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Abstract

Few-shot knowledge graph (KG) completion task aims to perform inductive rea-
soning over the KG: given only a few support triplets of a new relation ./ (e.g.,
(chop, ./, kitchen), (read, ./, library)), the goal is to predict the query triplets
of the same unseen relation ./, e.g., (sleep, ./, ?). Current approaches cast the
problem in a meta-learning framework, where the model needs to be first jointly
trained over many training few-shot tasks, each being defined by its own relation,
so that learning/prediction on the target few-shot task can be effective. However,
in real-world KGs, curating many training tasks is a challenging ad hoc process.
Here we propose Connection Subgraph Reasoner (CSR), which can make predic-
tions for the target few-shot task directly without the need for pre-training on the
human curated set of training tasks. The key to CSR is that we explicitly model
a shared connection subgraph between support and query triplets, as inspired by
the principle of eliminative induction. To adapt to specific KG, we design a corre-
sponding self-supervised pretraining scheme with the objective of reconstructing
automatically sampled connection subgraphs. Our pretrained model can then be
directly applied to target few-shot tasks on without the need for training few-shot
tasks. Extensive experiments on real KGs, including NELL, FB15K-237, and
ConceptNet, demonstrate the effectiveness of our framework: we show that even a
learning-free implementation of CSR can already perform competitively to existing
methods on target few-shot tasks; with pretraining, CSR can achieve significant
gains of up to 52% on the more challenging inductive few-shot tasks where the
entities are also unseen during (pre)training.

1 Introduction

Knowledge Graphs (KGs) are structured representations of human knowledge, where each edge
represents a fact in the triplet form of (head entity, relation, tail entity) Ji et al. [2022],
Mitchell et al. [2015], Speer et al. [2017], Toutanova et al. [2015]. Since KGs are typically highly
incomplete yet widely used in downstream applications, predicting missing edges, i.e., KG completion,
is one of the most important machine learning tasks over these large heterogeneous data structures.
Deep learning based methods have achieved great success on this task Teru et al. [2020], Wang et al.
[2021], Zhu et al. [2021], but the more challenging few-shot setting Xiong et al. [2018] is much
less explored: Given a background knowledge graph, an unseen relation, and a few support edges
in triplet form, the task is to predict whether this unseen relation exists between a query entity and
candidate answers based on the background knowledge graph. Such a setting captures the most
difficult and important case during KG completion: predict rare relations (i.e. appearing only a few
times in the existing KG) and incorporating new relations into the KG efficiently. It also tests the
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Figure 1: The few-shot KG completion problem includes (A) few-shot task that aims to learn a new
relation (purple) and (B) background knowledge graph. Our CSR framework (C) first contexualizes
all triplets in the background KG, then finds the shared hypothesis in the form of a connection
subgraph using the Hypothesis Proposal module, and finally tests whether there is an evidence close
enough to the hypothesis using Evidence Proposal module. In general all edges shown have different
relation types, but here we only highlight ones in the connection subgraph with colors.

inductive reasoning skill of the model on deriving new knowledge data-efficiently, which is critical
for AI in general.

Existing approaches to few-shot KG completion Chen et al. [2019], Sun et al. [2022], Xiong et al.
[2018], Zhang et al. [2020] typically adopt the meta-learning framework Hospedales et al. [2021],
where the model is trained over a meta-training set consisting of many few-shot tasks created from
different relations in the background knowledge graph. GMatching Xiong et al. [2018], FSRL Zhang
et al. [2020] and Att-LMetric Sun et al. [2022] are metric-based meta-learning methods that try to
learn a good metric where positive query pairs are closer to representation of edges in the support set
than the negative ones. MetaR Chen et al. [2019] is an optimization-based meta-learning method
that use a meta-learner to improve the optimization of the task learner, such that the task learner can
quickly learn with only few examples.

However, creating the meta-training set for some unknown few-shot tasks in test time is a very
difficult ad hoc process in practice. On existing benchmarks Xiong et al. [2018], the training few-shot
tasks and the target few-shot tasks are both randomly sampled from relations with least occurrences
in the full knowledge graph, meaning the training and target relations are from the same distribution.
But in reality, one has no information about the target few-shot tasks and the meta-training needs to be
manually constructed out of the background knowledge graph. This is challenging since background
knowledge graph often has a limited number of tasks due to the limited number of relations; creating
too many meta-training tasks out of the background KG may remove a large number of edges from
the KG, making it sparse and hard to learn over. Moreover, with a small meta-training set, the
target few-shot tasks are very likely out of the curated meta-training set distribution, since the novel
relation could be more complicated than known ones and the entities involved the target few-shot
tasks can also be unseen. This then makes meta-learning based method suffer negative transfer due to
distribution shift. Thus, having a method that can perform well on any novel few-shot tasks without
relying on specifically designed meta-training set is crucial for real-world applications.

Here we propose a novel modeling framework Connection Subgraph Reasoner (CSR) that can make
prediction on the target few-shot task directly without the need for meta-learning and creation of a
curated set of training few-shot tasks. Our insight is that a triplet of the unseen relation of interest
can be inferred through the existence of a hypothesis in the form of a connection subgraph, i.e. a
subgraph in KG that connect the two entities of the triplet. Intuitively, the connection subgraph
represents the logical pattern that implies the existence of the triplet. For the (chop, ./, kitchen)
example, such a connection subgraph that implies ./ is a two hop path in KG: {(chop, can be done
with, knife), (knife, is located at, kitchen)}. This insight allows us to cast the few-shot
link prediction as an inductive reasoning problem. Following the eliminative induction method of
inductive reasoning Hunter [1998], our framework first recovers this hypothesis from the support
triplets by finding the connection subgraph approximately shared among the support triplets, then
tests whether this hypothesis is also a connection subgraph between the query entity and a candidate
answer. We show the full pipeline along with an example of connection subgraph in Figure 1. To
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better adapt to specific KG, we design a novel encoder-decoder architecture based on graph neural
networks (GNN) to implement the two stages and a corresponding self-supervised pretraining scheme
to reconstruct diverse connection subgraphs.

We demonstrate that a training-free implementation of CSR via edge mask optimization can already
discover the connection subgraph and reach link prediction performance competitive to many meta-
learning methods over real-world knowledge graphs. With pretraining and optionally meta-learning
over background KG uniformly, our method achieves high performance on both transductive and
inductive few-shot test tasks that involve long tails relations, which are out of distribution to the
training tasks; while existing methods using meta-learning suffers from distribution shift and cannot
handle inductive tasks. Over real KGs including NELL Mitchell et al. [2015], FB15K-237 Toutanova
et al. [2015], and ConceptNet Speer et al. [2017], our method consistently exceeds or matches
state-of-the-art methods in meta-training tasks free setting, and far exceeds the best existing methods
by up to 52 % in the the more challenging inductive few-shot tasks where entities in the target
few-shot tasks are also unseen. The implementation of CSR can be found in https://github.
com/snap-stanford/csr.

2 Related Work

2.1 Few-shot Relational Learning via Meta-Learning

Meta-learning is a paradigm of learning across a set of meta-training tasks and then adapting to a new
task during meta-testing Hospedales et al. [2021]. To the best of our knowledge, all existing methods
on few-shot KG completion follow the meta-learning paradigm to address the data scarcity in the
target few-shot task Chen et al. [2019], Sun et al. [2022], Xiong et al. [2018], Zhang et al. [2020].
Therefore, these methods require the access to a meta-training set that contains many few-shot KG
completion tasks for training. On the two existing benchmarks NELL-One and Wiki-OneXiong et al.
[2018] the meta-training set is constructed by sampling from long tail relations, in the same way as
the target few-shot tasks are constructed. However, such a meta-training set is not given in real world
application and needs to be manually constructed out of the background knowledge graph G to mimic
the actual few-shot task during test time. This curation is inherently challenging because that the
background knowledge graph has a limited number of relations/tasks in G , the distribution of the
novel relations of interest is unknown, and the entites in the target few-shot tasks can be unseen in
the background KG. In this paper, we develop a more general pretraining procedure to remove the
dependency on manually created training tasks.

2.2 Few-shot Learning via Pretraining

It has been shown in natural language processing Brown et al. [2020], Radford et al. [2019] and
computer vision Chowdhury et al. [2021], Dosovitskiy et al. [2021], Gidaris et al. [2019] domains
that large-scale self-supervised pretraining can significantly improve task-agnostic few-shot learning
ability. One of the most successful pretraining objectives is predicting the next token or image patch
given ones seen before it. However, how to design such powerful pretraining objectives for few-shot
relational learning is still under-explored. In this work, we design a well motivated self-supervised
pretraining objective, i.e. recovering diverse connection subgraphs that correspond to different
inductive hypothesis. We show that such a pretraining scheme can significantly improve few-shot
relational learning tasks on knowledge graphs.

3 Few-shot KG Completion

Few-shot KG completion is defined as follows Chen et al. [2019], Xiong et al. [2018]: Denote the
background KG that represents the known knowledge as G = (E ,R, T ), where E andR represents
the set of entities and relations. T = {(h, r, t)|h, t ∈ E , r ∈ R} represents the facts as triplets.
Given a new relation r′ 6∈ R and a support set Sr′ = {(hk, r′, tk)|hk ∈ E}Kk=1, we want to make
predictions over a query set Qr′ = {(hj , r′, ?)|hj ∈ E}Jj=1. This prediction on (hj , r

′, ?) is typically
converted to scoring triplet (hj , r′, e) for all candidate entities e then ranking the scores. So we will
proceed to consider Qr′ as directly containing full triplets (hj , r′, e) to score. We call this a K-shot
KG completion task, typically the number of support is a small number (K ≤ 5).

3
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Note that existing works generally assume the entities in the few-shot tasks (support + query set)
belong to the background KG. However, in real world cases, the goal of few-shot KG completion is
to simulate learning of novel relations that may involve new entities not exist yet on the KG. Thus,
in this paper we also consider a more challenging inductive setting where entities in the few-shot
tasks do not belong to the entity set E , but new triplets about these unseen entities can be added at
test time.

4 Connection Subgraph Reasoner

In this section, we first discuss our main motivation from the inductive reasoning perspective and
present the general framework based on it. Then we introduce both learning-free and learning-based
implementations of this framework.

4.1 Inductive Reasoning

Inductive Reasoning refers to the reasoning process of synthesizing a general principle from past
observations, and then using this general principle to make predictions about future events Hunter
[1998]. Few-shot link prediction task can be seen as an inductive reasoning task with background
knowledge.

The key motivation of our work is eliminative induction, one of the principled methods used to
reach inductive conclusions. Specifically, we consider the scientific hypothesis method: eliminating
hypotheses inconsistent with observations. In the context of few-shot link prediction task, we
explicitly try to find a hypothesis consistent with all examples in the support set, then test whether the
the query is consistent with this hypothesis.

To illustrate a simple case of this, we use the ./ example where the support triplets are (chop,
./, kitchen), (read, ./, library), and query triplet is (sleep, ./, ?). From a background KG
(e.g.ConceptNet), we can know a lot of knowledge in forms of triplets about these entities, such as
(kitchen, is part of, a house) and (read, is done by, human) etc. We essentially want to
find an induction hypothesis that explains how chop is related to kitchen in the same way that read is
related to library. In other words, we want to find the shared connection pattern over the background
KG that connects both two pairs of entities. In this case, we can observe that there is a simple shared
2 hop connection path that connects both pairs:

{(chop, can be done with, knife), (knife, is located at, kitchen)} (1)
{(read, can be done with, book), (book, is located at, library)} (2)

The abstracted inductive hypothesis consistent with both examples in the support set is then

∃Z, (hc, can be done with, Z) ∧ (Z, is located at, tc) =⇒ (hc, ./, tc). (3)

This hypothesis can then be used to deduce that (sleep, ./, bedroom) has a high score, since we know
{(sleep, can be done with, bed), (bed, is located at, bedroom)} from the background KG.

More generally, the shared connection pattern can be graph structured instead of a two-hop path,
which then form a connection subgraph between the two end entities instead of a connection path
(Figure 1). Here we define the connection subgraph: Let G′ = (E ′,R′, T ′) be any subgraph of the
background KG G, (i.e., E ′ ⊆ E , R′ ⊆ R and T ′ ⊆ T ) that satisfies the following requirement
for a given pair of nodes (hc, tc) on the KG. (1) hc ∈ E ′ and tc ∈ E ′; (2) there is no disconnected
component. We define the connection subgraph GC of (hc, tc) to be any such G′ where we further
ignore the node identity. The key insight is that we should only consider the relation structure patterns
and abstract away the node identity in order to construct a hypothesis.

Then a hypothesis like Eq. 3 can be represented as a connection subgraph GC by interpreting
each clause as an edge. And such a hypothesis is consistent with a support/query triplet (h, r,
t) if GC is a connection subgraph of h, t. In terms of the ./ example, the triplet (sleep, ./,
bedroom) is consistent with the hypothesis Eq. 3 because the connection subgraph form of the
hypothesis (hc, can be done with, Z) ∧ (Z, is located at, tc) is a connection subgraph be-
tween sleep and bedroom, with hc, Z, tc corresponding to sleep, bed and bedroom respectively.
Given a pair of node, we further call the KG subgraph with node identity an evidence that wit-
nesses why the hypothesis is consistent with a connection subgraph of h, t;. Note the key difference
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between hypothesis and evidence is that, different pair of nodes may share the same hypothe-
sis but each may have different evidence to support the consistency with such a hypothesis. As
an example, for both (sleep, ./, bedroom) and (chop, ./, kitchen), the hypothesis is the same
(hc, can be done with, Z)∧(Z, is located at, tc). Yet the evidences are respectively {(sleep,
can be done with, bed), (bed, is located at, bedroom)} and {(chop, can be done with,
knife), (knife, is located at, kitchen)}

Note that this hypothesis formulation can be seen as a generalization of the typical path structured
logic rules considered by the multi-hop reasoning Lin et al. [2018], Lv et al. [2019], Xiong et al.
[2017] and rule induction Galárraga et al. [2013], Qu et al. [2021] literature. However, even with
our graph structured hypothesis so far, such a strict way of testing the consistency with a hypothesis
by checking of whether GC is a connection subgraph of h, t exactly would be time-consuming and
brittle due to the fuzziness of target relations and the KG incompleteness. Below we develop our
framework that relaxes the hypothesis representation and consistency testing criteria.

4.2 General Framework

Based on the above motivation, we design the following general framework Connection Subgraph
Reasoner (CSR) that includes 2 main modules: hypothesis proposal module Mp and evidence
proposal module Me. CSR then has the following 3 components:

(1) Triplet Contextualization. We first contextualize each triplet (h, r′, t) in support set Sr′ and
query set Qr′ by retrieving its contextualized graph G(h, t) ⊂ G such that it contains h, t and
captures most of the immediately relevant information about the pair. There are several prior works
on retrieving smaller subgraph around a triplet in KG for link prediction Teru et al. [2020], Zhang and
Chen [2018]. We choose to use the enclosing subgraph proposed by Grail Teru et al. [2020], which is
the subgraph induced by all nodes that are in the k hops neigborhood of both h, t. We generally use
k = 1, 2 depends on the density of KG. We also supplement with random sampling of the neighbors
of h, t in case the enclosing subgraph itself is too small. We call the contextualized graphs of support
triplets support graphs, and the contextualized graphs of query triplets query graphs.

(2) Hypothesis Proposal. After contextualization, we would like to find the hypothesis consistent
with all support graphs. We use a hypothesis proposal module Mp to generate a hypothesis from
each support graph such that they are most similar to each other. Each hypothesis can be represented
as a soft edge mask m : [0, 1]E over edges in the corresponding support graph. To aggregates these
hypotheses to produce the embedding of one final hypothesis b, we take the mean of their GNN
embedding produced by a graph encoder Menc.

{mi}Ki=1 =Mp({G(hi, ti)|(hi, r′, ti) ∈ Sr′})

b =
1

K

K∑
i=1

Menc(G(hi, ti),mi)
(4)

Mp should compare all support graphs and output masks that represent the largest common connection
subgraph, i.e.

argmax(

K∑
i=1

∑
E

mi),

s.t. ∀i, j ∈ 1...K, s(Menc(G(hi, ti),mi), Menc(G(hj , tj),mj)) > 1− ε (5)

(3) Hypothesis Testing. Finally, we want to test whether each query graph is consistent with the
proposed hypothesis. We uses evidence proposal module Me to take in b and a query graph to output
the closest evidence to the hypothesis represented by b. The score of the query is then the cosine
similarity between b and the embedding of the evidence.

mq =Me(b,G(hq, tq))

score = s(b,Menc(G(hq, tq),mq))
(6)

Me is intended to output mq such that

s(Menc(G(hq, tq),mq), b) > 1− ε (7)
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Overall, we model hypothesis softly as the aggregation of approximately shared hypothesis connection
subgraphs between support graphs as found by Mp, then test its probabilistic consistency with query
graph by finding how close an evidence for this hypothesis can be found in the query graph by Me.

For the Menc, we use the alternative message passing in PathCon Wang et al. [2021] so that that it
does not use entity embedding as input can measures graph isomorphism :

aiv =
1

1 +
∑

e∈N (v)me

∑
e∈N (v)

sie ·me (8)

siv = aiv||1(v = h)||1(v = t) (9)

si+1
e = σ(([sv, su, se]) ·W i + bi), u, v ∈ N (e) (10)

Menc(G,m) = max_pool(aLv )||aLh ||aLt , (11)

where L is number of layers and s1e is random or pretrained relation embedding. Note that we
concatenate the head and tail representation in the final graph representation so that the hypothesis
and evidence subgraph are compared with heads and tails matched already.

For Mp and Me, we introduce two specific implementations that satisfies the requirements Eq. 5 and
7 in the following sections.

4.3 CSR-OPT: Learning-free Implementation

We implement Mp and Me as a learning free optimization processes, where the masks are optimized
toward Eq. 5 and 7 directly.

For Mp, we formulate it as a constraint optimization problem:

Mp({G(hi, ti)|(hi, r′, ti) ∈ Sr′}) = argmax
∑

({mi}Ki=1)− λ ∗H(mq) (12)

s.t.
∑

s(Menc(G(hi, ti),mi),Menc(G(hj , tj),mj)) > 1− ε′,

connectivity(mi) > 1− ε′

Here we add a constraint on the connectivity that measures whether the nodes in the subgraph
represented by mi can be reachable from head or tail within 2 hops in the subgraph. Let A be a soft
adjacency matrix of the edge mask mi ∈ [0, 1]|E|. We compute whether two nodes i, j can reach
each other within 2 hops as Ri,j = min((I +A+A2)[i, j], 1), then

connectivity(mi) =
1

|E|
∑

e=(n,n′)∈E

mie ∗min(Rn,hi
+Rn,ti +Rn′,hi

+Rn′,hi
, 1) (13)

We also add the entropy regularization terms H(·) to force the mask to represent a valid subgraph.
Similarly, for Me:

T (b,G(hq, tq)) = argmax s(b,Menc(G(hq, tq),mq))− λ ∗H(mq) (14)

We optimize each objective independently using gradient descent, but do not train them together end to
end. The Menc remains random initialized, but we found that this “random” GNN is already powerful
enough to distinguish non-isomorphic graphs as needed. Although this implementation is straight
forward and learning free, it is slow and difficult to incorporate additional training. Nevertheless, it
serves as a good way for directly verifying our hypothesis on the framework design.

4.4 CSR-GNN: Learning-based Implementation and Pretraining Scheme

We also design a fully GNN-based encoder-decoder approach to implement Mp and Me. We use
two models as building blocks: encoder fENC(G1,m1) : G × R|E| → Rd that encodes graph G1

weighted by m1 to an embedding b, and decoder fDEC(G2, b) : G × Rd → R|E| that decodes out the
weight m2 such that graph G2 weighted by m2 corresponds to the input embedding b. Intuitively,
fDEC(G2, fENC(G1,m1))) compares G1, G2 and finds the subgraph of G2 that is closest to the
subgraph of G1 induced by m1.
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Algorithm 1 Hypothesis Proposal Module Mp of CSR-GNN
Require: n support graphs G1, . . . , Gn

1: Initialize the masks of all support graphs to be all ones: mi = 1, ∀i ∈ 1, . . . , n
2: for iter ← 1, . . . do
3: for j ← 1, . . . , n do
4: for k ← 1, . . . , n do
5: mjk = fDEC(Gj , fENC(Gk,mk))
6: end for
7: mj = mink mjk

8: end for
9: end for

10:
11: return [m1, . . . ,mn]

Algorithm 2 CSR-GNN Full Architecture
Require: n support graphs G1, . . . , Gn, query graph Gq

1: m1, . . . ,mn = Mp(G1, . . . , Gn)
2: Obtain subgraph embedding using the encoder: gi = fENC(Gi,mi)
3: Average subgraph embedding of the supporting graphs b = 1

n

∑
i gi

4: Decode masks using g from the query graph Gq: mq = fDEC(Gq, b)
5: Obtain subgraph embedding for the query graph: gq = fENC(Gq,mq)
6:
7: return cosine_similarity(gq, b)

We then implement Mp as an iterative process of comparing between all pairs of support graphs using
this encoder-decoder, as shown in Algorithm 1. We start with a full edge mask mi = 1 for each
graph Gi. During each iteration, each graph Gj obtains edge mask mjk as a result of comparing
against Gk weighted by mk. Gj then takes the shared parts between mjk by taking an element wise
minimum to obtain mj .

We use fDEC(·) directly as Me. Combining these two steps, the full architecture is shown in 2, where
the encoder fENC(·) is shared with Menc. We use the same PathCon atchitecture for fDEC(·) as for
Menc, except that we concatenate b to the input edge embeddings before the first layer.

Encoder-Decoder Pretraining To train this encoder-decoder architecture, we simply use recon-
struction: given a graph G and a randomly sampled mask m ∈ R|E|, we should obtain back the same
mask m after applying both encoder and decoder (Figure 2)

Lossrecon = `CE(m, fDEC(G, fENC(G,m))) (15)
To jointly train together with Menc, we also add contrastive loss

g =Menc(G,m) (16)
gpos =Menc(G, fDEC(G, fENC(G,m))) (17)

gneg =Menc(G
′, fDEC(G

′, fENC(G,m))) (18)
Losscontrast = max(s(gpos, g)− s(gneg, g) + γ, 0) (19)

During pretraining, we sample graph G and G′ by sampling random triplets per relation and con-
textualize them. G, G′ should correspond to different relations. Then we sample m that represents
mutiple random paths connecting to either head or tail in G.

Encode

Sample Edge Masks

Decode

Reconstruct Edge Masks

Optimize Reconstruction Loss

Figure 2: Pretraining of Connection Subgraph Reconstruction.
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Table 1: Statistics of the benchmark datasets. BG refers to the background KG available during
training time.

NELL FB15K-237 ConceptNet
#rels #entities #edges #tasks #rels #entities #edges #tasks #rels #entities #edges #tasks

Trans-BG 291 68544 181109 11 200 14543 268039 30 14 790703 2541996 2

Ind-BG 291 44005 82318 - 200 11290 112477 - 14 619163 1191782 -
Ind-Test 291 24539 98791 11 200 3253 155562 10 14 171540 1350214 2

5 Experiments

We evaluate our method CSR-OPT and CSR-GNN on few-shot KG completion tasks over three real
world KGs – NELL, FB15K-237 and ConceptNet. We take NELL directly from NELL-One Xiong
et al. [2018] but add different settings; we select the fewest appearing relations as target few-shot
tasks in FB15K-237 and ConceptNet following Lv et al. [2019], Xiong et al. [2018]. We summarize
the statistics of all three datasets in Table 1. We also created one synthetic dataset for explanatory
purpose. Across all four KGs, (1) we first evaluate our method against the previous methods on real
KGs in terms of few-shot learning performance without the pre-designed training few-shot tasks
set, on both transductive and inductive settings; (2) we perform extensive ablation studies on each
component of our method and show that every component are indispensable in our framework; (3) we
show that with a manually curated meta-train set, meta-learning based method suffers from negative
transfer when facing a different target test set; (4) on the synthetic dataset, we further show that
our method is able to recover complex hypothesis and evidence connection subgraphs during the
prediction. We consider state-of-the-art few-shot KG completion baselines MetaR and FSRL in terms
of the standard ranking metrics MRR and Hits@h, where we sample 50 negative tail candidates
for each query triplet and rank them together with the positive tail entity. Hits@h measures the
percentage of times that the positive tail is ranked higher than h among the negative tail candidates.
We use h = 1, 5, 10. For simplicity, we only consider the number of few shot example K = 3, even
though all methods here can generalize to arbitrary K. See appendix A for more details on full
experiment setups. Since the methods have low variance in general, bellow we omit the standard
deviations in the table and provide them instead in appendix A.

5.1 Few-shot Learning without Curated Training Tasks

We first evaluate our method CSR-OPT and CSR-GNN along with baselines on the three real KGs
without curated training tasks. This means that on NELL we do not use the meta-train split originally
provided in NELL-One. To adapt MetaR and FSRL to this setting, we use pretrained entity and
relation embeddings as in the original papers, but meta-train them on randomly sampled tasks from
the background KG instead. Since our method is designed to not include entity embeddings, we add
it in by concatenating the head and tail entity embedding to the representation produced by Menc in
CSR-GNN. Similarly, we also perform end-to-end finetuning on the same set of randomly sampled
tasks in addition to our pretraining objectives. See ablations for these modifications in Section 5.2.

5.1.1 Transductive Setting

As shown in Table 2, we demonstrate that our learning-free method CSR-OPT can already give
competitive performance without any training over the real dataset. With CSR-GNN, we can
pretrain over these real KG to achieve higher performance exceeding/competitive to meta learning
results: CSR-GNN gives 17.8% improvement of MRR over the second best method on NELL, 5%
improvement on ConceptNet and comes close second on FB15k-237. On FB15K-237, the graph
is much denser than NELL and ConceptNet so that the pretrained entity embeddings could already
capture most relational structures when predicting the query triples. However, this is only limited to
the transductive setting, where all entities are seen during pretraining.

5.1.2 Inductive Setting

We evaluate the same set of methods in inductive version of these three datasets, where all entities
involved in the testing few-shot task and their one hop neigbors are unseen in the background
knowledge graph. In this setting, we do not use entity embedding for our methods, and pick the best
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Table 2: Performance comparison on transductive few-shot tasks without curated training tasks

MRR Hits@1 Hits@5 Hits@10

N
E

L
L

MetaR 0.471 0.322 0.647 0.763
FSRL 0.490 0.327 0.695 0.853
CSR-OPT 0.463 0.321 0.629 0.760
CSR-GNN 0.577 0.442 0.746 0.858

FB
15

K
-2

37 MetaR 0.805 0.740 0.881 0.937
FSRL 0.684 0.573 0.817 0.912
CSR-OPT 0.619 0.512 0.747 0.824
CSR-GNN 0.781 0.718 0.851 0.907

C
on

ce
pt

N
et MetaR 0.318 0.226 0.390 0.496

FSRL 0.577 0.469 0.695 0.753
CSR-OPT 0.559 0.450 0.692 0.736
CSR-GNN 0.606 0.496 0.735 0.777

Table 3: Inference time on NELL (inductive
setting).

NELL (inductive) MetaR FSRL CSR-GNN
Inference Time (s) 5.52 14.24 17.50
MRR 0.355 0.180 0.511

Table 4: Inference time on NELL (transduc-
tive setting).

NELL (transductive) MetaR FSRL CSR-GNN
Inference Time (s) 5.50 14.49 18.33
MRR 0.471 0.490 0.577

performance for baselines between using and not using entity embedding. As shown in table 5, our
methods only drops slightly in performance than in the transductive setting comparing to baselines,
resulting in significantly larger gains of up to 52% in this more challenging setting. This is because
our architecture is designed entirely based on topological rule and does not rely on entity embeddings,
while the performance of baselines in the transductive setting rely heavily on entity embedding. To
further demonstrate this, we show in Appendix B that our methods achieve similar large gain of up to
52% under transductive setting when all entity embedding are randomized during testing, equivalent
to an extreme inductive setting.

Table 5: Performance comparison on inductive few-shot tasks without curated training tasks

MRR Hits@1 Hits@5 Hits@10

N
E

L
L

MetaR 0.353 0.191 0.517 0.820
FSRL 0.180 0.090 0.242 0.360
CSR-OPT 0.425 0.303 0.534 0.657
CSR-GNN 0.511 0.348 0.725 0.837

FB
15

K
-2

37 MetaR 0.315 0.143 0.506 0.896
FSRL 0.453 0.299 0.571 0.922
CSR-OPT 0.554 0.429 0.727 0.844
CSR-GNN 0.624 0.479 0.833 0.894

C
on

ce
pt

N
et MetaR 0.154 0.041 0.260 0.452

FSRL 0.402 0.233 0.603 0.740
CSR-OPT 0.547 0.425 0.726 0.740
CSR-GNN 0.611 0.496 0.729 0.786

5.1.3 Inference Time

We have also measured the inference time of our method and baselines on NELL. As shown in Table
3 and 4, we find that our method has comparable inference runtime compared with state-of-the-art
baselines FSRL but it’s slower than MetaR. The reason is that for each query triplet, our model needs
to use the evidence proposal module to decode the edge masks and obtain the embeddings for the
connection subgraphs. Compared with MetaR, which directly uses shallow KG embeddings to score
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Table 6: Ablative results on NELL.

Entity Embedding Finetuning Hypothesis Proposal Evidence Proposal MRR

" " " " 0.577
7 " " " 0.511
7 7 " " 0.466
7 7 7 " 0.441
7 7 " 7 0.436
7 7 7 7 0.420

each query triplet in TransE style, CSR achieves much better empirical performance and also allows
inductive few-shot KG link prediction.

5.2 Ablation Study

Here we conduct ablation study on each component of our proposed model CSR-GNN on the NELL
dataset. Specifically we consider the four components of our models. It includes (1) whether we use
the pretrained KG entity embeddings or not; (2) whether we perform additional finetuning of our
model; (3) whether we perform the hypothesis proposal as shown in Algorithm 1, an alternative is to
directly assign full one masks for m1, . . . ,mn without detecting the common subgraph; (4) whether
we perform the evidence proposal for the query triplets, if not, we will propose a full one mask for the
query graph. As shown in Table 6, each component in our model is indispensable. Due to our model
architecture design, without entity embeddings, MRR decreases from 0.577 to 0.511, however it’s
still much higher than state-of-the-art baselines with pretrained entity embeddings (0.471 for MetaR).
Next we show that the two proposed stages Hypothesis Proposal and Evidence Proposal play a key
role. Without either of them, it means that our model can no longer accurately perform eliminative
induction over the support or the query triples, which may significantly deteriorates the performance.

5.3 Robustness to Distribution Shift

To demonstrate the distribution shift problem when constructing meta-training set, we construct a
new set of test few-shot learning tasks and compare the meta-learning based methods performance
on this new test set against performance on the original test set when using the same meta-training
set. Specifically, on the existing NELL dataset, the meta-training and test tasks/relations are sampled
from the same long-tail distribution. Here we sample the new set of test few-shot learning tasks by
randomly sampling the 10 test relations from the whole background KG, so that there exists a gap
between the training tasks and the test tasks on the new set. Comparing ours with the state-of-the-art
FSRL, we achieve comparable MRR on both test the original and our new challenging tasks (0.590
vs 0.540) while FSRL suffers greatly from the distribution gap (0.578 vs 0.459). This demonstrates
the robustness of our method in handling different distribution of test tasks.

5.4 Synthetic Dataset

For explanatory purpose, we construct synthetic datasets that strictly follow our assumptions so that
we have the ground truth of the hypothesis connection subgraphs. In each task, all support graphs
contain a shared connection graph, and the query is only True if the query graph also contains the
same connection graph. We show that CSR-OPT can recover hypothesis and evidence connection
subgraphs with high IOU of 0.843 and 0.992 when the hypothesis is in the form of a 4 clique. With
direct supervision of ground truth hypothesis during training, CSR-GNN can also achieve high IOU
of 0.809 and 0.981. See full details in Appendix C.

6 Conclusion

In this paper we proposed CSR, a general framework for few-shot relational reasoning over knowledge
graphs using self-supervised pretraining. Based on eliminative induction, we model hypothesis as the
shared connection subgraph between the support triplets and predict the query triplets by checking
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evidence of the connection subgraph in the query graph. Our method achieves state-of-the-art
performance across multiple datasets on few-shot link prediction without curated training tasks.
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Appendix
A Experiment Setup

In this section, we present full experiment setups and results on the three real KGs in detail.

A.1 Data Splits

We use NELL, FB15K-237 and ConceptNet for both transductive and inductive setting. For the
transductive setting, we use the meta-eval and meta-test splits of NELL-One for the eval and test
few-shot tasks on NELL, and we do not use the meta-train split. For FB15K-237 and ConceptNet, we
select the fewest 7:30 and 1:2 appearing relations as eval:test few-shot tasks respectively, following
the previous papers Lv et al. [2019], Xiong et al. [2018]. The background KGs are generated by
removing all triplets involving eval and test relations.

For the inductive setting, we mostly use the same set of eval and test relations, except for FB15K-237
where we randomly selected 10 relations out of the 30 transductive test relations as the inductive
test relations. For each test task, we also subsample the number of query triplets to 10%. Then we
consider all entities and their one hop neighbors appeared in test tasks the inductive entities unseen
during training time. So all inductive entities and all triplets involving them become the Ind-Test in
1 and are removed from the training time background KG – Ind-BG 1. During training time, only
the Ind-BG is available as the background KG; during the test time, the Ind-Test is combined with
the Ind-BG to form the test time background KG. Note that the subsamplings of query triplets and
tasks are intended to make sure that the remaining training time background KG does not become
too small and still contains all of the relations not in eval and test relations (which includes all the
relations in Ind-Test).

We will release our data processing scripts and preprocessed datasets publicly for reproducibility.

A.2 Model Architectures and Hyperparameters

A.2.1 Baselines

For MetaR and FSRL, we use their publicly available code directly and use the architectures and
hyperparameters on NELL for other datasets and settings.

A.2.2 CSR

We include our code for CSR in the supplementary material and will release them publicly for
reproducibility. The anonymous code and data can be found in the anonymous link https://drive.
google.com/file/d/18otchItFQurlHzQI2xQILudTzRCHlcDa/view?usp=sharing.

Triplet Contextualization For the triplet contextualization step of CSR-GNN and CSR-OPT,
we use k = 2 hops enclosing subgraph for NELL, k = 1 for FB15K-237 and ConceptNet. For
all datasets, we supplement maximum of 50 randomly selected one hop neighbors of head and tail
entities.

Architectures and Hyperparameters For CSR-GNN, both fENC(·) and fDEC(·) use 3 layers of
alternative message passing and hidden dimension of 128. For fDEC(·), instead of having a global
pooling at the end like in fENC(·), we apply a 2 layers MLP binary classifier (hidden dimension
64) to the edge representation produced by last layer message passing to generate the edge mask
value on each edge. We use AdamW optimizer, 1e-5 learning rate, 5000 epochs, and linear decay
learning rate schedule. The three loss terms are generally combined as λ1 ∗ Lossrecon + λ2 ∗
Losscontrast + Lossfinetune. On NELL, λ1 = 0.7, λ2 = 0.1; On FB15K-237,λ1 = 0.1, λ2 = 1;
On ConceptNet, λ1 = 2, λ2 = 0.5. We manually select these hyperparameters based on transductive
eval set performance.

For CSR-OPT, the architecture for Menc is the same as fENC(·). We use gradient descent with
AdamW for both optimizations. For the constraint optimization implementing Mp, we use the Basic
Differential Multiplier Method Platt and Barr [1987]. All the hyperparameter are automatically
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searched using Optuna Akiba et al. [2019] against the eval set performance in terms of the overall
AUC-ROC when each query triplet is compared again only one negative candidate. Since Menc is
not trained, CSR-OPT only uses relation embedding and does not use entity embedding under any
settings.

Entity and Relation Embedding All methods use 100 dimensional relation and entities embedding
when applicable. For transductive NELL dataset, we use the originally released embedding by Xiong
et al. [2018]. For all other settings, we train 100 dim embedding over the appropriate (training)
background KG and use them for all methods. Based on eval set performance, we use TransE
embedding for MetaR and ComplEx embedding for FSRL, which makes sense since MetaR is
designed with TransE distance and FSRL also reports best performance with ComplEx in the original
paper. For CSR, we use TransE for NELL and FB15K-237 and ComplEx for ConceptNet.

A.3 Full Results

We report full results with standard deviations for Table 2, 5 and 6. Note that in the inductive setting,
the unseen entities are given a random embedding, following the embedding initialization distribution.

NELL FB15K-237 ConceptNet
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Figure 3: Full results with standard deviations for transductive (left) and inductive (right) settings,
corresponding to Table 2 and 5.

ALL FT+HP+EP HP+EP EP HP None
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Ablative results on NELL

Figure 4: Full results with standard deviation of Table 6. Each category corresponds to one row in
table 6: ALL corresponds to the first row with all four components; None corresponds to the last row
without any of the four components. FT = Finetuning; HP= Hypothesis Proposal; EP = Evidence
Proposal.
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B Transductive Setting with no Entity Embedding During Testing

In figure 5, we randomize entity embedding during testing with transductive dataset, which can be
seen as an extreme inductive setting where all entities are new during testing.
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Figure 5: Performance comparison on transductive few-shot tasks without curated training tasks and
with randomized entity embedding during testing.

C Synthetic Dataset

C.1 Synthetic Dataset Construction

We construct synthetic datasets so that in each few-shot task the support graphs strictly contain a
shared connection subgraph, and the query triplet is only correct if the query graph also contains the
same connection subgraph. Specifically, we first sample a hypothesis in the form of a four clique
with the link between head and tail missing. Here each edge has a relation randomly selected from 50
relations. We then augment this hypothesis graph to 100 different support and query graphs by first
adding more nodes edges and randomly then pruning away the graph until each node is reachable to
both head and tail node in 2 hops. Each few-shot task is then sampled from these generated support
and query graphs and corresponds to a different hypothesis connection subgraph.

C.2 Connection Subgraph Detection

Since all support graphs and (positive) query graphs in each task in the synthetic dataset have a shared
connection graph, here we evaluate our method to see whether we are able to detect the common
connection graph for both the support and query graphs.

For evaluating the detection of common hypothesis connection subgraph among support graphs, we
use the training tasks and supervise our model with the ground truth common connection subgraph
of the given support graphs in the training task. Then we evaluate whether our model is able to
discover the common connection subgraph for the support graphs in the test tasks. In detail, given
several support graphs in a task and the ground truth binary edge mask (applying which returns the
connection subgraph), we calculate the intersection over union (IOU) of the ground truth edge mask
and the predicted edge mask produced by our model. For hypothesis proposal, we are able to achieve
an IOU of 0.843 and 0.809 for CSR-OPT and CSR-GNN respectively.

For evaluating the detection of evidence connection subgraph in query graphs, the setting is that the
model is given the query graph and the connection subgraph embedding (achieved from the support
graphs), we evaluate whether the model is able to predict the evidence connection subgraph in the
query graph. Similar to the hypothesis proposal, we also calculate the IOU as the metric. We are able
to achieve a 0.992 and 0.981 IOU for CSR-OPT and CSR-GNN respectively.

We demonstrate that on synthetic dataset, our method is able to automatically detect the common
connection graphs on new few-shot tasks. This shows that our method has significantly better inductive
bias and interpretability than prior methods as we are able to detect complex graph structured rule,
which further leads to improvement in the downstream few-shot link prediction performance.
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D Interpretable edge-level masks

We further explore qualitative examples and attach some visualizations of the connection subgraph
discovered by our model in the NELL test set. Each figure visualizes the evidence connection
subgraph discovered for the novel relation in the title. We include only relation names but not entity
names to emphasize the topological similarity and reduce cluttering.

In these figures, we can see that the model discovered meaningful evidence connection subgraphs to
support its prediction, e.g.,

concept:agriculturalproductgrowninlandscapefeatures,
concept:geopoliticallocationcontainscountry =>

concept:agriculturalproductcamefromcountry.

The model also selects some one-hop neighbors of head/tail that are not reachable to the tail/head but
provide information about the type of the head/tail entity: e.g.concept:countrycities helps to
determine that the head entity is a country. Moreover, different subgraphs with similar semantics are
identified when the exact same subgraph is not available.

Proxy for
Flowers

Switzerland
grown in landscape Location contains countryFlowers Norwey

located atFootball

Israel

has sport team positionGolf England

Figure 6: Learned edge masks by CSR.Top two are concept:agriculturalproductcamefromcountry;
bottom two are concept:sportschoolincountry

E Computation

We use NVIDIA 2080 Ti RTX 11GB GPUs in our internal cluster for all of our model training and
testing. Training for both CSR-GNN and baseline methods take around 2 hours on a single GPU.

F Limitations

Here we discuss the limitation of our method. Our method is extremely flexible in both the transductive
and inductive few-shot link prediction on knowledge graphs. However, when the entity embedding
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can already capture most of the relevant topological information, our method of explicitly modeling
and comparing connection subgraphs could bring less improvement. This happens most naturally in
transductive setting with a dense background KG, where each pair of query entities are both seen and
already relatively close. Our method also relies on the triplet contextualization step to first provide
a reasonable super set of possible hypothesis to consider. In the main paper, we uses enclosing
subgraph supplemented with randomly sampled one hop neighbors as one example of such methods.
However, such method may not be applicable to all KGs. We leave this for future works.

G Broader Impacts

In the real world, our culture, values and knowledge are always evolving. As one of the key basis for
many down stream applications, knowledge graph should evolve accordingly as the new concepts
emerge. However, such an update often incurs high costs from both manually adding in these new
concepts as new entities and relations, as well as retraining all the downstream models. Our work
provides a data efficient way to incorporate these new entities and relations to the existing knowledge
graph, as well as an example model that dynamically incorporate new triplets during test time.
Specifically across various scientific disciplines, our method can accelerate scientific discovery over
the graph with human knowledge on chemistry, physics and biology, and provide justification and
explanation why some facts about the new entities/relations are more promising than others. However,
the imputed knowledge about the new entities and relations could be overly relied on and become
misguidance. To mitigate this, the generated knowledge, especially ones based on only a few verified
examples but have high stakes, should be verified by humans through domain-specific experiments.
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