selectively only at particular times, all with minimal side-

effects6–9. Although these experiments targeted groups of cells, the most desirable target for intervention would 

be single cells that exert maximal control over epileptic networks. In this study, we searched for a novel class 

of potential neuronal targets that could serve as maximally selective controllers for interventions to stabilize 

epileptic dynamics. To achieve this ambitious goal, we sought to uncover new features of cell-cell 

communication networks extracted from experimental data that are essential for pathological seizure dynamics 

to emerge.  

One conserved feature of complex networks is the presence of richly connected yet sparse hub neurons10. It 

has been shown that these neurons are critical for influencing network dynamics in biological neural circuits11–

13. Specifically, experimental studies have shown that hub neurons orchestrate network synchrony in the 

developing brain12 and maintain their effectiveness in adulthood13. Simulations in large-scale data-driven 

hippocampal dentate gyrus computational model of temporal lobe epilepsy (TLE) predicted that perturbation of 

a population of neurons that included hubs was sufficient to initiate a seizure11. These efforts have sparked 

significant interest in targeting hub neurons for effective seizure control7,9. While these hub neurons are 

traditionally defined based on connection count (i.e., they are unusually richly connected to other cells), there is 

current interest in elucidating similarly rich higher-order connectivity patterns called motifs that are present in 

complex networks and are widely believed to inform network function14,15. Therefore, it remains an open 

question whether improved targets for selective seizure control can be identified based on the higher-order 

network structure of epileptic circuits.  

To address the latter question, we deployed whole-brain cellular resolution calcium imaging to capture neural 

dynamics in larval zebrafish, whose neuronal circuitry shares many conserved features with mammals16 and 

thus have been instrumental in basic17,18 and translational18,19 epilepsy research. Imaging was performed in a 

well-characterized zebrafish model of acute seizures20. The underlying cell-cell effective connectivity (i.e. 

communication) networks for baseline and preseizure neural dynamics were extracted21,22 and biologically 

constrained to the zebrafish neuroanatomical connectome for the first time23. Simulated perturbation of a single 

traditional hub neuron significantly destabilized preseizure networks compared to baseline networks. Higher-

order analysis24 on traditional hubs revealed that network instability in epileptic circuits is causally linked to a 

subset of hubs whose surrounding neighborhood is rich in feedforward motifs, enhancing downstream 

excitation. Disconnecting such superhub neurons robustly stabilized networks to perturbation, even though 

superhubs did not have the highest connection count among the broader hub cell class.  

Importantly, similar results were also found in the hippocampal dentate gyrus of chronically epileptic mice 

compared to control, indicating that our key findings hold in the mammalian brain and in chronic temporal lobe 

epilepsy (TLE), the most common epilepsy in adults. Collectively, these results identify the emergence of 

superhubs as a critical step in the destabilization of epileptic circuits, advancing the goal of achieving 

maximally selective single-cell control of epilepsy with minimal side effects. Looking into the future, studying 

network interactions at cellular scale opens avenues of investigation that seek to unify single-cell dynamics 

with system-level communication in both control and pathological brains. 
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Results 

Whole brain imaging of larval zebrafish acute seizure model at single cell resolution 

Whole brain larval zebrafish (Tg(elavl3:H2B-GCaMP6s); N=3) imaging was performed with volumetric two-

photon microscopy for 25 minutes at 2Hz capture rate (Fig 1A, see Methods). Five minutes of baseline data 

was recorded for each fish followed by 15 mM PTZ17,20 bath application, which blocks inhibitory GABAA
 

conductance. Each fish exhibited at least one seizure prior to cessation of imaging. LFP recording was not 

included as previous studies have shown robust correlation between calcium signal and field potentials in PTZ 

model17. Anatomical volume stacks were registered and neural somata (Fig 1B) were extracted with methods 

used in16. We extracted fluorescence time series from 5000-7000 active neurons per fish across all major brain 

regions (Fig 1C).  

The start of the preseizure state was defined as 1 minute after PTZ is introduced to account for transient 

activity. Seizure initiation was defined as three standard deviations above population mean calcium signal 

during baseline (pre-PTZ) and termination was defined as when the population mean signal dropped below this 

threshold. In agreement with prior literature17, calcium dynamics within detected seizure period lasted 35-40 

seconds and displayed significantly higher synchronicity (i.e. hypersynchronous state) compared to baseline 

(one-sided paired t-test, p-adjusted=0.034) and preseizure (one-sided paired t-test, p-adjusted=0.006) epochs 

(Figs 1D,E). For this work, we will be modeling baseline and preseizure calcium dynamics (Fig 1F), and we 

will not be focusing on seizure or post-seizure periods.  

Cellular resolution effective connectivity modeling to extract cell-cell communication networks 

Effective connectivity modeling to extract cell-cell communication networks was performed with chaotic 

recurrent neural networks (RNN)21 (Fig 2A, see Methods), which has previously been successful in fitting 

cellular-resolution calcium dynamics in the zebrafish25. Each neuron imaged experimentally is represented by a 

node in the model. The parameters of the model are the synaptic connections between nodes, interpreted as 

how much causal influence a source has on its target over a sub-second temporal window and can vary in sign 

and magnitude. The self-perpetuating chaotic dynamics were controlled through FORCE learning22 (Methods), 

which uses a recursive-least square optimization on the connectivity parameters to reproduce a specified 

target output (Fig 2C). 

Target outputs were the experimentally acquired calcium dynamics. We furthermore employed a 10% sparsity 

constraint (
𝑁∗(𝑁−1)

10
 total parameters) to match reported connectivity patterns26 and to prevent overfitting. One 

major issue is whether local minima visited during optimization lead to parameter sets that are realistic given 

the underlying neuroanatomy. To mitigate this, we constrained the optimization procedure using the known 

zebrafish structural connectome23 (Fig 2B, Methods). Specifically, weights are adjusted proportional to how 

strongly connected the regions in which the source soma and target soma inhabit (Fig 2C, left). Preseizure 

networks were optimized from best-fit baseline networks in order to untangle cell-cell effective rewiring caused 

by PTZ (Fig 2C, right). For consistency, this was repeated three times with different initial conditions for each 

fish. Models converged for both baseline and preseizure state (Fig 2C, right) and FORCE learning captured 

individual and global calcium dynamics (Fig 2D, note scale bars).  

Community detection (Methods) on the constrained optimized parameter matrix identified relevant macroscale 

anatomical structures which were not observed in unconstrained models (Supplementary Figure 1). 

Furthermore, model dynamics were primarily driven by synaptic transmission and not noise (Supplementary 

Figures 2A,B). Outgoing inhibition per neuron decreased after PTZ bath wash-in (Supplementary Figure 

2C), consistent with PTZ reducing inhibitory conductances27. 
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Identification of outgoing and incoming traditional hubs 

Traditional hub neurons were segregated into two classes based on connection count: incoming and outgoing 

(Fig 3A). Outgoing hubs project while incoming hubs receive numerous strong connections. The optimized 

parameter matrix was binarized by keeping only the strongest excitatory connections (top 10%; Fig 3B). 

Degree distributions for both hub subtypes and across brain states displayed heavy-tailed distributions as 

reported experimentally12 (Fig 3C). To identify outgoing and incoming hubs, the 90th percentile cutoff was 

calculated (i.e., hubs were defined as the 10% most connected cells; note that changing the 90% cutoff to a 

different percentile did not alter the key findings, see below). Cutoff values were independently calculated for 

incoming and outgoing hubs and between baseline and preseizure distributions (Fig 3C).  

Importantly, outgoing and incoming hub cutoff threshold, and mean outgoing (incoming) degree of outgoing 

(incoming) hubs were not statistically different (two-sided unpaired t-test, p>0.05) between baseline and 

preseizure states (Fig 3D). There was approximately a 5% difference in the average outgoing (incoming) 

degree of outgoing (incoming) hubs between baseline and preseizure networks (Fig 3D). The spatial locations 

of outgoing and incoming hub neurons were visualized in the zebrafish anatomy for both baseline and 

preseizure networks (Fig 3E). Outgoing hubs were primarily located in diencephalon and incoming hubs were 

primarily located in mesencephalon and telencephalon (Fig 3F). PTZ did not cause significant changes in the 

macroscale anatomical locations of outgoing and incoming hubs (Fig 3F) (two-sided unpaired t-test, p>0.05).  

Perturbation of individual outgoing hubs destabilize preseizure networks 

Chaotic recurrent neural networks are a generative model and can therefore create synthetic calcium traces for 

each cell. Single-cell perturbation simulation studies are of growing importance for studying functional 

properties of large neural populations and have to date elucidated how activity is coordinated in recurrent 

cortical networks28. With this in mind, we tested the hypothesis that preseizure networks are more sensitive to 

perturbation of a single hub neuron compared to baseline networks.  Simulated perturbations involved 500 ms 

depolarizing current injection into a single hub neuron after 20% of epoch duration had elapsed. Depolarization 

of an outgoing hub increased activity in neurons receiving strong excitatory inputs from the perturbed neuron 

and this increase was higher in preseizure state than baseline state (Supplementary Figures 3A,B). 

Considering this, we quantified the effect of perturbation on global network dynamics by measuring the 

‘trajectory deviation’ (time-normalized Euclidean distance, see Methods) between the mean population calcium 

signal of the unperturbed network with the mean population calcium signal of the perturbed network.  

Depolarization a single outgoing hub in the preseizure state caused significantly higher deviation (one-sided 

Mann-Whitney U-test. p<0.001) in global dynamics (Fig 4B,C) compared to equivalent simulations in baseline 

networks (Figs 4A,C). Depolarizing incoming hubs (Supplementary Figures 3C,D, Fig 4C) and non-hubs 

(Supplementary Figures 3C,D) had significantly less influence in both networks. Incoming hub perturbation 

affected dynamics more greatly (one-sided Mann-Whitney U-test, p<0.001) in preseizure networks (Fig 4C).  

Therefore, we normalized the outgoing hub population by the median trajectory deviation of the incoming hub 

population. The data maintains that perturbation of a single outgoing hub in the preseizure state altered global 

dynamics more significantly within individuals (one-sided Mann-Whitney U-test, p<0.001) (Fig 4D) and across 

the population (one-sided paired t-test, p=0.041) (Fig 4E). Taken together, these data suggest that preseizure 

networks are more sensitive to perturbations and that even a single outgoing hub neuron can significantly 

influence global dynamics. 

Visualizing connections between outgoing and incoming hubs 

PTZ bath wash-in did not significantly change several parameters associated with the outgoing and incoming 

degree distributions (Figs 3C,D) and did not significantly reorganize which macroscale anatomical regions the 

hub cells occupied (Figs 3E,F). Therefore, we hypothesized that nuanced rewiring of microcircuit effective 

connectivity patterns may be critical for understanding increase sensitivity to perturbation (Fig 4). We 

visualized the connectivity patterns between outgoing and incoming hubs for baseline (Fig 4F) and preseizure 
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(Fig 4G) networks using force-directed graphs (Methods). Importantly, nodes clustered in force-directed 

graphs are highly connected. We observed increased number of outgoing – outgoing hub connections (Fig 4G, 

note golden edges forming a ‘core’) in preseizure networks compared to pre-PTZ baseline control. 

Enhanced recurrent connectivity between outgoing hub neurons in preseizure networks suggest an important 

role for motifs. Motifs are subgraphs that are thought to provide insight on the functional properties of complex 

systems14,15. In baseline toy model (Fig 4H, top), there is a single connection between outgoing hubs and two 

feedforward motifs present. Based on observations in Fig 4G, there are more connections between outgoing 

hubs. Therefore, preseizure toy model (Fig 4H, bottom) includes an additional connection between outgoing 

hubs 2 and 3. As a result of adding a single connection, there are now four feedforward motifs present in the 

network. Therefore, we hypothesized that the multiplicative emergence of feedforward motifs may be a core 

feature of cell-cell communication networks that destabilize the preseizure brain. 

Emergence of superhubs in the preseizure brain 

Graph clustering is an intuitive method to isolate groups of nodes in a network that form numerous intra-group 

connections. Specifically, we predict the emergence of superhubs - hubs with interesting higher-order 

connectivity patterns - using a higher-order local clustering concept. The inputs to the algorithm were the 

directed binarized graph (Fig 3B), a motif M, and an individual outgoing hub identified in Fig 3C (i.e. the seed). 

The algorithm finds an optimal cluster surrounding the seed that is rich in M with run-time that is invariant of the 

graph size (Fig 5A, left). Traditional edge clustering, which only considers simple edges, was also performed 

as a control (Fig 5A, right). The edge (motif) conductance metric was used to capture how much information 

or activity propagates from the traditional (higher-order) cluster to the rest of the network (Fig 5B). Optimal 

edge and higher-order clusters (i.e. minimal conductance) were identified for outgoing hubs in baseline and 

preseizure networks using the Motif-based Approximate Personalized PageRank (MAPPR) algorithm24.  

Edge conductance (one-sided paired t-test, p=0.011) and feedforward motif conductance (one-sided paired t-

test, p=0.033) were elevated in preseizure networks (Figs 5C,D). However, the increase in feedforward motif 

conductance relative to baseline was significantly higher (one-sided paired t-test, p=0.047) than edge 

conductance (51.8% vs 2.4%; Fig 5E). We performed higher-order clustering on additional motifs, such as 

cycles, but found very few instances. Therefore, this data suggests that a subset of hubs in preseizure 

networks allow excitation to propagate more readily to the rest of the network, predicting the emergence of 

‘superhubs’. Importantly, both individually (baseline Spearman’s rho=-0.005, p>0.05; preseizure Spearman’s 

rho=0.054, p>0.05) and as a group (unpaired two-sided t-test, p>0.05), feedforward motif conductance was not 

correlated to outgoing degree of the outgoing hub (Fig 5F). 

Disconnecting superhubs stabilizes preseizure networks 

Our evidence so far suggests a correlation between two findings: 1) Perturbation of a single outgoing hub in 

preseizure networks has significant influence on global network dynamics; 2) A subset of hubs in preseizure 

networks may be propagate excitatory activity to the rest of the network more easily (i.e. superhubs). To 

establish a causal link, we performed computational experiments. These simulations involve targeted attacks 

on hub neurons. The motivation for this is that complex networks in nature are vulnerable to attacks on hub 

neurons29, and which has been validated in neural circuits through closed-loop optogenetic studies6,7.  

We first compared the role of feedforward motifs versus simple edges on network function. Edges that 

projected from outgoing hubs and targeted neurons in its local higher-order cluster or its local edge cluster 

were damped by a factor ranging from 0 (disconnect) to 1 (no change) (Fig 6A). Dampening the outputs of 

outgoing hubs to their respective higher-order cluster has greater effect on network activity in both baseline 

and preseizure networks (Fig 6B, left). However, this effect was more pronounced for preseizure state (Fig 

6B, right). 

Second, we validated that hubs with the highest motif-conductance (i.e. could propagate activity downrange 

more easily) have greater influence over network dynamics than hubs with low network conductance. Hubs in 
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preseizure network were ranked based on their feedforward motif conductance score and split into either top 

half or bottom half. Within each half, an equivalent fraction of higher-order clusters was disconnected from the 

network (Fig 6C; dampening factor = 0.0). Simulations confirmed that disconnecting hubs with the highest 

conductance was effective in changing global network activity (Fig 6D, top). Interestingly, this effect was 

observed despite more edges being removed in the bottom half group (Fig 6D, bottom), and in total 

represented less than 0.1% of all edges in the network. Brute force disconnecting hubs with the highest 

outgoing degree did not alter global network dynamics (Fig 6D, top). Hubs with highest conductance displayed 

increasing activity in between high calcium events compared to the remaining higher-order hub population (Fig 

6E, note numbers) and were not biased towards having the highest outgoing degree values (one-sided KS 

test. p>0.05) (Fig 6F). Therefore, motif conductance gives important insight on network function and that this 

insight could not have been revealed through mining the network for simple edges. These hubs with the 

highest motif conductance are now explicitly labeled as ‘superhubs’. 

Third, we tested the hypothesis that superhubs rendered the network more stable to perturbation. Superhubs - 

hubs with the highest 37.5% feedforward motif conductance scores - were disconnected (Fig 6D, top). 

Oscillatory power was dampened uniformly over all frequency bands for most measured time periods (Fig 6G). 

As expected, the percent change in signal variance (i.e. total power) in response to perturbation of a single 

outgoing hub in the fully connected preseizure network was significantly higher than baseline network (39.8% 

to 69.1%; one-sided Mann-Whitney U-test, p-adjusted<0.001). Disconnecting superhubs from the preseizure 

network significantly reduced percent change in signal variance from 69.1% to 31.7% (one-sided Wilcoxon 

signed-rank test, p-adjusted<0.001) (Fig 6H, left). Furthermore, percent change in signal variance of the 

disconnected network was not significantly different compared to baseline network (two-sided Mann-Whitney 

U-test, p-adjusted=0.81) (Fig 6H, left), evidence of renormalization. Disconnecting superhubs significantly 

decreased the trajectory deviation of global network activity compared to fully connected preseizure network 

(one-sided Wilcoxon signed-rank test, p<0.001) (Figs 6H,I). As a control (Supplementary Figure 4), 

disconnecting superhubs reduced the percent change in signal variance as a response to perturbation more 

significantly than either disconnecting the same number of hubs randomly (31.7% versus 99.8%, one-sided 

Wilcoxon signed-rank test, p<0.001) or the same number of low-conductance hubs (31.7% versus 67.6%; one-

sided Wilcoxon signed-rank test, p<0.001).  

Therefore, the network is more resilient to perturbation when disconnecting superhubs. Taken together, these 

three computational experiments reveal that the microcircuit connectivity architecture surrounding hub neurons 

is a critical novel feature of stability in epileptic networks. 

Superhubs in a mouse model of chronic temporal lobe epilepsy 

Converging evidence has found similar statistical properties in pathological single-cell dynamics from larval 

zebrafish and mouse hippocampal dentate gyrus17,30,31. We therefore performed the same analysis in healthy 

control (N=3) and epileptic mice (intrahippocampal KA model; N=3) to address the question of whether our key 

findings in zebrafish acute seizure model held in the mammalian brain circuit and in a chronic model of TLE, 

the most prevalent form of epilepsy in adults. Mice expressed GCaMP6f in dorsal dentate gyrus (DG) and the 

epileptic group had kainic acid (KA) injected unilaterally into ipsilateral ventral hippocampus. 2p calcium 

imaging of DG granule cells was performed in healthy mice and in chronically epileptic mice (Figs 7A,B, note 

differences in vertical axis of scale bars). 

Granule cell calcium dynamics were modeled in for both groups of mice (600-800 neurons/mouse; 3-5 minute 

window; Fig 7C) and incoming and outgoing hubs were identified (Fig 7D) with similar methods used in 

zebrafish. Modeled control networks were more resilient to single outgoing hub perturbation than chronically 

epileptic dentate network (Figs 7E,F). Global network dynamics were significantly less affected (one-sided 

Mann-Whitney U-test, p<0.001) when perturbing incoming hubs compared to outgoing hubs for both networks 

(Supplementary Figures 5A,B).  
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Similar to zebrafish, feedforward motif conductance of local higher-order clusters seeded on outgoing hubs 

was significantly higher (one-sided unpaired t-test, p=0.0034) in chronically epileptic dentate networks 

compared to control dentate networks (Figs 7G,H). Feedforward motif conductance was not correlated to 

outgoing degree (Spearman’s rho=0.10, p>0.05) (Fig 7I) and top high conductance hubs were not biased 

towards the highest outgoing degree values (one-sided KS test, p>0.05) (Fig 7J). We disconnected superhubs 

- hubs with the top 20% highest feedforward conductance - in chronically epileptic dentate networks. Single 

hub perturbation simulations showed significant reduction (one-sided Wilcoxon signed-rank test, p<0.001; 

Supplementary Figure 5C) in global network trajectory deviation and in change in global network signal 

variance (one-sided Wilcoxon signed-rank test, p<0.001; Fig 7K. This reduction was more significant 

compared to disconnecting the same number of random hubs (one-sided Wilcoxon signed-rank test, p=0.0077) 

or low-conductance hubs (one-sided Wilcoxon signed-rank test, p=0.0024) (Supplementary Figures 5D,E). 

Example traces of global network dynamics from TLE network in response to perturbation of the same hub 

before and after disconnecting superhubs are presented in Fig 7L.  

These similar findings across both acute seizure model in zebrafish and in chronically epileptic mice suggest 

that the emergence of superhubs is a core principle of network reorganization that may be a key feature 

contributing to the destabilization of the epileptic brain. Targeting these superhubs may be more effective in 

cellular scale control of epileptic circuits then hubs defined traditionally on connection count. 

Discussion 

Here, we sought to characterize the connectivity patterns of cell-cell communication networks in epileptic 

circuits. Our findings reveal that superhubs, defined through analysis of the higher-order structure of modeled 

networks extracted from functional calcium imaging data, emerge as key cellular controllers that can powerfully 

destabilize epileptic circuits. Disconnecting  these superhubs was effective in stabilizing networks in larval 

zebrafish, and, importantly, these results also held true in the dentate gyrus of chronically epileptic mice. 

Therefore, these results predict the existence of fundamentally novel, single cell targets for maximally 

selective, minimally invasive seizure control in epilepsy.  

Search for new interventional targets guided by large-scale cellular resolution functional imaging  

Current clinical assessment  and treatment of epilepsy is to a large extent based on analysis of networks 

constructed from population recordings such as local field potentials (LFP)4 or functional magnetic resonance 

imaging (fMRI)32. However, recent studies have shown that single-cell activity can diverge significantly from 

what population recordings would predict. For example, apparently self-repeating, macroscopically recurrent 

epileptiform LFP activity (inter-ictal spikes) indicating network synchrony have been shown to emerge from 

non-recurrent microscopic single-cell activity. In other words, each inter-ictal event is generated by a different 

combination of participating cells17,30,31. This ‘macro-micro’ disconnect33 is a significant challenge for the field 

and indicates that a more nuanced understanding of pathways at the level of microcircuits is needed to treat 

the underlying disease34. Therefore, in an effort to search for novel forms of maximally selective, ideally single 

cell-level targets for interventions for seizure control, we performed large-scale calcium imaging at cellular 

scale and used this as our primary data source for the subsequent modeling and analysis.  

Computational pipeline to study superhubs in cell-cell communication networks 

Our computational methodology for uncovering the role of superhubs in destabilizing epileptic circuits was 

performed using three distinct yet integrated modules: effective connectivity modeling, higher-order network 

analysis, and single-cell perturbation simulations. 

Effective connectivity modeling of macroscopic brain interactions has been employed successfully to gain new 

insights into brain areas responsible for seizure propagation in the larval zebrafish35. We employed chaotic 

recurrent neural networks21 and FORCE optimization22 techniques, which have been shown to be effective 

tools for modeling neural dynamics related to hippocampal sequence generation36, motor planning37, and 
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coping25. Using this approach, we present for the first time a biologically constrained whole brain model of 

larval zebrafish at cellular resolution, where the biological constraint was incorporated by the inclusion of the 

zebrafish structural connectome23 in the weight-update step. As a result, macroscale subnetworks that 

resembled major anatomical subregions emerged (Supplementary Figure 1). These specific partitions agree 

with converging evidence that suggest a  functional17,38,39 separation between the various front and mid-/hind-

brain structures. 

The parameters of the model form a directed weighted graph, which allowed us to quantify chemoconvulsant-

or chronic epilepsy-induced changes to the underlying graph structure using novel methods in network 

science24. We first found heavy-tailed degree distributions of strong excitatory connections for both zebrafish 

and mouse models (Figs. 3C,8D)12, a feature that is common in large complex networks. This enabled us to 

identify both incoming and outgoing traditional hub neurons based on incoming and outgoing connection 

counts. To further analyze the connectivity structure surrounding traditional hubs, we deployed  novel higher-

order clustering techniques24 and quantified motif conductance (Figs 5A,B). Importantly, the MAPPR 

algorithm24 identified optimal clusters, which allowed us to directly compare motif conductance between 

baseline and preseizure networks. While we reported a non-significant increase (~5%) in average outgoing 

degrees in preseizure networks (Figs 3C,D), feedforward motif conductance of higher-order clusters 

surrounding outgoing hubs increased significantly by 50% on average (Fig 5E).  

Single-cell perturbation simulations are important tools for generating predictions of how individual cells 

influence network dynamics28. Measures were taken in the modeling step to prevent overfitting, such as 

including a sparsity constraint on the number of model parameters, which allowed us to perform controlled 

perturbation simulations. We first interrogated network stability in modeled control and pathological circuits. 

Results revealed that perturbation of just a single outgoing traditional hub neuron can significantly influence 

epileptic global network dynamics compared to similar computational experiment in baseline networks (Figs 4, 

7). One reason for this may be due to loss of inhibition in epileptic circuits27,40,41 which normally functions to 

stabilize network activity28,42,43. Taken together, these results highlight that preseizure networks are 

unstable28,44. Additionally, we showed that targeted-attack simulations of identified superhubs (i.e. hubs with 

high feedforward motif conductance) can stabilize networks to perturbation. These causality-establishing 

simulations (Figs 6, 7) predict that superhubs can more readily propagate sustained excitatory activity 

downstream in epilepsy compared to control, baseline networks.  

Superhubs in the epileptic brain 

The primary conceptual advance in this work was brough to light from mining the higher-order network 

structure of large-scale cellular resolution networks extracted from experimental neural data. Highly connected 

but rare hub neurons have been of great interest for studies working towards the goal of advancing seizure 

control with minimal side-effects7–9. This has been motivated by experimental work showing that hub neurons 

orchestrate network synchrony12,13 and by computational work predicting their role in the transition from inter-

ictal to ictal discharge11. 

However, hub neurons are traditionally defined by simple connection counts, a definition that does not consider 

the rich higher-order features that are often found in complex networks14,15. As these ‘motifs’ are thought to 

influence network function in biological neural circuits15, we deployed our computational pipeline towards the 

goal of identifying potential new targets for control of pathological circuits. The key results presented in this 

paper could not have been uncovered with traditional lower-order graph mining techniques, as the primary 

metric to extract superhubs - motif conductance - was not correlated to connection count (Figs 5F, 6F, 7J). 

Furthermore, because disconnecting superhubs stabilized networks, these findings suggest that complex 

networks can be susceptible to targeted attacks of nodes when considering rich higher-order features rather 

than simple connection count. This shift in perspective – specifically looking at the patterns of connectivity 

surrounding hubs as opposed to connections from hubs - may be important for how we interpret the underlying 
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microscale dynamics from macroscale recordings33, evaluate the efficacy of anti-epileptic drugs (AEDs)19, and 

develop more strategic closed-loop interventions6–9. 

Motifs are a critical feature of the structural and functional connectomes15,26,28, and it has been hypothesized 

that the brain maximizes the diversity of functional motifs15. This diversity may be related to the phenomenon of 

criticality (sometimes called ‘edge of chaos’), a state marked by scale-invariant neural avalanches which has 

been reported in zebrafish45. Prior research showed chemoconvulsant-induced disruption of 

excitation/inhibition (“E/I”) balance in cortical neural networks caused deviation away from criticality (one 

neuron activates one neuron) and into the supercritical regime (one neuron activates more than one neuron)46. 

In a similar manner, feedforward motifs include a ‘mother’ neuron activating two other cells. Therefore, our 

discovery of superhubs dense with feedforward connections in the preseizure brain networks suggests a 

potential new biomarker that may be able to capture a system’s divergence from criticality.  

Our findings in the fish brain in an acute seizure model were remarkably similar to the results from the 

hippocampal dentate gyrus of chronically epileptic mice. While zebrafish brains contain generally similar 

circuits compared to mice16, there are also important differences, for example, concerning cortical structures 

prevalent in mammals that are often sites of epileptic foci. Furthermore, acute seizure models lack persistent 

alterations to the underlying genes, ion channels, synapses, and morphological properties that are present in 

patients with epilepsy. We addressed both of these issues by modeling dentate gyrus granule cell dynamics in 

mice with chronic TLE. Through our computational analysis pipeline, we were able to show that higher-order 

interactions held in distinct experimental epilepsy models and in organisms far removed in evolutionary time. 

Taken together, these results analyzing the higher-order interactions of control and epileptic networks predict a 

new single-cell target – the superhub - for maximally selective, minimally invasive control of epileptic circuits. 

Pinpointing particular superhub cells in vivo from the functional imaging data using the pipeline presented in 

this paper is computationally demanding and has not yet been achieved. However, future studies should be 

able to isolate and manipulate individual superhub neurons in real time through closed-loop interventions as 

there is a one-to-one correspondence between the model nodes and the biological neurons in the network.  

Methods 

EXPERIMENTAL MODELS AND SUBJECT DETAILS 

All procedures were approved by the Institutional Animal Care and Use Committee for both Stanford University 

and Columbia University.  

Zebrafish acute seizure model 

Zebrafish 

Tg(elavl3:H2B-GCaMP6s)47 fish (7 dpf) bred on a Nacre or Casper background were used for imaging and 

registration. Zebrafish were mounted dorsal side up in a thin layer of 2.5% low-melting point agarose 

(Invitrogen) in the lid of a 3 mm petri dish (Fisher), using a sewing needle to position the fish under a 

stereomicroscope (Leica M80). Fish were group-housed under a 14:10 light:dark cycle until the day of 

experiments, and were fed with paramecia (Parameciavap) twice daily from 5-6 days post fertilization onward. 

All testing occurred during the late morning and afternoon. 

Experimental timeline and two-photon imaging 

Two-photon volumetric imaging was performed using an Olympus FVMPE multiphoton microscope (Olympus 

Corporation), with a resonant scanner, in either unidirectional or bidirectional scanning mode. We used a 16x 

objective (0.8 NA; Nikon). Functional brain imaging was performed at 1.2x zoom (1.44 m/pix) in 15 z-planes 

(15 m spacing) at 0.59s/vol (2500 volumes).  
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Baseline control imaging was performed for 5 minutes followed by 15 mM bath application of pentylenetetrazol 

(PTZ) to induce spontaneous seizures20. Functional imaging continued for an additional 20 minutes. All 

zebrafish exhibited at least one putative seizure prior to cessation of imaging. 

After functional brain imaging, a structural stack was obtained at 1 m spacing, starting 15 mm above the first 

z-plane, ending 15 mm below the last z-plane. Images were registered to Z-brain atlas Tg(elavl3:H2B-RFP) 

volume and single-cell functional calcium dynamics were extracted and denoised with CaIMan48. 

Intrahippocampal kainic acid mouse model of chronical temporal lobe epilepsy 

Mice 

Male transgenic mice were obtained from The Jackson Laboratory (Nestin-CreERT2:016261; ROSA26-CAG-

stopflox-tdTomato Ai9:007909) to establish a local breeding colony on a C57BL/6J background. Mice were 

housed in the vivarium on a 12h light/dark cycle, were housed 3-5 mice per cage, and had access food and 

water ad libitum. Mice were housed individually during video-EEG monitoring following kainic acid injection. 

Mature male and female mice (>8 weeks of age) were used for all experiments.  

Experimental timeline  

Kainic Acid (KA) was injected into the ventral hippocampus to induce the epilepsy model and rAAV(Syn-

GCaMP6f) was injected into the dorsal dentate gyrus ipsilateral to KA injection. Shortly after, a chronic imaging 

window was implanted over dorsal dentate and an LFP electrode was inserted adjacent to site of KA injection. 

Following recovery from injection of KA, mice were placed in video-EEG enabled housing where LFP and 

behavioral activity were continuously recorded to monitor ictogenesis. Three weeks post-KA injection, the 

video-EEG verified TLE mice were habituated to being head fixed under the two-photon microscope and 

concurrent Ca2+ imaging and LFP recording was performed. Detailed surgical procedures are reported in31.  

Two-photon imaging 

Two-photon imaging of dentate gyrus granule cells was performed using the same set up as49, at 4 

images/second. Approximately 50-100 mW of laser power under the objective was used for excitation 

(Ti:Sapphire laser, (Chameleon Ultra II, Coherent) tuned to 920 nm), with adjustments in power levels to 

accommodate varying window clarity. To optimize light transmission, the angle of the mouse’s head was 

adjusted using two goniometers (Edmund Optics, +/- 10-degree range) such that the imaging window was 

parallel to the objective. A piezoelectric crystal was coupled to the objective (Nikon 40X NIR water-immersion, 

0.8 NA, 3.5mm WD), allowing for rapid displacement of the imaging plane in the z-dimension. OASIS50 was 

used for denoising. While not being imaged, mice were routinely monitored for interictal and seizure events 

using a custom continuous video-EEG system previously described6. Healthy control mouse data was obtained 

from49, included two-photon recording of granule cells from approximately the same location in dentate gyrus 

as in epileptic mice. 

EFFECTIVE CONNECTIVITY MODELING 

Modeling neural dynamics in healthy and pathological brains 

Zebrafish 

The start of the preseizure state was defined as one minute after PTZ bath application. Seizure initiation was 

defined as three standard deviations above population mean calcium signal during baseline (pre-PTZ) and 

termination was defined as when the population mean signal dropped below this threshold. Correlation matrix 

analysis51 was deployed to quantify network synchronization. Modeling in zebrafish was performed on baseline 

control dynamics first, and the best fit model was used as the initial parameter matrix for learning preseizure 

dynamics. Community detection using Leiden algorithm52 on learned parameter matrix was used to identify 

communities with numerous intra-group connections. 
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Mice 

For both control and chronically epileptic mice, calcium dynamics were acquired during a 30-minute epoch. 

Calcium recordings included artifacts from running and grooming that resulted in prolonged hyper-synchronous 

events. Therefore, a continuous 3-5 minute time window lacking such events was identified for each mouse 

and used to model calcium dynamics. 

Chaotic Recurrent Neural Networks 

Models of cell-cell effective communication were built using chaotic recurrent neural networks (RNN)21. Each 

neuron experimentally imaged was represented as a node in the network and edges represent the effective 

(causal) influence between pairs of nodes. The governing dynamics of the chaotic RNN are: 

  𝜏
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑥𝑖(𝑡) + 𝑔 ∑ 𝐽𝑖𝑗𝜑 (𝑥𝑗(𝑡))𝑁

𝑗=1 +  ℎ𝑖(𝑡) 

𝑧𝒊(t) =  ∑ 𝐽𝑖𝑗𝜑 (𝑥𝑗(𝑡))

𝑁

𝑗=1

 

𝜑(. ) = tanh (. ) 

𝑥𝑖(𝑡) is the inferred intracellular current of node i. 𝜑(𝑥𝑖(𝑡)) represents firing rate. 𝑧𝒊(t) is the estimated calcium 

signal. 𝜏 is the time constant of the system (zebrafish: 1.5 s; mouse: 0.625 s). ℎ𝑖(𝑡) is uncorrelated white noise 

sampled from a normal distribution with mean 0 and standard deviation 0.05 (zebrafish) / 0.005 (mouse). g is 

the gain parameter that determines whether there will be chaos in the system (g<1: stable equilibrium; g>1: 

chaos). We used g=1.25 for both zebrafish and mouse25,36. Lastly, J is the effective connectivity matrix that 

represents the parameters of the model. At initiation of learning baseline control dynamics in zebrafish and 

learning both control and preseizure dynamics in mice, the values of J that were not removed after applying a 

sparsity mask (zebrafish: 0.10; mouse: 0.40) were sampled from a normal distribution with mean 0 and 

standard deviation 
1

√𝑁𝑝
. N is the number of nodes and p is the sparsity. The models contain 𝑝 ∗ 𝑁 ∗ (𝑁 − 1) 

parameters. Dynamics were solved using Euler’s method (dt=0.25 s). 

Reproducing experimental calcium data using FORCE learning 

The effective connectivity parameter matrix was optimized to reproduce the experimental calcium data through 

FORCE learning22. This was done through recursive least-squares optimization where at each time point an 

error signal 𝑒𝑖(𝑡) =   𝑧𝑖(𝑡) −   𝑓𝑖(𝑡) is calculated between node output  𝑧𝑖(𝑡) and experimental calcium trace  

𝑓𝑖(𝑡). Given this error, the traditional learning rule is as follows: 

∆𝐽𝑖𝑗 = 𝑐 ∗ 𝑒𝑖(𝑡) ∗  ∑ 𝑃𝑗𝑘𝜑(𝑥𝑘(𝑡))

𝑁

𝑘=1

 

𝑐 =  
1

1 + 𝜑(𝑡)𝑇𝑃(𝑡)𝜑(𝑡) 
 

𝑃(𝑡) = 𝑃(𝑡 − 1) −  𝑐𝑃(𝑡 − 1)𝜑(𝑡)𝜑(𝑡)𝑇𝑃(𝑡 − 1) 

Where c is the effective learning rate used for stability and P(t) is updated in a recursive fashion at every time 

point. At initiation, P(0) was set to the identify matrix. Learning was performed for 500 epochs for all zebrafish 

and mouse models, where one epoch is defined as one run of the optimization routine for the duration of the 

experimental trial. Convergence was assessed by tracking the mean squared reconstruction error between unit 

activity and experimental data.  

Biologically constrained FORCE using zebrafish structural connectome 
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The zebrafish structural connectome23 was incorporated into zebrafish FORCE learning as a biological 

constraint. The structural connectome is a weighted undirected graph between 30 distinct subregions 

occupying the telencephalon, diencephalon, mesencephalon, and rhombencephalon. The modified weight-

update step is: 

∆𝐽𝑖𝑗
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 =  𝑆𝑅(𝑖),𝑅(𝑗) ∗ ∆𝐽𝑖𝑗 

where i,j are individual nodes (neurons) and 𝑆𝑅(𝑖),𝑅(𝑗) is the structural connectivity between subregions R(i) and 

R(j).  

DATA ANALYSIS AND QUANTIFICATION 

Identifying traditional hub neurons 

The optimized effective connectivity parameter matrix was binarized by converting the top 10% of edges to a 1 

and converting the remaining edges to a 0. The outgoing and incoming degree was calculated for each neuron. 

Neurons above the 90th percentile outgoing (incoming) degree score were marked as outgoing (incoming) 

hubs.  

Force-directed graphs 

The effective connectivity matrix was visualized using the Barnes-Hut N-body simulation algorithm53. Here, 

each node can be thought of as a repelling particle and the edges between nodes are modeled as attractive 

springs. The objective of the algorithm is to find an optimal force-directed spatial configuration such that (i.e. 

net force = 0). The Barnes-Hut algorithm was applied to the binarized parameter matrix after thresholding for 

strongest connections (see Identifying traditional hub neurons) and used to visualize incoming and outgoing 

hubs connections in zebrafish. 

Perturbation simulations and trajectory deviation 

To simulate the effect of perturbation on network dynamics, a single hub neuron was ‘current clamped’ to 

achieve maximum firing rate (500ms step current). The current clamp perturbation was initiated at 0.2 

normalized time, consistent for all zebrafish and mouse models. Synthetic calcium traces were then generated 

for each neuron before and after perturbation. 

The Euclidean distance d between the mean calcium signal of network with perturbation and with the mean 

calcium signal of network without perturbation was calculated. 

𝑑(𝑥(𝑡), 𝑦(𝑡)) =  √∑ (𝑥𝑖 −  𝑦𝑖)2𝑇
𝑖=1   

To compare simulations across control and epileptic networks, trajectory deviation TD was calculated as the 

Euclidean distance normalized by remaining time points left after start of perturbation to. 

𝑇𝐷(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

𝑇 − 𝑡𝑜
 

Quantifying motif conductance of hubs using local higher-order clustering 

Motif-based approximate Personalized PageRank (MAPPR) algorithm24 was used to identify an optimal higher-

order cluster (i.e. minimum motif conductance) surrounding a hub neuron. Given a motif M, MAPPR has three 

key steps. 

Constructing motif weighted graph W 
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The input graph, taken to be the binarized parameter matrix after thresholding for strongest connections (see 

Identifying traditional hub neurons), is transformed into a weighted graph W where the weight depends on M. 

Specifically, Wij is the number of instances of M containing nodes i and j.  

Compute the approximate personalized PageRank vector 

The personalized PageRank (PPR) vector represents the stationary distribution of a modified random walk 

seeded on a hub node u. At each step of the random walk, the random walker is ‘teleported’ back to the 

specified seed node with probability 1 – α, where α was set to 0.98. The stationary distribution of this process 

for a seed node u (the PPR vector pu), will have larger values for nodes “close” to u. The stationary distribution 

is the solution to the following system of equations: 

(𝐼 − 𝛼𝐴𝐷−1)𝑝𝑢 = (1 − 𝛼)𝑒𝑢 

Where I is the identify matrix, A is the adjacency matrix, D is the diagonal degree matrix, and eu is the vector of 

all 0’s except for a 1 in position u. The PPR vector pu can be approximated via 𝑝𝑢̃ with accuracy 𝜀 = 0.0001 

such that 

0 ≤ 𝐷−1𝑝𝑢 − 𝐷−1𝑝𝑢̃ ≤  𝜀 

Identify higher-order cluster as set with minimal motif conductance 

A sweep procedure is used given approximated APPR vector 𝑝𝑢̃. Nodes are sorted by descending value of the 

vector 𝐷−1 𝑝𝑢̃ and are incorporated one at a time into a growing set X. After a node added to the set, the motif 

conductance is calculated.  

φM(𝑋) =  
𝑐𝑢𝑡𝑀(𝑋)

min (𝑣𝑜𝑙𝑀(𝑋),𝑣𝑜𝑙𝑀(𝑋′))
 

where 𝑣𝑜𝑙𝑀(𝑋) is the number of motif endpoints in X, , 𝑣𝑜𝑙𝑀(𝑋′) is the number of motif endpoints for nodes not 

in X, and 𝑐𝑢𝑡𝑀(𝑋) is the number of instances of M that have at least one end point in X. The set with the 

smallest motif conductance is deemed optimal and returned. For traditional edge-based clustering, step one is 

skipped, and the edge conductance score is quantified as above but replacing motif instance M with simple 

edges. Only clusters with at least 5 nodes were considered for analysis. 

Statistical analysis 

Statistics analysis was performed using python scipy.stats package. Comparisons involving more than two 

groups were p-value adjusted (“p-adjusted”) using Bonferroni correction. p-values are reported in all figure 

subpanels except when p<0.001. Statistical significance was set at 0.05. No data points were left out.  
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Figure Legends 

Figure 1: Whole brain imaging of larval zebrafish acute seizure model at single-cell resolution 

A: Representative z-plane images acquired from whole-brain cellular resolution two-photon microscopy of 

larval zebrafish before PTZ (baseline; top) application and during PTZ-induced seizure (bottom). 

B: Extracted neural somata point cloud. Colors indicate major brain regions. Orange: telencephalon; Green: 

diencephalon; Blue: mesencephalon; purple: rhombencephalon 

C: (top) Population mean calcium signal and (bottom) heatmap of single-cell functional calcium dynamics from 

neurons extracted in B. PTZ application, seizure initiation, and seizure termination are demarcated by arrows. 

Imaging was performed for 25 minutes and PTZ was added 5 minutes into the imaging session. 

D: Cross-correlation matrices of single-cell calcium dynamics during baseline, preseizure, and seizure epochs.  

E: Quantification of network synchrony from correlation matrices in D show that single-cell calcium dynamics 

during seizure epoch are significantly more synchronized compared to single-cell calcium dynamics in baseline 

(one-sided paired t-test, p=0.034 after Bonferroni correction) and in preseizure (one-sided paired t-test, 

p=0.006 after Bonferroni correction) epochs. 

F: Single-cell calcium traces over major anatomical regions plotted during baseline and preseizure epochs. 

Note the differences in vertical scale bars. 

Figure 2: Cellular resolution effective connectivity modeling to extract cell-cell communication 

networks 

A: Cellular resolution chaotic recurrent neural network (RNN) with 90% sparsity constraint to prevent 

overfitting. Each neuron imaged in the larval zebrafish is represented as a node in the RNN. Edges represent 

parameters of the model and are were optimized with FORCE learning to match experimental calcium data. 

B: The zebrafish structural connectome was incorporated as a biological constraint. (Left) Zebrafish 

macroscale connectivity matrix (SMacro). (Right) Zebrafish microscale connectivity (Smicro), which represents the 

strength of connectivity between the regions in which neurons i and j occupy. 

C: (Learning rule) FORCE learning tunes the weight Jij
 between neuron i (target) and j (source). The update is 

proportional the structural connectivity score Smicro
ij
 , multiplied by the difference between unit activity of node i 

(black trace) and target Ca2+ waveform acquired experimentally (red trace). (Training pipeline)  Models 

converged using the weight update that incorporated the structural connectome. The baseline model was 

trained on baseline calcium dynamics with an initial random matrix. To map the changes to the underlying 

microcircuit connectivity resulting from bath wash in of PTZ, the optimized parameters of the baseline model 

was then used as the seed for training the preseizure model on preseizure calcium dynamics. 

D:  Representative examples of mean population Ca2+ trace and individual Ca2+ traces with modeled fits 

overlaid for baseline (left) and preseizure (right) dynamics. Note the scale bars. P: population mean calcium 

signal. (Bottom) PCA state-space analysis of experimental (black) and modeled calcium activity (red). 

Figure 3: Identification of outgoing and incoming hubs 

A: Hub neurons were separated into incoming (numerous and strong postsynaptic inputs) and outgoing 

(numerous and strong presynaptic outputs).  

(B,C): Algorithm for identifying incoming and outgoing hub neurons in parameter matrix optimized though 

constrained FORCE learning. B: The parameters (top) are binarized into a 0-1 graph (bottom) by keeping the 

top 10% of excitatory weights. Then, the incoming and outgoing degree for each neuron is calculated from the 

binarized graph. C: Baseline and preseizure network degree distributions for outgoing (top) and incoming 
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(bottom) degree are heavy-tailed, resembling a power-law. A 90% cutoff (vertical lines) was used to identify 

outgoing and incoming hubs in each network. 

D: 90% threshold cutoff as a fraction of nodes in network and percent change of average hub degree as 

measured from outgoing (top) and incoming (bottom) degree distributions. Neither paramters was statistically 

significant between baseline and preseizure networks (two-sided unpaired t-test, p>0.05).  

E: Spatial distribution of incoming and outgoing hubs for baseline and preseizure states. Orange = 

telencephalon; Green = diencephalon; Blue = mesencephalon; Purple = rhombencephalon. 

F: Fraction of incoming (top) and outgoing (bottom) hubs residing in each macroscale brain region for baseline 

(open circle) and preseizure (open triangle) networks. Incoming hubs were consistently localized to 

telencephalon and mesencephalon. Outgoing hubs were consistently localized to diencephalon. Baseline and 

preseizure networks had similar macroscale spatial organization of incoming and outgoing hubs (unpaired t-

test, p>0.05). 

Figure 4: Perturbation of individual outgoing hubs destabilize preseizure networks  

A: Control network response to perturbation (black arrows) of a single outgoing hub. (Top) Population mean 

calcium signal of experimental data (cyan), unperturbed model (blue), and perturbed model simulation (red). 

(Bottom) PCA analysis reveals little change in network dynamics in response to perturbation. 

B: Perturbation of single outgoing hub in preseizure network showing significant changes to network dynamics 

compared to A. 

C: Violin plots show that perturbing individual outgoing hubs (one-sided Mann-Whitney U-test, p<0.001) and 

incoming hubs (one-sided Mann-Whitney U-test, p<0.001) in preseizure networks (purple) had significantly 

higher influence on network dynamics compared to similar simulations in baseline networks (gray). 

D: Outgoing hub trajectory deviation distributions in baseline (gray) and preseizure networks (purple) 

normalized by incoming hub median trajectory deviation score for the respective populations. Perturbation of 

outgoing hubs in preseizure state has significantly more influence over network dynamics (one-sided Mann-

Whitney U-test, p<0.001). 

E: Median values from (D) were extracted for each fish and plotted, revealing that preseizure networks have 

significantly reduced resiliency to perturbation of a single outgoing hub (one-sided paired t-test, p=0.042). 

F,G: Visual representation of connections between outgoing and incoming hubs for baseline (F) and 

preseizure (G) network after constrained FORCE learning. Graphs were generated using Barnes-Hut 

algorithm53. Gray edges: outgoing hubs (O.H.) to incoming hubs (I.H.); Purple edges: incoming hubs (I.H.) to 

incoming hubs (I.H.); Golden edges: outgoing hubs (O.H.) to outgoing hubs (O.H.). 

H: Toy model of connections between outgoing (green) and incoming (blue) hubs for baseline (top) and 

preseizure (bottom) networks.  

Figure 5: Emergence of superhubs in preseizure brain 

A: Higher-order clustering enables identification of a collection of nodes that form rich feedforward connections 

with a single hub neuron (left). This approach contrasts to traditional edge clustering, which only considers 

simple edges (right). Note that different clusters emerge depending on which method is used.  

B: Toy model of higher-order clustering (left) and edge clustering (right) (from Yin et al, 2017). Edge 

conductance quantifies the cluster quality by considering the ratio of edges that span between partitions and 

which reside completely inside the partition. The motif conductance metric measures the same ratio but with 

respect to motifs. Intuitively, the higher the conductance, the more easily it is for excitatory activity to propagate 

downstream. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.10.20.340364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.340364
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

C: Violin plots of edge conductance (left) and feedforward motif conductance (right) of outgoing hub neurons. 

Both edge (one-sided Mann-Whitney U, p<0.001) and feedforward motif conductance (one-sided Mann-

Whitney U, p<0.001) are higher in preseizure than baseline networks. However, note the differences in range. 

This predicts the emergence of ‘superhubs’ in preseizure networks.  

D: Edge conductance (one-sided paired t-test, p=0.011) and feedforward motif conductance (one-sided paired 

t-test; p=0.033) are significantly increased in preseizure networks across the sample population. Medians from 

C plotted. 

E: Percent change of feedforward motif conductance relative to baseline was significantly greater than edge 

conductance (one-sided paired t-test, p=0.047). 

F: Scatter plot of feedforward motif conductance versus outgoing degree of hubs in baseline and preseizure 

networks reported no significant correlation between the two variables individually or as a group (see inset). 

Figure 6: Disconnecting superhubs stabilizes preseizure networks 

A: Edge weights of all hubs targeting its edge cluster constituents and higher-order cluster constituents were 

dampened to explore relative importance of simple edges versus edges belonging to feedforward motifs on 

network dynamics. 

B: (Left) Trajectory deviation after dampening edges. (Right) Trajectory deviation percent change relative to 

dampening edges from an outgoing hub to its local edge cluster. 

C: Schematic for testing the effect of disconnecting hubs with the highest conductance versus lowest 

conductance on preseizure network dynamics.  

D: (Top) Trajectory deviation versus fraction of clusters disconnected in the highest conductance and lowest 

conductance partitions. (Bottom) Number of edges disconnected for each group. 

E: Mean calcium signal of high conductance higher-order hubs (i.e. superhubs) and the remaining hub 

population. 

F: Outgoing degree cumulative distribution for superhubs versus remaining hub population. Importantly, 

superhubs are not biased towards the highest outgoing degrees. 

G: (Left) Mean population calcium signal spectrograms generated from unchanged/connected preseizure 

network (top), preseizure network with superhubs disconnected (middle), and difference. (Right) Power density 

spectrum (PSD) of mean population calcium signal for baseline, connected preseizure (violet), and 

disconnected preseizure network. 

H: (Left) Percent change of signal variance (i.e. total power) in mean population calcium signal measured 

before and after perturbation of a single hub. (Right) Trajectory deviation percent change. 

I: (Top) Mean population calcium signal of disconnected preseizure network before and after perturbation of a 

single outgoing hub. (Bottom) PCA analysis before and after perturbation. 

Figure 7: Superhubs in kainic acid mouse model of chronical temporal lobe epilepsy 

A: Experimental setup. Control and chronically epileptic mice were virally injected with GCaMP in dentate 

gyrus (DG) and imaged with 2p microscope. 

B: DG granule cell DF/F for control and chronically epileptic mouse. 

C: Models fits of experimentally recorded granule cells from chronically epileptic granule mouse using FORCE 

learning. 
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D: Outgoing and incoming degree distributions for modeled control dentate and chronically epileptic dentate 

networks showing heavy-tailed distributions. 

E: Network response to perturbation (black arrows) of a single outgoing hub neuron in a modeled control (left) 

and chronically epileptic (right) network. 

F: Trajectory deviation in response to perturbation of individual outgoing hubs is significantly higher (one-sided 

Mann-Whitney U-test, p<0.001) in control (gray) than chronically epileptic dentate network (purple). 

G: Feedforward motif conductance of individual hubs is significantly higher (one-sided Mann-Whitney U-test, 

p<0.001) in control (gray) than chronically epileptic (purple) dentate network.  

H: Feedforward motif conductance is significantly increased in chronically epileptic networks across the sample 

population (one-sided unpaired t-test, p=0.0034). 

I: Outgoing degrees and feedforward motif conductance are not significantly correlated. 

J: Hubs with highest feedforward motif conductance values (i.e. superhubs) did not have the highest outgoing 

degrees (one-sided KS-test, p=0.71). 

K: Disconnecting feedforward edges of superhubs significantly reduced the response of a chronically epileptic 

dentate network to perturbation, as measured by percent change in global signal variance (one-sided Wilcoxon 

signed-rank test, p<0.001). 

L: Population mean calcium dynamics before (blue) and after (red) perturbation of a single hub for fully 

connected (left) and disconnected (right) chronically epileptic dentate network. 
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