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The COVID-19 pandemic dramatically changed human mobility patterns, necessitating epi-
demiological models which capture the effects of changes in mobility on virus spread.1 We
introduce a metapopulation SEIR model that integrates fine-grained, dynamic mobility net-
works to simulate the spread of SARS-CoV-2 in 10 of the largest US metropolitan statistical
areas. Derived from cell phone data, our mobility networks map the hourly movements of
98 million people from neighborhoods (census block groups, or CBGs) to points of interest
(POIs) such as restaurants and religious establishments, connecting 57k CBGs to 553k POIs
with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple
SEIR model can accurately fit the real case trajectory, despite substantial changes in popula-
tion behavior over time. Our model predicts that a small minority of “superspreader” POIs
account for a large majority of infections and that restricting maximum occupancy at each
POI is more effective than uniformly reducing mobility. Our model also correctly predicts
higher infection rates among disadvantaged racial and socioeconomic groups2–8 solely from
differences in mobility: we find that disadvantaged groups have not been able to reduce mo-
bility as sharply, and that the POIs they visit are more crowded and therefore higher-risk.
By capturing who is infected at which locations, our model supports detailed analyses that
can inform more effective and equitable policy responses to COVID-19.
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Figure 1: Model description and fit. (a) The mobility network captures hourly visits from each census block group
(CBG) to each point of interest (POI). The vertical lines indicate that most visits are between nearby POIs and CBGs.
Visits dropped dramatically from March (top) to April (bottom), as indicated by the lower density of grey lines. (b) We
overlaid a disease spread model on the mobility network, with each CBG having its own set of SEIR compartments.
New infections occur at both POIs and CBGs, with the mobility network governing how subpopulations from different
CBGs interact as they visit POIs. (c) Left: To test out-of-sample prediction, we calibrated the model on data before
April 15, 2020 (vertical black line). Even though its parameters remain fixed over time, the model accurately predicts
the case trajectory in the Chicago metro area after April 15 by using mobility data (RMSE on daily cases, Apr 15–
May 2 = 406). Right: Model fit further improved when we calibrated the model on the full range of data (RMSE
on daily cases, Apr 15–May 2 = 387). (d) We fit separate models to 10 of the largest US metropolitan statistical
areas, modeling a total population of 98 million people; here, we show full model fits, as in (c)-Right. In (c) and
(d), the blue line represents model predictions and grey x’s represent the daily reported cases; since they tend to have
great variability, we also show the smoothed weekly average (orange line). Shaded regions denote 2.5th and 97.5th
percentiles across parameter sets and stochastic realizations. Across metro areas, we sample 97 parameter sets, with
30 stochastic realizations each (N = 2,910); see Table S6 for the number of sets per metro area.

2



Chicago metro area

(a)

Timing

Magnitude

(b)
Predicted effects of mobility reductions in response to SARS-CoV-2

Predicted effects of partial reopening on May 1, 2020

(c) (d)
Full 
reopening

Examples of modified mobility data Magnitude of mobility reduction Timing of mobility reduction
Cumulative distribution of

predicted infections over POIs

Predicted increase in infections from reopening 
different POI categories on May 1, 2020

Change in new infections with reduced occupancy
reopening instead of uniform reduction

Capping hourly visits at x% of
POI maximum occupancy

Figure 2: Assessing mobility reduction and reopening. The Chicago metro area is used as an example, but references
to results for all metro areas are provided for each subfigure. (a) Counterfactual simulations (left) of past mobility
reduction illustrate that the magnitude of reduction (middle) was at least as important as its timing (right) (Tables S4–
S5). (b) The model predicts that most infections at POIs occur at a small fraction of “super-spreader” POIs (Figure
S10). (c) Left: We plot cumulative predicted infections after one month of reopening against the fraction of visits
lost by partial instead of full reopening (Extended Data Figure 3); the annotations within the plot show the fraction of
maximum occupancy used as the cap. Compared to full reopening, capping at 20% maximum occupancy in Chicago
cuts down new infections by more than 80%, while only losing 42% of overall visits. Right: Compared to uniformly
reducing visits, the reduced maximum occupancy strategy always results in a smaller predicted increase in infections
for the same number of visits (Extended Data Figure 4). The y-axis plots the relative difference between the predicted
number of new infections under the reduced occupancy strategy compared to uniform reduction. (d) Reopening full-
service restaurants has the largest predicted impact on infections, due to the large number of restaurants as well as
their high visit densities and long dwell times (Figures S15–S24). Colors are used to distinguish the different POI
categories, but do not have any additional meaning. All results in this figure are aggregated across 4 parameter sets
and 30 stochastic realizations (N=120). Shaded regions in (a–c) denote the 2.5th–97.5th percentiles; boxes in (d)
denote the interquartile range, with data points outside the range individually shown.
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Figure 3: Mobility patterns give rise to infection disparities. For (c–f), the Chicago metro area is used as an example,
but references to results for all metro areas are provided for each subfigure. (a) In every metro area, our model
predicts that people in lower-income CBGs are likelier to be infected. (b) People in non-white CBGs area are also
likelier to be infected, although results are more variable across metro areas. (c) The overall predicted disparity is
driven by a few POI categories like full-service restaurants (Figure S2). (d) One reason for the predicted disparities
is that higher-income CBGs were able to reduce their mobility levels below those of lower-income CBGs (Extended
Data Figure 6). (e) Within each POI category, people from lower-income CBGs tend to visit POIs that have higher
predicted transmission rates (Extended Data Table 3). The size of each dot represents the average number of visits
per capita made to the category. The top 10 out of 20 categories with the most visits are labeled, covering 0.48–2.88
visits per capita (Hardware Stores–Full-Service Restaurants). (f) Reopening (at different levels of reduced maximum
occupancy) leads to more predicted infections in lower-income CBGs than the overall population (Extended Data
Figure 3). In (c–f), purple denotes lower-income CBGs, yellow denotes higher-income CBGs, and blue represents the
overall population. Aside from (d) and (e), which were directly extracted from mobility data, all results in this figure
represent predictions aggregated over model realizations. Across metro areas, we sample 97 parameter sets, with 30
stochastic realizations each (N = 2,910); see Table S6 for the number of sets per metro area. Shaded regions in (c)
and (f) denote the 2.5th–97.5th percentiles; boxes in (a–b) denote the interquartile range, with data points outside the
range individually shown.
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Introduction1

In response to the COVID-19 crisis, stay-at-home orders were enacted in many countries to reduce2

contact between individuals and slow the spread of the virus.9, 10 Since then, public officials have3

continued to deliberate over when to reopen, which places are safe to return to, and how much4

activity to allow.11 Answering these questions requires epidemiological models that can capture5

the effects of changes in mobility on virus spread. In particular, findings of COVID-19 “super-6

spreader” events12–15 motivate models that can reflect the heterogeneous risks of visiting different7

locations, while well-reported disparities in infection rates2–8 require models that can explain the8

disproportionate impact of the virus on disadvantaged groups.9

To address these needs, we construct fine-grained dynamic mobility networks from cell10

phone geolocation data, and use these networks to model the spread of SARS-CoV-2 within 1011

of the largest metropolitan statistical areas (referred to below as metro areas) in the United States.12

These networks map the hourly movements of 98 million people from census block groups (CBGs),13

which are geographical units that typically contain 600–3,000 people, to specific points of inter-14

est (POIs). As shown in Table S1, POIs are non-residential locations that people visit such as15

restaurants, grocery stores, and religious establishments. On top of each network, we overlay a16

metapopulation SEIR model that tracks the infection trajectories of each CBG as well as the POIs17

at which these infections are likely to have occurred. This builds upon prior work that models dis-18

ease spread using aggregate16–19, historical20–22, or synthetic mobility data23–25; separately, other19

work has analyzed mobility data in the context of COVID-19, but without an underlying model of20

disease spread.26–30
21

Combining our epidemiological model with these mobility networks allows us to not only22

accurately fit observed case counts, but also to conduct detailed analyses that can inform more23

effective and equitable policy responses to COVID-19. By capturing information about individual24

POIs (e.g., hourly number of visitors, median visit duration), our model can estimate the impacts25

of specific reopening strategies, such as only reopening certain POI categories or restricting maxi-26

mum occupancy at each POI. By modeling movement from CBGs, our model can identify at-risk27

populations and correctly predicts, solely from mobility patterns, that disadvantaged racial and28

socioeconomic groups face higher rates of infection. Our model thus enables analysis of urgent29

health inequities; we use it to illuminate two mobility-related mechanisms driving these disparities30

and to evaluate the disparate impact of reopening on disadvantaged groups.31
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Mobility network model32

We use data from SafeGraph, a company that aggregates anonymized location data from mobile33

applications, to study mobility patterns from March 1–May 2, 2020. For each metro area, we34

represent the movement of individuals between CBGs and POIs as a bipartite network with time-35

varying edges, where the weight of an edge between a CBG and POI represents the number of36

visitors from that CBG to that POI at a given hour (Figure 1a). SafeGraph also provides the area37

in square feet of each POI, as well as its North American Industry Classification System (NAICS)38

category (e.g., fitness center, full-service restaurant) and median visit duration in minutes. We39

validated the SafeGraph mobility data by comparing to Google mobility data (Figure S1, Tables40

S2–S3), and used iterative proportional fitting31 to derive POI-CBG networks from the raw Safe-41

Graph data. Overall, these networks comprise 5.4 billion hourly edges between 56,945 CBGs and42

552,758 POIs (Extended Data Table 1).43

We overlay a SEIR model on each mobility network,16, 20 where each CBG maintains its own44

susceptible (S), exposed (E), infectious (I), and removed (R) states (Figure 1b). New infections45

occur at both POIs and CBGs, with the mobility network governing how subpopulations from46

different CBGs interact as they visit POIs. We use each POI’s area, median visit duration, and47

time-varying density of infectious individuals to determine the POI’s hourly infection rate. The48

model has only three free parameters, which scale (1) transmission rates at POIs, (2) transmission49

rates at CBGs, and (3) the initial proportion of exposed individuals (Extended Data Table 2); all50

three parameters remain constant over time. We calibrate a separate model for each metro area51

using confirmed case counts from The New York Times by minimizing root mean square error52

(RMSE) to daily incident cases.32 Our model accurately fits observed daily case counts in all 1053

metro areas from March 8–May 9, 2020 (Figure 1c,d). Additionally, when only calibrated on case54

counts up to April 14, the model predicted case counts reasonably well on the held-out time period55

from April 15–May 9, 2020 (Figure 1c and Extended Data Figure 1a). Our key technical finding56

is that the dynamic mobility network allows even our SEIR model with just three static parameters57

to accurately fit observed cases, despite changing policies and behaviors during that period.58

Mobility reduction and reopening plans59

The magnitude of mobility reduction is as important as its timing. Mobility in the US dropped60

sharply in March 2020: e.g., overall POI visits in the Chicago metro area fell by 54.7% between61

the first week of March and the first week of April 2020. We constructed counterfactual mobility62
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networks by scaling the magnitude of mobility reduction down and by shifting the timeline earlier63

and later, and applied our model to the counterfactual networks to simulate the resulting infec-64

tion trajectories. Across metro areas, we found that the magnitude of mobility reduction was at65

least as important as its timing (Figure 2a, Tables S4–S5): e.g., if the mobility reduction in the66

Chicago metro area had been only one quarter as large, predicted infections would have increased67

by 3.3× (95% CI, 2.8-3.8), compared to a 1.5× (95% CI, 1.4-1.6) increase had people begun re-68

ducing their mobility one full week later. Furthermore, if no mobility reduction had occurred at69

all, predicted infections in the Chicago metro area would have increased by a striking 6.2× (95%70

CI, 5.2-7.1). Our results concord with earlier findings that mobility reductions can dramatically71

reduce infections.19, 33, 34
72

A minority of POIs account for a majority of predicted infections. We next investigated if73

how we reduce mobility—i.e., to which POIs—matters. We computed the number of infections74

that occurred at each POI in our simulations from March 1–May 2, 2020, and found that a majority75

of predicted infections occurred at a small fraction of “superspreader” POIs; e.g., in the Chicago76

metro area, 10% of POIs accounted for 85% (95% CI, 83%-87%) of the predicted infections at77

POIs (Figure 2b, Figure S10). Certain categories of POIs also contributed far more to infections78

(e.g., full-service restaurants, hotels), although our model predicted time-dependent variation in79

how much each category contributed (Extended Data Figure 2). For example, restaurants and80

fitness centers contributed less to predicted infections over time, likely due to lockdown orders81

closing these POIs, while grocery stores remained steady or even grew in their contribution, which82

concords with their status as essential businesses.83

Reopening with reduced maximum occupancy. If a minority of POIs produce the majority of84

infections, then reopening strategies that specifically target high-risk POIs should be especially85

effective. To test one such strategy, we simulated reopening on May 1, and modeled the effects of86

reducing maximum occupancy in which the numbers of hourly visits to each POI returned to their87

“normal” levels from the first week of March but were capped if they exceeded a fraction of the88

POI’s maximum occupancy.35 Full reopening without reducing maximum occupancy produced a89

spike in predicted infections: in the Chicago metro area, our models projected that an additional90

32% (95% CI, 25%-35%) of the population would be infected by the end of May (Figure 2c).91

However, reducing maximum occupancy substantially reduced risk without sharply reducing over-92
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all mobility: capping at 20% maximum occupancy in the Chicago metro area cut down predicted93

new infections by more than 80% but only lost 42% of overall visits, and we observed similar94

trends across other metro areas (Extended Data Figure 3). This highlights the non-linearity of pre-95

dicted infections as a function of visits: one can achieve a disproportionately large reduction in96

infections with a small reduction in visits. Furthermore, compared to another reopening strategy97

that uniformly reduced visits to each POI from their levels in early March, reducing maximum oc-98

cupancy always resulted in fewer predicted infections for the same number of total visits (Figure 2c99

and Extended Data Figure 4). This is because reduced maximum occupancy takes advantage of100

the time-varying visit density within each POI, disproportionately reducing visits to the POI during101

the most risky high-density periods, but leaving visit counts unchanged during less risky periods.102

These results support earlier findings that targeted closures may be more effective than region-wide103

measures, while incurring substantially lower economic costs.36
104

Relative risk of reopening different categories of POIs. Because we found that certain POI105

categories contributed far more to predicted infections in March (Extended Data Figure 2), we also106

expected that reopening some POI categories would be riskier than reopening others. To assess this,107

we simulated reopening each category in turn on May 1 (by returning its mobility patterns to early108

March levels, as before), while keeping all other POIs at their reduced mobility levels from the end109

of April. We found large variation in predicted reopening risks: on average across metro areas, full-110

service restaurants, gyms, hotels, cafes, religious organizations, and limited-service restaurants111

produced the largest predicted increases in infections when reopened (Extended Data Figure 5d).112

Reopening full-service restaurants was particularly risky: in the Chicago metro area, we predicted113

an additional 596k (95% CI, 434k-686k) infections by the end of May, more than triple the next114

riskiest POI category (Figure 2d). These risks are summed over all POIs in the category, but115

the relative risks after normalizing by the number of POIs were broadly similar (Extended Data116

Figure 5c). These categories were predicted to more be dangerous because, in the mobility data,117

their POIs tended to have higher visit densities and/or visitors stayed there longer (Figures S15–118

S24).119

Demographic disparities in infections120

We characterize the differential spread of SARS-CoV-2 along demographic lines by using US121

Census data to annotate each CBG with its racial composition and median income, then tracking122
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predicted infection rates in CBGs with different demographic compositions: for example, within123

each metro area, comparing CBGs in the top and bottom deciles for income. We use this approach124

to study the mobility mechanisms behind disparities and to quantify how different reopening strate-125

gies impact disadvantaged groups.126

Predicting disparities from mobility data. Despite only having access to mobility data and no127

other demographic information, our models correctly predicted higher risks of infection among128

disadvantaged racial and socioeconomic groups.2–8 Across all metro areas, individuals from CBGs129

in the bottom decile for income were substantially likelier to have been infected by the end of130

the simulation, even though all individuals began with equal likelihoods of infection (Figure 3a).131

This predicted disparity was driven primarily by a few POI categories (e.g., full-service restau-132

rants), which infected far larger proportions of lower-income CBGs than higher-income CBGs133

(Figure 3c and Figure S2). We similarly found that CBGs with fewer white residents had higher134

predicted risks of infection, although results were more variable across metro areas (Figure 3b).135

In SI Discussion, we confirm that the magnitude of the disparities our model predicts are gen-136

erally consistent with real-world disparities and further explore the large predicted disparities in137

Philadelphia, which stem from substantial differences in the POIs that are frequented by higher-138

versus lower-income CBGs. In the analysis below, we discuss two mechanisms producing higher139

predicted infection rates among lower-income CBGs, and we show in Extended Data Figure 6b140

and Extended Data Table 4 that similar results hold for racial disparities as well.141

Lower-income CBGs saw smaller reductions in mobility. First, across all metro areas, lower-142

income CBGs did not reduce their mobility as sharply in the first few weeks of March 2020,143

and had higher mobility than higher-income CBGs for most of March through May (Figure 3d,144

Extended Data Figure 6a). For example, in April, lower-income CBGs in the Chicago metro145

area had 27% more POI visits per capita than higher-income CBGs. Category-level differences in146

visit patterns partially explained the infection disparities within each category: e.g., lower-income147

CBGs made substantially more visits per capita to grocery stores than did higher-income CBGs148

(Figure S3), and consequently experienced more predicted infections at that category (Figure S2).149

POIs visited by lower-income CBGs have higher transmission rates. Differences in visits per150

capita do not fully explain the infection disparities: for example, Cafes & Snack Bars were visited151
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more frequently by higher-income CBGs in every metro area (Figure S3), but our model predicted152

that Cafes & Snack Bars infected a larger proportion of lower-income CBGs in the majority of153

metro areas (Figure S2). We found that even within a POI category, the predicted transmission154

rates at POIs frequented by lower-income CBGs tended to be higher than the corresponding rates155

for higher-income CBGs (Figure 3e; Extended Data Table 3), because POIs frequented by lower-156

income CBGs tended to be smaller and more crowded in the mobility data. As a case study, we157

examined grocery stores in further detail. In 8 of the 10 metro areas, visitors from lower-income158

CBGs encountered higher predicted transmission rates at grocery stores than those from higher-159

income CBGs (median transmission rate ratio of 2.19, Extended Data Table 3). Why was one visit160

to the grocery store predicted to be twice as dangerous for a lower-income individual? SafeGraph161

data showed that the average grocery store visited by lower-income individuals had 59% more162

hourly visitors per square foot, and their visitors stayed 17% longer on average (medians across163

metro areas). These findings highlight how fine-grained differences in mobility patterns—how164

often people go out and which POIs they go to—can ultimately contribute to dramatic disparities165

in predicted infection outcomes.166

Reopening plans must account for disparate impact. Because disadvantaged groups suffer a167

larger burden of infection, it is critical to not just consider the overall impact of reopening plans168

but also their disparate impact on disadvantaged groups specifically. For example, our model169

predicted that full reopening in the Chicago metro area would result in an additional 39% (95%170

CI, 31%-42%) of the population of CBGs in the bottom income decile being infected within a171

month, compared to 32% (95% CI, 25%-35%) of the overall population (Figure 3f; results for all172

metro areas in Extended Data Figure 3). Similarly, Figure S4 illustrates that reopening individual173

POI categories tends to have a larger predicted impact on lower-income CBGs. More conservative174

reopening plans produce smaller absolute disparities in predicted infections—e.g., we predict that175

reopening at 20% of maximum occupancy in Chicago would result in additional infections for176

6% (95% CI, 4%-8%) of the overall population and 10% (95% CI, 7%-13%) of the population in177

CBGs in the bottom income decile (Figure 3f)—though the relative disparity remains.178

Discussion179

The mobility dataset we use has limitations: it does not cover all populations, does not contain all180

POIs, and cannot capture sub-CBG heterogeneity. Our model itself is also parsimonious, and does181
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not include all real-world features relevant to disease transmission. We discuss these limitations182

in more detail in SI Discussion. However, the predictive accuracy of our model suggests that it183

broadly captures the relationship between mobility and transmission, and we thus expect our broad184

conclusions—e.g., that people from lower-income CBGs have higher infection rates in part because185

they tend to visit denser POIs and because they have not reduced mobility by as much (likely186

because they cannot as easily work from home4)—to hold robustly. Our fine-grained network187

modeling approach naturally extends to other mobility datasets and models which capture more188

aspects of real-world transmission, and this remains an interesting direction for future work.189

Our results can guide policymakers seeking to assess competing approaches to reopening.190

Despite growing concern about racial and socioeconomic disparities in infections and deaths, it191

has been difficult for policymakers to act on those concerns; they are currently operating with-192

out much evidence on the disparate impacts of reopening policies, prompting calls for research193

that both identifies the causes of observed disparities and suggests policy approaches to mitigate194

them.5, 8, 37, 38 Our fine-grained mobility modeling addresses both these needs. Our results suggest195

that infection disparities are not the unavoidable consequence of factors that are difficult to address196

in the short term, like differences in preexisting conditions; on the contrary, short-term policy197

decisions can substantially affect infection outcomes by altering the overall amount of mobility198

allowed, the types of POIs reopened, and the extent to which POI occupancies are capped. Con-199

sidering the disparate impact of reopening plans may lead policymakers to, e.g., (1) favor more200

conservative reopening plans, (2) increase testing in disadvantaged neighborhoods predicted to201

be high risk (especially given known disparities in access to tests2), and (3) prioritize distribut-202

ing masks and other personal protective equipment to disadvantaged populations. As reopening203

policies continue to be debated, it is critical to build models that can assess the effectiveness and204

equity of competing policies. We hope that our approach, by capturing heterogeneity across POIs,205

demographic groups, and cities, helps address this need.206
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Methods207

The Methods section is structured as follows. We describe the datasets we use in Methods M1208

and the mobility network that we derive from these datasets in Methods M2. In Methods M3,209

we discuss the SEIR model we overlay on the mobility network; in Methods M4, we describe210

how we calibrate this model and quantify uncertainty in its predictions. Finally, in Methods M5,211

we provide details on the experimental procedures used for our analyses of mobility reduction,212

reopening plans, and demographic disparities.213

M1 Datasets214

SafeGraph. We use data provided by SafeGraph, a company that aggregates anonymized loca-215

tion data from numerous mobile applications. SafeGraph data captures the movement of people216

between census block groups (CBGs), which are geographical units that typically contain a pop-217

ulation of between 600 and 3,000 people, and points of interest (POIs) like restaurants, grocery218

stores, or religious establishments. Specifically, we use the following SafeGraph datasets:219

1. Places Patterns39 and Weekly Patterns (v1)40. These datasets contain, for each POI, hourly220

counts of the number of visitors, estimates of median visit duration in minutes (the “dwell221

time”), and aggregated weekly and monthly estimates of visitors’ home CBGs. We use visi-222

tor home CBG data from the Places Patterns dataset, as described below: for privacy reasons,223

SafeGraph excludes a home CBG from this dataset if fewer than 5 devices were recorded at224

the POI from that CBG over the course of the month. For each POI, SafeGraph also provides225

their North American Industry Classification System (NAICS) category, as well as estimates226

of its median visit duration in minutes and physical area in square feet. (Area is computed227

using the footprint polygon SafeGraph assigns to the POI.41, 42) We analyze Places Patterns228

data from January 1, 2019 to February 29, 2020 and Weekly Patterns data from March 1,229

2020 to May 2, 2020.230

2. Social Distancing Metrics,43 which contains daily estimates of the proportion of people stay-231

ing home in each CBG. We analyze Social Distancing Metrics data from March 1, 2020 to232

May 2, 2020.233

We focus on 10 of the largest metropolitan statistical areas in the US (Extended Data Table 1). We234

chose these metro areas by taking a random subset of the SafeGraph Patterns data and picking the235

10 metro areas with the most POIs in the data. Our methods in this paper can be straightforwardly236
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applied, in principle, to the other metro areas in the original SafeGraph data. For each metro area,237

we include all POIs that meet all of the following requirements: (1) the POI is located in the238

metro area; (2) SafeGraph has visit data for this POI for every hour that we model, from 12am239

on March 1, 2020 to 11pm on May 2, 2020; (3) SafeGraph has recorded the home CBGs of this240

POI’s visitors for at least one month from January 2019 to February 2020; (4) the POI is not a241

“parent” POI. “Parent” POIs comprise a small fraction of POIs in the dataset which overlap and242

include the visits from their “child” POIs: for example, many malls in the dataset are parent POIs243

which include the visits from stores which are their child POIs. To avoid double-counting visits,244

we remove all parent POIs from the dataset. After applying these POI filters, we include all CBGs245

that have at least 1 recorded visit to at least 10 of the remaining POIs; this means that CBGs from246

outside the metro area may be included if they visit this metro area frequently enough. Summary247

statistics of the post-processed data are in Extended Data Table 1. Overall, we analyze 57k CBGs248

from the 10 metro areas, and over 310M visits from these CBGs to nearly 553k POIs.249

SafeGraph data has been used to study consumer preferences44 and political polarization.45
250

More recently, it has been used as one of the primary sources of mobility data in the US for251

tracking the effects of the SARS-CoV-2 pandemic.26, 28,46–48 In SI Methods Section 1, we show252

that aggregate trends in SafeGraph mobility data match up to aggregate trends in Google mobility253

data in the US,49 before and after the imposition of stay-at-home measures. Previous analyses254

of SafeGraph data have shown that it is geographically representative: for example, it does not255

systematically over-represent individuals from CBGs in different counties or with different racial256

compositions, income levels, or educational levels.50, 51
257

US Census. Our data on the demographics of census block groups (CBGs) comes from the US258

Census Bureau’s American Community Survey (ACS).52 We use the 5-year ACS (2013-2017)259

to extract the median household income, proportion of white residents, and proportion of black260

residents of each CBG. For the total population of each CBG, we use the most recent one-year261

estimates (2018); one-year estimates are noisier but we wish to minimize systematic downward262

bias in our total population counts (due to population growth) by making them as recent as possible.263

New York Times. We calibrate our models using the COVID-19 dataset published by the The264

New York Times.32 Their dataset consists of cumulative counts of cases and deaths in the United265

States over time, at the state and county level. For each metro area that we model, we sum over266
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the county-level counts to produce overall counts for the entire metro area. We convert the cumu-267

lative case and death counts to daily counts for the purposes of model calibration, as described in268

Methods M4.269

Data ethics. The dataset from The New York Times consists of aggregated COVID-19 confirmed270

case and death counts collected by journalists from public news conferences and public data re-271

leases. For the mobility data, consent was obtained by the third-party sources collecting the data.272

SafeGraph aggregates data from mobile applications that obtain opt-in consent from their users273

to collect anonymous location data. Google’s mobility data consists of aggregated, anonymized274

sets of data from users who have chosen to turn on the Location History setting. Additionally, we275

obtained IRB exemption for SafeGraph data from the Northwestern University IRB office.276

M2 Mobility network277

Definition. We consider a complete undirected bipartite graph G = (V , E) with time-varying278

edges. The vertices V are partitioned into two disjoint sets C = {c1, . . . , cm}, representing m279

census block groups (CBGs), and P = {p1, . . . , pn}, representing n points of interest (POIs).280

From US Census data, each CBG ci is labeled with its population Nci , income distribution, and281

racial and age demographics. From SafeGraph data, each POI pj is similarly labeled with its282

category (e.g., restaurant, grocery store, or religious organization), its physical size in square feet283

apj , and the median dwell time dpj of visitors to pj . The weight w(t)
ij on an edge (ci, pj) at time t284

represents our estimate of the number of individuals from CBG ci visiting POI pj at the t-th hour285

of simulation. We record the number of edges (with non-zero weights) in each metro area and over286

all hours from March 1, 2020 to May 2, 2020 in Extended Data Table 1. Across all 10 metro areas,287

we study 5.4 billion edges between 56,945 CBGs and 552,758 POIs.288

Network estimation (overview). The central technical challenge in constructing this network is289

estimating the network weights W (t) = {w(t)
ij } from SafeGraph data, since this visit matrix is not290

directly available from the data. Our general methodology for network estimation is as follows:291

1. From SafeGraph data, we can derive a time-independent estimate W̄ of the visit matrix292

that captures the aggregate distribution of visits from CBGs to POIs from January 2019 to293

February 2020.294
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2. However, visit patterns differ substantially from hour to hour (e.g., day versus night) and295

day to day (e.g., pre- versus post-lockdown). To capture these variations, we use current296

SafeGraph data to estimate the CBG marginals U (t), i.e., the number of people in each CBG297

who are out visiting POIs at hour t, as well as the POI marginals V (t), i.e., the total number298

of visitors present at each POI pj at hour t.299

3. We then apply the iterative proportional fitting procedure (IPFP) to estimate an hourly visit300

matrix W (t) that is consistent with the hourly marginals U (t) and V (t) but otherwise “as301

similar as possible” to the distribution of visits in the aggregate visit matrix W̄ , in terms of302

Kullback-Leibler divergence.303

IPFP is a classic statistical method31 for adjusting joint distributions to match pre-specified marginal304

distributions, and it is also known in the literature as biproportional fitting, the RAS algorithm, or305

raking53. In the social sciences, it has been widely used to infer the characteristics of local subpop-306

ulations (e.g., within each CBG) from aggregate data54–56. IPFP estimates the joint distribution of307

visits from CBGs to POIs by alternating between scaling each row to match the hourly row (CBG)308

marginals U (t) and scaling each column to match the hourly column (POI) marginals V (t). For309

further details about the estimation procedure, we refer the reader to SI Methods Section 3.310

M3 Model dynamics311

To model the spread of SARS-CoV-2, we overlay a metapopulation disease transmission model on312

the mobility network defined in Methods M2. The transmission model structure follows prior work313

on epidemiological models of SARS-CoV-216, 20 but incorporates a fine-grained mobility network314

into the calculations of the transmission rate. We construct separate mobility networks and models315

for each metropolitan statistical area.316

We use a SEIR model with susceptible (S), exposed (E), infectious (I), and removed (R)317

compartments. Susceptible individuals have never been infected, but can acquire the virus through318

contact with infectious individuals, which may happen at POIs or in their home CBG. They then319

enter the exposed state, during which they have been infected but are not infectious yet. Individuals320

transition from exposed to infectious at a rate inversely proportional to the mean latency period.321

Finally, they transition into the removed state at a rate inversely proportional to the mean infectious322

period. The removed state represents individuals who can no longer be infected or infect others,323

e.g., because they have recovered, self-isolated, or died.324
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Each CBG ci maintains its own SEIR instantiation, with S(t)
ci , E

(t)
ci , I

(t)
ci , and R(t)

ci representing325

how many individuals in CBG ci are in each disease state at hour t, and Nci = S
(t)
ci +E

(t)
ci + I

(t)
ci +326

R
(t)
ci . At each hour t, we sample the transitions between states as follows:327

N
(t)
Sci→Eci

∼ Pois

(
S
(t)
ci

Nci

n∑
j=1

λ(t)pj w
(t)
ij

)
+ Binom

(
S(t)
ci
, λ(t)ci

)
(1)

N
(t)
Eci→Ici

∼ Binom
(
E(t)
ci
, 1/δE

)
(2)

N
(t)
Ici→Rci

∼ Binom
(
I(t)ci , 1/δI

)
, (3)

where λ(t)pj is the rate of infection at POI pj at time t; w(t)
ij , the ij-th entry of the visit matrix from328

the mobility network (Methods M2), is the number of visitors from CBG ci to POI pj at time t;329

λ
(t)
ci is the base rate of infection that is independent of visiting POIs; δE is the mean latency period;330

and δI is the mean infectious period.331

We then update each state to reflect these transitions. Let ∆S
(t)
ci := S

(t+1)
ci −S(t)

ci , and likewise332

for ∆E
(t)
ci ,∆I

(t)
ci , and ∆R

(t)
ci . Then,333

∆S(t)
ci

:= −N (t)
Sci→Eci

(4)

∆E(t)
ci

:= N
(t)
Sci→Eci

−N (t)
Eci→Ici

(5)

∆I(t)ci := N
(t)
Eci→Ici

−N (t)
Ici→Rci

(6)

∆R(t)
ci

:= N
(t)
Ici→Rci

. (7)

M3.1 The number of new exposures N (t)
Sci
→Eci

334

We separate the number of new exposures N (t)
Sci→Eci

in CBG ci at time t into two parts: cases335

from visiting POIs, which are sampled from Pois
(
(S

(t)
ci /Nci)

∑n
j=1 λ

(t)
pj w

(t)
ij

)
, and other cases not336

captured by visiting POIs, which are sampled from Binom
(
S
(t)
ci , λ

(t)
ci

)
.337

New exposures from visiting POIs. We assume that any susceptible visitor to POI pj at time t338

has the same independent probability λ(t)pj of being infected and transitioning from the susceptible339

(S) to the exposed (E) state. Since there are w(t)
ij visitors from CBG ci to POI pj at time t, and340

we assume that a S(t)
ci /Nci fraction of them are susceptible, the number of new exposures among341

these visitors is distributed as Binom(w
(t)
ij S

(t)
ci /Nci , λ

(t)
pj ) ≈ Pois(λ(t)pj w

(t)
ij S

(t)
ci /Nci). The number of342
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new exposures among all outgoing visitors from CBG ci is therefore distributed as the sum of the343

above expression over all POIs, Pois
(
(S

(t)
ci /Nci)

∑n
j=1 λ

(t)
pj w

(t)
ij

)
.344

We model the infection rate at POI pj at time t, λ(t)pj := β
(t)
pj · I

(t)
pj /V

(t)
pj , as the product of its345

transmission rate β(t)
pj and proportion of infectious individuals I(t)pj /V

(t)
pj , where V (t)

pj :=
∑m

i=1w
(t)
ij346

is the total number of visitors to pj at time t. We model the transmission rate at POI pj at time t as347

β(t)
pj

:= ψ · d2pj ·
V

(t)
pj

apj
, (8)

where apj is the physical area of pj , and ψ is a transmission constant (shared across all POIs) that348

we fit to data. The inverse scaling of transmission rate with area apj is a standard simplifying349

assumption.57 The dwell time fraction dpj ∈ [0, 1] is what fraction of an hour an average visitor350

to pj at any hour will spend there (SI Methods Section 3); it has a quadratic effect on the POI351

transmission rate β(t)
pj because it reduces both (1) the time that a susceptible visitor spends at pj352

and (2) the density of visitors at pj . With this expression for the transmission rate β(t)
pj , we can353

calculate the infection rate at POI pj at time t as354

λ(t)pj = β(t)
pj
·
I
(t)
pj

V
(t)
pj

= ψ · d2pj ·
I
(t)
pj

apj
. (9)

For sufficiently large values of ψ and a sufficiently large proportion of infected individuals, the355

expression above can sometimes exceed 1. To address this, we simply clip the infection rate to 1.356

However, this occurs very rarely for the parameter settings and simulation duration that we use.357

Finally, to compute the number of infectious individuals at pj at time t, I(t)pj , we assume that358

the proportion of infectious individuals among the w(t)
kj visitors to pj from a CBG ck mirrors the359

overall density of infections I(t)ck /Nck in that CBG, although we note that the scaling factor ψ can360

account for differences in the ratio of infectious individuals who visit POIs. This gives361

I(t)pj :=
m∑
k=1

I
(t)
ck

Nck

w
(t)
kj . (10)

Base rate of new exposures not captured by visiting POIs. In addition to the new exposures362

from infections at POIs, we model a CBG-specific base rate of new exposures that is independent of363
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POI visit activity. This captures other sources of infections, e.g., household infections or infections364

at POIs that are absent from the SafeGraph data. We assume that at each hour, every susceptible365

individual in CBG ci has a base probability λ
(t)
ci of becoming infected and transitioning to the366

exposed state, where367

λ(t)ci := βbase ·
I
(t)
ci

Nci

(11)

is the product of the base transmission rate βbase and the proportion of infectious individuals in368

CBG ci. βbase is a constant (shared across all CBGs) that we fit to data.369

Overall number of new exposures. Putting all of the above together yields the expression for370

the distribution of new exposures in CBG ci at time t,371

N
(t)
Sci→Eci

∼ Pois

(
S
(t)
ci

Nci

n∑
j=1

λ(t)pj w
(t)
ij

)
+ Binom

(
S(t)
ci
, λ(t)ci

)
= Pois

(
ψ · S

(t)
ci

Nci

·
n∑
j=1

d2pj
apj

(
m∑
k=1

I
(t)
ck

Nck

w
(t)
kj

)
w

(t)
ij

)
︸ ︷︷ ︸

new infections from visiting POIs

+ Binom

(
S(t)
ci
, βbase ·

I
(t)
ci

Nci

)
︸ ︷︷ ︸

base rate of new CBG infections

. (12)

M3.2 The number of new infectious and removed cases372

We model exposed individuals as becoming infectious at a rate inversely proportional to the mean373

latency period δE . At each time step t, we assume that each exposed individual has a constant,374

time-independent probability of becoming infectious, with375

N
(t)
Eci→Ici

∼ Binom
(
E(t)
ci
, 1/δE

)
. (13)

Similarly, we model infectious individuals as transitioning to the removed state at a rate inversely376

proportional to the mean infectious period δI , with377

N
(t)
Ici→Rci

∼ Binom
(
I(t)ci , 1/δI

)
, (14)

We estimate δE = 96 hours20,58 and δI = 84 hours20 from prior literature.378
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M3.3 Model initialization379

In our experiments, t = 0 is the first hour of March 1, 2020. We approximate the infectious I and380

removed R compartments at t = 0 as initially empty, with all infected individuals in the exposed381

E compartment. We further assume the same expected initial prevalence p0 in every CBG ci. At382

t = 0, every individual in the metro area has the same independent probability p0 of being exposed383

E instead of susceptible S. We thus initialize the model state by setting384

S(0)
ci

= Nci − E(0)
ci

(15)

E(0)
ci
∼ Binom(Nci , p0) (16)

I(0)ci
= 0 (17)

R(0)
ci

= 0. (18)

M3.4 Aggregate mobility and no-mobility baseline models385

Comparison to aggregate mobility model. Our model uses a detailed mobility network to simu-386

late disease spread. To test if this detailed model is necessary, or if our model is simply making use387

of aggregate mobility patterns, we tested an alternate SEIR model that uses the aggregate number388

of visits made to any POI in the metro area in each hour, but not the breakdown of visits between389

specific CBGs to specific POIs. Like our model, the aggregate mobility model also captures new390

cases from visiting POIs and a base rate of infection that is independent of POI visit activity; thus,391

the two models have the same three free parameters (ψ, scaling transmission rates at POIs; βbase,392

the base transmission rate; and p0, the initial fraction of infected individuals). However, instead of393

having POI-specific rates of infection, the aggregate mobility model only captures a single prob-394

ability that a susceptible person from any CBG will become infected due to a visit to any POI at395

time t; we make this simplification because the aggregate mobility model no longer has access to396

the breakdown of visits between CBGs and POIs. This probability λ(t)POI is defined as397

λ
(t)
POI = ψ ·

∑m
i=1

∑n
j=1w

(t)
ij

nm︸ ︷︷ ︸
average mobility at time t

·I
(t)

N
, (19)

where m is the number of CBGs, n is the number of POIs, I(t) is the total number of infectious398

individuals at time t, and N is the total population size of the metro area. For the base rate of399
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infections in CBGs, we assume the same process as in our network model: the probability λ(t)ci that400

a susceptible person in CBG ci will become infected in their CBG at time t is equal to βbase times401

the current infectious fraction of ci (Equation 11). Putting it together, the aggregate mobility model402

defines the number of new exposures in CBG ci at time t as403

N
(t)
Sci→Eci

∼ Binom
(
S(t)
ci
, λ

(t)
POI

)
︸ ︷︷ ︸

new infections from visiting POIs

+ Binom
(
S(t)
ci
, λ(t)ci

)
.︸ ︷︷ ︸

base rate of new CBG infections

(20)

All other dynamics remain the same between the aggregate mobility model and our network model,404

and we calibrated the models in the same way, which we will describe in Methods M4. We found405

that our network model substantially outperformed the aggregate mobility model in out-of-sample406

cases prediction: on average across metro areas, our best-fit network model’s out-of-sample RMSE407

was only 58% that of the best-fit aggregate mobility model (Extended Data Figure 1). This demon-408

strates that it is not only general mobility patterns, but specifically the mobility network that allows409

our model to accurately fit observed cases.410

Comparison to baseline that does not use mobility data. To determine the extent to which411

mobility data might aid in modeling the case trajectory, we also compared our model to a baseline412

SEIR model that does not use mobility data and simply assumes that all individuals within an413

metro area mix uniformly. In this no-mobility baseline, an individual’s risk of being infected and414

transitioning to the exposed state at time t is415

λ(t) := βbase ·
I(t)

N
, (21)

where I(t) is the total number of infectious individuals at time t, and N is the total population size416

of the metro area. As above, the other model dynamics are identical, and for model calibration we417

performed a similar grid search over βbase and p0. As expected, we found both the network and418

aggregate mobility models outperformed the no-mobility model on out-of-sample case predictions419

(Extended Data Figure 1).420

M4 Model calibration and validation421

Most of our model parameters can either be estimated from SafeGraph and US Census data, or422

taken from prior work (see Extended Data Table 2 for a summary). This leaves 3 model parameters423
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that do not have direct analogues in the literature, and that we therefore need to calibrate with data:424

1. The transmission constant in POIs, ψ (Equation (9))425

2. The base transmission rate, βbase (Equation (11))426

3. The initial proportion of exposed individuals at time t = 0, p0 (Equation (16)).427

In this section, we describe how we fit these parameters to published numbers of confirmed cases,428

as reported by The New York Times. We fit models for each metro area separately.429

M4.1 Selecting parameter ranges430

Transmission rate factors ψ and βbase. We select parameter ranges for the transmission rate fac-431

tors ψ and βbase by checking if the model outputs match plausible ranges of the basic reproduction432

number R0 pre-lockdown, since R0 has been the study of substantial prior work on SARS-CoV-433

2.59 Under our model, we can decompose R0 = Rbase + RPOI, where RPOI describes transmission434

due to POIs andRbase describes the remaining transmission (as in Equation (12)). We first establish435

plausible ranges for Rbase and RPOI before translating these into plausible ranges for βbase and ψ.436

We assume that Rbase ranges from 0.1–2. Rbase models transmission that is not correlated437

with activity at POIs in the SafeGraph dataset, including within-household transmission and trans-438

mission at POI categories which are not well-captured in the SafeGraph dataset. We chose the439

lower limit of 0.1 because beyond that point, base transmission would only contribute minimally440

to overall R, whereas previous work suggests that within-household transmission is a substantial441

contributor to overall transmission.60–62 Household transmission alone is not estimated to be suf-442

ficient to tip overall R0 above 1; for example, a single infected individual has been estimated to443

cause an average of 0.32 (0.22, 0.42) secondary within-household infections.60. However, because444

Rbase may also capture transmission at POIs not captured in the SafeGraph dataset, to be conser-445

vative, we chose an upper limit of Rbase = 2; as we describe below, the best-fit models for all 10446

metro areas have Rbase < 2, and 9 out of 10 have Rbase < 1. We allow RPOI to range from 1–3,447

which corresponds to allowing R0 = RPOI + Rbase to range from 1.1–5. This is a conservatively448

wide range, since prior work estimates a pre-lockdown R0 of 2–3.59
449

To determine the values of Rbase and RPOI that a given pair of βbase and ψ imply, we seeded a450

fraction of index cases and then ran the model on looped mobility data from the first week of March451

to capture pre-lockdown conditions. We initialized the model by setting p0, the initial proportion452
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of exposed individuals at time t = 0, to p0 = 10−4, and then sampling in accordance with Equation453

(16). Let N0 be the number of initial exposed individuals sampled. We computed the number of454

individuals that these N0 index cases went on to infect through base transmission, Nbase, and POI455

transmission, NPOI, which gives456

RPOI =
NPOI

N0

(22)

Rbase =
Nbase

N0

. (23)

We averaged these quantities over stochastic realizations for each metro area. Figure S6 shows457

that, as expected, Rbase is linear in βbase and RPOI is linear in ψ. Rbase lies in the plausible range458

when βbase ranges from 0.0012–0.024, and RPOI lies in the plausible range (for at least one metro459

area) when ψ ranges from 515–4,886, so these are the parameter ranges we consider when fitting460

the model. As described in Methods M4.2, we verified that case count data for all metro areas can461

be fit using parameter settings for βbase and ψ within these ranges.462

Initial prevalence of exposures, p0. The extent to which SARS-CoV-2 infections had spread463

in the US by the start of our simulation (March 1, 2020) is currently unclear.63 To account for464

this uncertainty, we allow p0 to vary across a large range between 10−5 and 10−2. As described465

in Methods M4.2, we verified that case count data for all metro areas can be fit using parameter466

settings for p0 within this range.467

M4.2 Fitting to the number of confirmed cases468

Using the parameter ranges above, we grid searched over ψ, βbase, and p0 to find the models that469

best fit the number of confirmed cases reported by The New York Times (NYT).32 For each metro470

area, we tested 1,500 different combinations of ψ, βbase, and p0 in the parameter ranges specified471

above, with parameters linearly spaced for ψ and βbase and logarithmically spread for p0.472

In Methods M3, we directly model the number of infections but not the number of confirmed473

cases. To estimate the number of confirmed cases, we assume that an rc = 0.120,58, 64–66 proportion474

of infections will be confirmed, and moreover that they will confirmed exactly δc = 168 hours475

(7 days)20,66 after becoming infectious. From these assumptions, we can calculate the predicted476
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number of newly confirmed cases across all CBGs in the metro area on day d,477

N (day d)
cases = rc ·

m∑
i=1

24d−δc∑
τ=24(d−1)+1−δc

N
(τ)
Eci→Ici

, (24)

where m indicates the total number of CBGs in the metro area and for convenience we define478

N
(τ)
Eci→Ici

, the number of newly infectious people at hour τ , to be 0 when τ < 1.479

From NYT data, we have the reported number of new cases N̂ (day d)
cases for each day d, summed480

over each county in the metro area. We compare the reported number of cases and the number of481

cases that our model predicts by computing the root-mean-squared-error (RMSE) between each of482

the D = bT/24c days of our simulations,483

RMSE =

√√√√ 1

D

D∑
d=1

(
N

(day d)
cases − N̂ (day d)

cases

)2
. (25)

For each combination of model parameters and for each metro area, we quantify model fit with the484

NYT data by running 30 stochastic realizations and averaging their RMSE. Note that we measure485

model fit based on the daily number of new reported cases (as opposed to the cumulative number486

of reported cases).67
487

Our simulation spans March 1 to May 2, 2020, and we use mobility data from that period.488

However, because we assume that cases will be confirmed δc = 7 days after individuals become489

infectious, we predict the number of cases with a 7 day offset, from March 8 to May 9, 2020.490

M4.3 Parameter selection and uncertainty quantification491

Throughout this paper, we report aggregate predictions from different parameter sets of ψ, βbase,492

and p0 and multiple stochastic realizations. For each metro area, we:493

1. Find the best-fit parameter set, i.e., with the lowest average RMSE on daily incident cases494

over stochastic realizations.495

2. Select all parameter sets that achieve an RMSE (averaged over stochastic realizations) within496

20% of the RMSE of the best-fit parameter set.497

3. Pool together all predictions across those parameter sets and all of their stochastic realiza-498

tions, and report their mean and 2.5th/97.5th percentiles.499
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On average, each metro area has 9.7 parameter sets that achieve an RMSE within 20% of the500

best-fitting parameter set (Table S6). For each parameter set, we have results for 30 stochastic501

realizations.502

This procedure corresponds to rejection sampling in an Approximate Bayesian Computation503

framework,16 where we assume an error model that is Gaussian with constant variance; we pick an504

acceptance threshold based on what the best-fit model achieves; and we use a uniform parameter505

grid instead of sampling from a uniform prior. It quantifies uncertainty from two sources. First, the506

multiple realizations capture stochastic variability between model runs with the same parameters.507

Second, simulating with all parameter sets that are within 20% of the RMSE of the best fit captures508

uncertainty in the model parameters ψ, βbase, and p0. The latter is equivalent to assuming that the509

posterior probability over the true parameters is uniformly spread among all parameter sets within510

the 20% threshold.511

M4.4 Model validation on out-of-sample cases512

We validate our models by showing that they predict the number of confirmed cases on out-of-513

sample data when we have access to corresponding mobility data. For each metro area, we split514

the available NYT dataset into a training set (spanning March 8, 2020 to April 14, 2020) and515

a test set (spanning April 15, 2020 to May 9, 2020). We fit the model parameters ψ, βbase, and516

p0, as described in Methods M4.2, but only using the training set. We then evaluate the predictive517

accuracy of the resulting model on the test set. When running our models on the test set, we still use518

mobility data from the test period. Thus, this is an evaluation of whether the models can accurately519

predict the number of cases, given mobility data, in a time period that was not used for model520

calibration. Extended Data Figure 1 shows that our network model fits the out-of-sample case521

data fairly well, and that our model substantially outperforms alternate models that use aggregated522

mobility data (without a network) or do not use mobility data at all (Methods M3.4). Note that523

we only use this train/test split to evaluate out-of-sample model accuracy. All other results are524

generated using parameter sets that best fit the entire dataset, as described above.525

M5 Analysis details526

In this section, we include additional details about the experiments underlying the figures in the527

paper. We omit explanations for figures that are completely described in the main text.528
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Counterfactuals of mobility reduction (Figure 2a, Tables S4–S5). To simulate what would529

have happened if we changed the magnitude or timing of mobility reduction, we modify the real530

mobility networks from March 1–May 2, 2020, and then run our models on the hypothetical data.531

In Figure 2a, we report the total number of people per 100k population ever infected (i.e., in the532

exposed, infectious, and removed states) by the end of the simulation.533

To simulate a smaller magnitude of mobility reduction, we interpolate between the mobility534

network from the first week of simulation (March 1–7, 2020), which we use to represent typical535

mobility levels, and the actual observed mobility network for each week. Let W (t) represent the536

observed visit matrix at the t-th hour of simulation, and let f(t) = t mod 168 map t to its corre-537

sponding hour in the first week of simulation, since there are 168 hours in a week. To represent the538

scenario where people had committed to α ∈ [0, 1] times the actual observed reduction in mobility,539

we construct a visit matrix W̃ (t)
α that is an α-convex combination of W (t) and W f(t),540

W̃ (t)
α := αW (t) + (1− α)W f(t). (26)

If α is 1, then W̃ (t)
α = W (t), and we use the actual observed mobility network for the simulation.541

On the other hand, if α = 0, then W̃
(t)
α = W f(t), and we assume that people did not reduce542

their mobility levels at all by looping the visit matrix for the first week of March throughout the543

simulation. Any other α ∈ [0, 1] interpolates between these two extremes.544

To simulate changing the timing of mobility reduction, we shift the mobility network by545

d ∈ [−7, 7] days. Let T represent the last hour in our simulation (May 2, 2020, 11PM), let546

f(t) = t mod 168 map t to its corresponding hour in the first week of simulation as above, and547

similarly let g(t) map t to its corresponding hour in the last week of simulation (April 27–May 2,548

2020). We construct the time-shifted visit matrix W̃ (t)
d549

W̃
(t)
d :=


W (t−24d) if 0 ≤ t− 24d ≤ T,

W f(t−24d) if t− 24d < 0,

W g(t−24d) otherwise.

(27)

If d is positive, this corresponds to starting mobility reduction d days later; if we imagine time on550

a horizontal line, this shifts the time series to the right by 24d hours. However, doing so leaves551

the first 24d hours without visit data, so we fill it in by reusing visit data from the first week of552
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simulation. Likewise, if d is negative, this corresponds to starting mobility reduction d days earlier,553

and we fill in the last 24d hours with visit data from the last week of simulation.554

Distribution of predicted infections over POIs (Figure 2b, Extended Data Figure 2, Figure555

S10). We run our models on the observed mobility data from March 1–May 2, 2020 and record556

the number of predicted infections that occur at each POI. Specifically, for each hour t, we compute557

the number of expected infections that occur at each POI pj by taking the number of susceptible558

people who visit pj in that hour multiplied by the POI infection rate λ(t)pj (Equation (9)). In Figures559

2b and S10, we sort the POIs by their total predicted number of infections (summed over hours)560

and plot the cumulative distribution of infections over this ordering of POIs. In Extended Data561

Figure 2, we select the POI categories that contribute the most to predicted infections and plot562

the daily proportion of POI infections each category accounted for (summed over POIs within the563

category) over time.564

Reducing mobility by capping maximum occupancy (Figure 2c, Extended Data Figure 3).565

We implemented two partial reopening strategies: one that uniformly reduced visits at POIs to a566

fraction of full activity, and the other that “capped” each POI’s hourly visits to a fraction of the567

POI’s maximum occupancy. For each reopening strategy, we started the simulation at March 1,568

2020 and ran it until May 31, 2020, using the observed mobility network from March 1–April569

30, 2020, and then using a hypothetical post-reopening mobility network from May 1–31, 2020,570

corresponding to the projected impact of that reopening strategy. Because we only have observed571

mobility data from March 1–May 2, 2020, we impute the missing mobility data up to May 31,572

2020 by looping mobility data from the first week of March, as in the above analysis on the effect573

of past reductions in mobility. Let T represent the last hour for which we have observed mobility574

data (May 2, 2020, 11PM). To simplify notation, we define575

h(t) :=

t if t < T,

f(t) otherwise,
(28)

where, as above, f(t) = t mod 168. This function leaves t unchanged if there is observed mo-576

bility data at time t, and otherwise maps t to the corresponding hour in the first week of our577

simulation.578

29



To simulate a reopening strategy that uniformly reduced visits to an γ-fraction of their origi-579

nal level, where γ ∈ [0, 1], we constructed the visit matrix580

W̃ (t)
γ :=

W
h(t) if t < τ,

γW h(t) otherwise,
(29)

where τ represents the first hour of reopening (May 1, 2020, 12AM). In other words, we use the581

actual observed mobility network up until hour τ , and then subsequently simulate an γ-fraction of582

full mobility levels.583

To simulate the reduced occupancy strategy, we first estimated the maximum occupancyMpj584

of each POI pj as the maximum number of visits that it ever had in one hour, across all of March585

1 to May 2, 2020. As in previous sections, let w(t)
ij represent the i, j-th entry in the observed visit586

matrixW (t), i.e., the number of people from CBG ci who visited pj in hour t, and let V (t)
pj represent587

the total number of visitors to pj in that hour, i.e.,
∑

iw
(t)
ij . We simulated capping at a β-fraction of588

maximum occupancy, where β ∈ [0, 1], by constructing the visit matrix W̃ (t)
β whose i, j-th entry is589

w̃
(t)
ijβ :=


w
h(t)
ij if t < τ or V (t)

pj ≤ βMpj ,

βMpj

V
(t)
pj

w
h(t)
ij otherwise.

(30)

This corresponds to the following procedure: for each POI pj and time t, we first check if t <590

τ (reopening has not started) or if V (t)
pj ≤ βMpj (the total number of visits to pj at time t is591

below the allowed maximum βMpj ). If so, we leave wh(t)ij unchanged. Otherwise, we compute the592

scaling factor
βMpj

V
(t)
pj

that would reduce the total visits to pj at time t down to the allowed maximum593

βMpj , and then scale down all visits from each CBG ci to pj proportionately. For both reopening594

strategies, we calculate the predicted increase in cumulative incidence at the end of the reopening595

period (May 31, 2020), compared to the start of the reopening period (May 1, 2020).596

Relative risk of reopening different categories of POIs (Figure 2d, Extended Data Figure 5,597

Figure S11, Figures S15–S24). We study separately reopening the 20 POI categories with the598

most visits in SafeGraph data. In this analysis, we follow prior work28 and do not study four cat-599

egories: “Child Day Care Services” and “Elementary and Secondary Schools” (because children600

under 13 are not well-tracked by SafeGraph); “Drinking Places (Alcoholic Beverages)” (because601
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SafeGraph seems to undercount these locations28) and “Nature Parks and Other Similar Institu-602

tions” (because boundaries and therefore areas are not well-defined by SafeGraph). We also ex-603

clude “General Medical and Surgical Hospitals” and “Other Airport Operations” (because hospi-604

tals and air travel both involve many additional risk factors our model is not designed to capture).605

We do not filter out these POIs during model fitting (i.e., we assume that people visit these POIs,606

and that transmissions occur there) because including them still increases the proportion of over-607

all mobility our dataset captures; we simply do not analyze these categories, because we wish to608

be conservative and only focus on categories where we are most confident that we are capturing609

transmission faithfully.610

This reopening analysis is similar to the previous experiments on reducing maximum occu-611

pancy vs. uniform reopening. As above, we set the reopening time τ to May 1, 2020, 12AM. To612

simulate reopening a POI category, we take the set of POIs in that category, V , and set their activity613

levels after reopening to that of the first week of March. For POIs not in the category V , we keep614

their activity levels after reopening the same, i.e., we simply repeat the activity levels of the last615

week of our data (April 27–May 2, 2020): This gives us the visit matrix W̃ (t) with entries616

w̃
(t)
ij :=


w

(t)
ij if t < τ,

w
f(t)
ij if t ≥ τ, pj ∈ V

w
g(t)
ij if t ≥ τ, pj /∈ V .

(31)

As in the above reopening analysis, f(t) maps t to the corresponding hour in the first week of617

March, and g(t) maps t to the corresponding hour in the last week of our data. For each category,618

we calculate the predicted difference between (1) the cumulative fraction of people who have been619

infected by the end of the reopening period (May 31, 2020) and (2) the cumulative fraction of620

people infected by May 31 had we not reopened the POI category (i.e., if we simply repeated621

the activity levels of the last week of our data). This seeks to model the increase in cumulative622

incidence by end of May from reopening the POI category. In Extended Data Figure 5 and Figures623

S15–S24, the bottom right panel shows the predicted increase for the category as a whole, and624

the bottom left panel shows the predicted increase per POI (i.e., the total increase divided by the625

number of POIs in the category).626
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Per-capita mobility (Figure 3d, Extended Data Figure 6, Figure S3). Each group of CBGs627

(e.g., the bottom income decile) comprises a set U of CBGs that fit the corresponding crite-628

ria. In Figure 3d and Extended Data Figure 6, we show the daily per-capita mobilities of dif-629

ferent pairs of groups (broken down by income and by race). To measure the per-capita mo-630

bility of a group on day d, we take the total number of visits made from those CBGs to any631

POI,
∑

ci∈U
∑

pj∈P
∑24d+23

t=24d w
(t)
ij , and divide it by the total population of the CBGs in the group,632 ∑

ci∈U Nci . In Figure S3, we show the total number of visits made by each group to each POI633

category, accumulated over the entire data period (March 1–May 2, 2020) and then divided by the634

total population of the group.635

Average predicted transmission rate of a POI category (Figure 3e, Tables 3–4). We compute636

the predicted average hourly transmission rate experienced by a group of CBGs U at a POI category637

V as638

β̄UV :=

∑
ci∈U

∑
pj∈V

∑T
t=1w

(t)
ij β

(t)
pj∑

ci∈U
∑

pj∈V
∑T

t=1w
(t)
ij

, (32)

where, as above, β(t)
pj is the transmission rate at POI pj in hour t (Equation (8)), w(t)

ij is the number639

of visitors from CBG ci at POI pj in hour t, and T is the last hour in our simulation. This represents640

the expected transmission rate encountered during a visit by someone from a CBG in group U to a641

POI in category V .642
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Extended data

Extended Data Figure 1: Predicted (blue) and true (orange) daily case counts for (a) our model, which uses hourly
mobility networks, (b) an SEIR model which uses hourly aggregated mobility data, and (c) a baseline SEIR model
which does not use mobility data (see Methods M3.4 for details). Incorporating mobility information improves out-
of-sample fit and having a network, instead of an aggregate measure, further improves fit: on average across metro
areas, our best-fit network model’s out-of-sample error (RMSE) was only 58% that of the best-fit aggregate mobility
model. All three models are calibrated on observed case counts before April 15, 2020 (vertical black line). The grey
x’s represent the daily reported cases; since they tend to have great variability, we also show the smoothed weekly
average (orange line). Shaded regions denote 2.5th and 97.5th percentiles across sampled parameters and stochastic
realizations.
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Extended Data Figure 2: Distribution of POI infections over time. We selected the POI categories that our models
predicted contributed the most to infections, and plotted the predicted proportion of POI infections each category
accounted for over time. Our model predicts time-dependent variation of where transmissions may have occurred.
For example, Full-Service Restaurants (blue) and Fitness Centers (brown) contributed less to predicted infections
over time, likely due to lockdown orders closing these POIs, while grocery stores remained steady or even grew in
their predicted contribution, likely because they remained open as essential businesses. Hotels & Motels (yellow)
also feature in these plots; most notably, the model predicts a peak in their contributed infections in Miami around
mid-March — this would align with college spring break, with Miami as a popular vacation spot for students. The
proportions are stacked in these plots, and the y-axes are truncated at 0.7 because every plot would only show “Other”
from 0.7 to 1.0.
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Extended Data Figure 3: Trade-off between number of new infections and visits lost, with different levels of reduced
maximum occupancy reopening. We simulate reopening starting on May 1, 2020 and run the simulation until the end of
the month. Each dot represents the level of occupancy reduction: e.g., capping visits at 50% of maximum occupancy.
The y-coordinate represents the predicted number of new infections incurred after reopening (per 100k population)
and the x-coordinate represents the fraction of visits lost from partial reopening compared to full reopening. Shaded
regions denote 2.5th and 97.5th percentiles across parameter sets and stochastic realizations. In 4 metro areas, the
predicted cost of new infections from reopening is roughly similar for lower-income CBGs and the overall population,
but in 5 metro areas, the lower-income CBGs incur more predicted infections from reopening. Notably, New York City
(NYC) is the only metro area where this trend is reversed; this is because the model predicts that such a high fraction—
65% (95% CI, 62%-68%)—of lower-income CBGs in NYC had been infected before reopening that after reopening,
only a minority of the lower-income population is still susceptible (in comparison, the second highest fraction infected
before reopening was 31% (95% CI, 28%-35%) for Philadelphia, and the rest ranged from 1%-14%).
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Extended Data Figure 4: Reduced occupancy versus uniform reduction reopening. Compared to partially reopening
by uniformly reducing visits, the reduced occupancy strategy—which disproportionately targets high-risk POIs with
sustained high occupancy—always results in a smaller predicted increase in infections for the same number of visits.
The y-axis plots the relative difference between the predicted increase in cumulative infections (from May 1 to May
31) under the reduced occupancy strategy as compared to the uniform reduction strategy. The shaded regions denote
the 2.5th and 97.5th percentiles over sampled parameters and stochastic realizations.
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Extended Data Figure 5: POI attributes in all 10 metro areas combined. The top two plots pool POIs from all metro
areas and plot quantities from the mobility data, showing (a) the distribution of dwell time, and (b) the average num-
ber of hourly visitors divided by the area of the POI in square feet. Each point represents one POI; boxes depict the
interquartile range across POIs, with data points outside the range individually shown. The bottom two plots pool
across model realizations from all metro areas, and show model predictions for the increase in infections (per 100k
population) from reopening a POI category: (c) per POI, and (d) for the category as a whole. Each point represents
a model realization; boxes depict the interquartile range across realizations, with data points outside the range indi-
vidually shown. Across MSAs, we model 552,758 POIS in total, and we sample 97 parameters and 30 stochastic
realizations (N = 2,910); see Table S6 for the number of sets per metro area. The boxes denote the interquartile range,
with data points outside the range individually shown. Colors are used to distinguish the different POI categories, but
do not have any additional meaning.

40



Extended Data Figure 6: Daily per-capita mobility over time, (a) comparing lower-income to higher-income CBGs
and (b) comparing less white to more white CBGs. See Methods M5 for details.
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Metro area CBGs POIs Hourly edges Total modeled pop Total visits
Atlanta 3,130 39,411 540,166,727 7,455,619 27,669,692
Chicago 6,812 62,420 540,112,026 10,169,539 33,785,702
Dallas 4,877 52,999 752,998,455 9,353,561 37,298,053
Houston 3,345 49,622 609,766,288 7,621,541 32,943,613
Los Angeles 8,904 83,954 643,758,979 16,101,274 38,101,674
Miami 3,555 40,964 487,544,190 6,833,129 26,347,947
New York City 14,763 122,428 1,057,789,207 20,729,481 66,581,080
Philadelphia 4,565 37,951 304,697,220 6,759,058 19,551,138
San Francisco 2,943 28,713 161,575,167 5,137,800 10,728,090
Washington DC 4,051 34,296 312,620,619 7,740,276 17,898,324
All metro areas combined 56,945 552,758 5,411,028,878 97,901,278 310,905,313

Extended Data Table 1: Dataset summary statistics from March 1–May 2, 2020.

Param. Description Value (Source)
δE mean latency period 96 hours20,58

δI mean infectious period 84 hours20

δc period from infectious to confirmed 7 days20,66

rc percentage of cases which are detected 10%20,58, 64–66

βbase base CBG transmission rate Variable (Estimated)
Nci population size of CBG ci Variable (2018 US Census52)
ψ scaling factor for POI transmission Variable (Estimated)
w

(t)
ij # visitors from CBG ci to POI pj at time t Variable (SafeGraph)

apj area of POI pj in square feet Variable (SafeGraph)
p0 initial proportion of exposed population Variable (Estimated)
S
(0)
ci initial susceptible population in CBG ci (1− p0)Nci

E
(0)
ci initial exposed population in CBG ci p0Nci

I
(0)
ci initial infectious population in CBG ci 0
R

(0)
ci initial removed population in CBG ci 0

Extended Data Table 2: Model parameters. If the parameter has a fixed value, we specify it under Value; otherwise,
we write “Variable” to indicate that it varies across CBG / POI / metro area.
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Metro area ATL CHI DAL HOU LA MIA NY PHL SF DC Median
Full-Service
Restaurants

0.764 1.204 0.956 1.000 1.445 1.232 2.035 2.883 1.758 1.171 1.218

Limited-Service
Restaurants

0.940 0.950 1.002 0.906 1.067 0.872 1.901 1.614 0.994 0.962 0.978

Other General
Stores

0.782 1.083 0.957 0.729 0.760 0.894 1.218 1.312 1.045 0.950 0.954

Gas Stations 1.326 1.865 1.310 1.515 2.254 2.195 1.899 6.461 1.357 1.870 1.868
Fitness Centers 0.536 0.907 0.708 0.670 1.461 0.789 1.151 1.516 0.995 1.160 0.951
Grocery Stores 0.948 3.080 0.838 1.333 2.408 1.498 4.984 10.437 2.478 1.977 2.192
Cafes & Snack
Bars

1.385 0.919 0.716 1.120 1.327 2.168 1.943 1.757 0.982 0.932 1.224

Hotels & Motels 1.228 1.200 0.814 0.804 1.229 1.134 1.260 1.993 1.199 1.346 1.214
Religious Organi-
zations

1.546 1.763 0.956 0.919 1.746 1.464 1.756 1.736 1.515 1.852 1.641

Hardware Stores 3.938 3.340 1.575 2.111 1.333 0.939 3.553 6.716 4.202 13.560 3.446
Department
Stores

1.132 1.230 0.978 0.911 1.083 1.431 1.667 0.976 0.867 1.042 1.062

Offices of Physi-
cians

1.235 0.721 0.667 1.036 1.141 1.687 1.307 1.319 1.193 0.445 1.167

Pharmacies &
Drug Stores

1.636 1.389 1.176 0.854 1.718 1.555 2.577 5.624 1.200 1.699 1.596

Sporting Goods
Stores

0.936 1.540 1.129 0.812 1.168 0.700 1.253 1.161 0.826 2.777 1.145

Automotive Parts
Stores

0.890 1.707 0.862 1.086 1.990 1.414 1.524 2.697 1.753 1.246 1.469

Used Merchan-
dise Stores

0.993 0.931 1.000 1.315 1.017 1.074 1.352 1.668 1.587 0.814 1.046

Convenience
Stores

1.208 0.932 1.613 0.647 0.838 0.824 1.736 2.322 1.086 1.428 1.147

Pet Stores 1.260 0.820 1.192 1.487 1.536 0.776 3.558 1.652 2.124 0.905 1.374
New Car Dealers 2.036 1.471 0.741 0.809 1.180 1.377 2.022 1.129 0.395 0.872 1.154
Hobby & Toy
Stores

1.168 1.110 1.165 0.853 1.771 1.520 1.525 1.088 0.883 0.926 1.138

Median 1.188 1.202 0.968 0.915 1.330 1.305 1.746 1.702 1.196 1.166

Extended Data Table 3: Predicted transmission rate disparities at each POI category between income groups. We
report the ratio of the average predicted transmission rate encountered by visitors from CBGs in the bottom income
decile to that for the top income decile. A ratio greater than 1 means that visitors from CBGs in the bottom income
decile experienced higher (more dangerous) predicted transmission rates. See Methods M5 for details.
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Metro area ATL CHI DAL HOU LA MIA NY PHL SF DC Median
Full-Service
Restaurants

0.802 1.354 0.981 0.965 1.065 1.167 2.418 2.661 1.223 1.013 1.116

Limited-Service
Restaurants

0.940 1.144 1.028 0.940 0.820 0.919 2.136 1.523 0.799 1.346 0.984

Other General
Stores

0.776 1.277 0.838 0.841 1.527 1.132 2.158 1.313 0.925 1.312 1.204

Gas Stations 1.402 1.891 1.389 1.190 1.336 1.857 1.818 2.286 2.321 1.316 1.610
Fitness Centers 0.607 1.167 0.670 0.831 0.780 1.066 1.447 1.977 1.103 1.205 1.084
Grocery Stores 0.589 3.664 0.613 1.195 2.386 0.950 5.864 13.705 2.243 2.262 2.252
Cafes & Snack
Bars

1.308 1.104 0.845 0.840 0.976 2.619 1.767 2.456 1.045 0.867 1.074

Hotels & Motels 0.977 1.007 1.366 0.718 1.112 1.024 1.449 2.494 0.654 0.899 1.015
Religious Organi-
zations

0.938 1.606 1.060 0.953 2.096 1.795 1.933 2.040 1.674 1.188 1.640

Hardware Stores 0.909 3.900 1.523 1.461 1.952 0.586 5.032 3.898 11.103 13.432 2.925
Department
Stores

1.081 1.301 0.805 0.777 0.992 2.337 2.479 1.357 1.089 1.402 1.195

Offices of Physi-
cians

0.894 1.323 1.006 1.415 0.898 1.117 1.652 2.073 0.694 1.911 1.220

Pharmacies &
Drug Stores

0.888 1.376 0.930 0.732 1.538 1.674 3.315 3.366 1.135 1.715 1.457

Sporting Goods
Stores

0.767 0.674 0.650 0.506 1.946 0.818 1.532 2.152 0.880 1.715 0.849

Automotive Parts
Stores

1.049 1.479 1.010 1.353 2.998 2.657 1.740 3.387 1.646 0.601 1.562

Used Merchan-
dise Stores

0.858 1.195 0.699 1.060 1.270 0.593 1.500 3.024 1.425 0.799 1.128

Convenience
Stores

2.016 5.055 1.272 2.188 0.761 0.902 1.911 2.276 1.239 1.844 1.878

Pet Stores 0.925 1.624 0.724 1.465 1.506 0.881 2.715 10.182 1.568 2.408 1.537
New Car Dealers 1.008 1.398 0.812 0.736 0.942 0.998 1.977 0.866 0.772 0.383 0.904
Hobby & Toy
Stores

2.569 0.853 0.628 0.979 1.373 1.388 2.237 0.825 0.864 1.286 1.132

Median 0.932 1.339 0.888 0.959 1.303 1.092 1.955 2.281 1.119 1.314

Extended Data Table 4: Predicted transmission rate disparities at each POI category between racial groups. We
report the ratio of the average predicted transmission rate encountered by visitors from CBGs with the lowest (bottom
decile) proportion of white residents versus that for the top decile. A ratio greater than 1 means that visitors from
CBGs in the bottom decile experienced higher (more dangerous) predicted transmission rates. See Methods M5 for
details.
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