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ABSTRACT
Mobility restrictions have been a primary intervention for con-
trolling the spread of COVID-19, but they also place a signi�cant
economic burden on individuals and businesses. To balance these
competing demands, policymakers need analytical tools to assess
the costs and bene�ts of di�erent mobility reduction measures. In
this paper, we present our work motivated by our interactions with
the Virginia Department of Health on a decision-support tool that
utilizes large-scale data and epidemiological modeling to quantify
the impact of changes in mobility on infection rates. Our model
captures the spread of COVID-19 by using a� ne-grained, dynamic
mobility network that encodes the hourly movements of people
from neighborhoods to individual places, with over 3 billion hourly
edges. By perturbing the mobility network, we can simulate a wide
variety of reopening plans and forecast their impact in terms of new
infections and the loss in visits per sector. To deploy this model in
practice, we built a robust computational infrastructure to support
running millions of model realizations, and we worked with poli-
cymakers to develop an interactive dashboard that communicates
our model’s predictions for thousands of potential policies.
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1 INTRODUCTION
The COVID-19 pandemic has wreaked havoc on lives and liveli-
hoods across the globe. In an e�ort to contain the virus, policy-
makers have turned to non-pharmaceutical interventions, such as
restricting mobility, in order to limit contact and reduce disease
transmission between individuals. To this end, many US states
closed or reduced occupancy at places such as restaurants and
gyms [7]. However, these measures come at a heavy cost to indi-
viduals and businesses. It is imperative during this time to provide
policymakers with analytical tools that can quantitatively assess,
in near real-time, the tradeo�s between mobility and new infec-
tions. Furthermore, this tool should be� ne-grained, able to test
out heterogeneous plans—for example, allowing one level of mo-
bility at essential retail, another level at retail, and yet another at
restaurants—so that policymakers can tailor restrictions to the spe-
ci�c risks and needs of each sector. Despite this granularity, the tool
also needs to be scalable, supporting analyses for an exponential
number of potential policies so that policymakers can select the
best option among them for their jurisdiction.

To ful�ll these needs, we present a decision-support tool, which
we built based on interactions with the Virginia Department of
Health (VDH) to support their decision-making on mobility re-
duction policies. Our approach begins with our state-of-the-art
epidemiological model [8], which integrates large-scale mobility
and mask-wearing data to accurately capture the spread of COVID-
19. Our model overlays transmission dynamics on a time-varying
mobility network which encodes the hourly movements of individ-
uals from neighborhoods to speci�c points of interest (POIs), such
as restaurants and gyms. Since we model infections in tandem with
mobility, our model can provide the multifaceted analyses neces-
sary to understand the costs and bene�ts of a policy; for example,
by quantifying predicted infections and the number of POI visits
lost per sector, which can serve as a proxy for economic impact.
By design, our model is� ne-grained, as it simulates who is getting
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Figure 1: Illustration of our approach. We integrate data frommany sources to run, evaluate, and analyze our model. We build
a computational infrastructure to support millions of model realizations during themodel� tting and experiment steps of our
pipeline. Our UI design enables a smooth experience, so that policymakers can easily compare di�erent reopening policies.

infected where and when down to the individual POI and hour. Our
model is also� exible, since we can modify any one of its inputs—
e.g., modifying mobility for a subset of POIs to re�ect a change in
policy, or altering transmission rates per neighborhood to indicate
vaccination e�ects—and straightforwardly run the model with the
new inputs to observe the e�ects of the hypothetical change.

Finally, to scale our model, we build a robust infrastructure to
handle computational challenges. The mobility networks that we
model are large, with billions of hourly edges between POIs and
neighborhoods. Furthermore, the� exibility of our approach (i.e.,
being able to simulate di�erent POI categories at di�erent levels of
mobility) results in an exponential number of hypothetical scenarios
to test. In order to support predictions for thousands of scenarios, we
design a lightweight, vectorized implementation of our model, and
build a large-scale system to run hundreds of models in parallel.1 By
leveraging this system, we are able to compress 2 years of compute
time into the span of a few days.
Advances in the current work. In building this tool, we have
greatly extended our epidemiological model since its original im-
plementation [8]. We have introduced new features including (1)
variation in mask-wearing over time; (2) a time-varying base trans-
mission rate; (3) a time-varying death detection rate; and (4) model
initialization based on historical reported deaths. These additions
allow us to accurately� t daily deaths in Virginia, and we also show
that the inclusion of our new features contribute substantially to-
ward reducing model loss (Section 3.1). Furthermore, whereas our
original work focused on the� rst two months of the pandemic
(March and April 2020), in this work, we validate our models us-
ing data from November 2020 to January 2021, which was more
relevant to policy-making at the time we developed our system.
We have also� tted the model on new, smaller metropolitan areas
in Virginia. Importantly, the experimental results in this work are
consistent with and extend our original analyses, showing that
the high-level� ndings from our� rst work generalize to new time

1Our code is available at https://github.com/snap-stanford/covid-mobility-tool.

periods and smaller regions. For example, we continue to� nd that
mobility patterns are predictive of socioeconomic disparities in in-
fection rates, and that certain POI categories like restaurants are far
more dangerous to fully reopen than others (Section 3.2). Finally,
to create a� nished product that policymakers can directly use,
we developed a new dashboard that communicates thousands of
results from our model. Our resulting interface2 includes multiple
interactive panels, where policymakers can select various proposed
changes in mobility, and observe how these changes would a�ect
predicted infections over time and losses in POI visits (Section 3.3).
Supporting public health decision-making. Our group has been
supporting various federal, state and local public health author-
ities for over a year now as they respond to the pandemic. This
tool was designed to ful�ll public health o�cials’ desire to have
a quantitative and comprehensive analysis of a range of reopen-
ing policies. VDH reviewed a prototype of the tool and provided
valuable feedback on how best to present the data to maximize
clarity and applicability from a public health perspective. This guid-
ance was integral to the� nal design of the dashboard presented in
this paper. While we focus on the state of Virginia for illustrative
purposes, the tool can be generalized to other states as well.

2 OUR APPROACH
In this section, we break down our approach: the datasets that
we use (Section 2.1), our epidemiological model (Section 2.2), and
the computational infrastructure that we developed to produce
predictions at scale (Section 2.3). Figure 1 also provides a summary
of our process, illustrating the main steps of our approach and
where di�erent data sources are integrated along the way.

2.1 Large-scale data
Fine-grained mobility data (SafeGraph). Mobility data capture
important changes in population behavior over time: for example,
in Figure 2, we see that mobility fell dramatically in March 2020,

2Our dashboard is available at https://nssac.bii.virginia.edu/covid-19/kdd-command.
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Figure 2: Three time-varying data sources – mobility, mask
use, and daily COVID-19 deaths – shown for theWashington
DC MSA. The highlighted regions indicate the periods that
we test formodel validation, one from the� rst wave and one
from the second wave of infections (Section 3.1). There is an
18-day o�set between the highlighted regions for input data
(mobility, mask use) and deaths, due to the modeled delay
between becoming infectious and date of death (Section 2.2).

then slowly climbed back up during the following months until re-
ceding again near the end of the year. These patterns re�ect where
and when individuals may have been coming into contact with one
another, and thus inform our understanding of transmission risks
and how to mitigate them. We use data from SafeGraph, a com-
pany that anonymizes and aggregates location data from mobile
apps. SafeGraph’s Places3 and Weekly Patterns4 datasets provide
detailed information about millions of points of interest (POIs),
which are non-residential locations that people can visit. For each
POI, SafeGraph provides estimates of its hourly visit counts, as well
as weekly estimates of which census block groups the visitors are
coming from. In addition, SafeGraph provides each POI’s NAICS
category, its physical area in square feet, and its median visit dura-
tion in minutes (the “dwell time”). We also use SafeGraph’s Social
Distancing Metrics5 dataset, which contains daily estimates of the
proportion of people staying at home in each CBG.

In this work, we focus on three of the largest metropolitan statis-
tical areas (MSAs) in Virginia: Washington-Arlington-Alexandria,
DC-VA-MD-WV (hereby referred to as the “Washington DC” MSA),
Virginia Beach-Norfolk-Newport News, VA-NC (“Eastern”), and
Richmond, VA (“Richmond”). Across these MSAs, we model 63,744
POIs and 7,609 census block groups (CBGs) in total, with over 3
billion hourly edges between them (Table 1).
3https://docs.safegraph.com/v4.0/docs/places-schema.
4https://docs.safegraph.com/v4.0/docs/weekly-patterns.
5https://docs.safegraph.com/v4.0/docs/social-distancing-metrics.

MSA POIs CBGs Modeled pop. Hourly edges
Washington DC 40,467 4,904 9,200,384 2,095,359,467
Richmond 9,917 1,098 2,048,200 516,647,719
Eastern 13,360 1,607 2,854,769 786,389,095
Total 63,744 7,609 14,103,353 3,398,396,281

Table 1: Summary of mobility networks. Modeled pop. in-
dicates the total population living in the modeled CBGs.
Hourly edges counts the number of non-zero edge weights
in themobility network from 12amNovember 1 to 11pmDe-
cember 31, 2020 (the second wave period that we�t).

Mask-wearing data (IHME). We use mask-wearing data from the
Institute for Health Metrics and Evaluation (IHME) website,6 which
provides daily estimates at the state level of the percentage of the
population wearing masks. In Virginia, we see the most dramatic
change in mask-wearing near the beginning of the pandemic, from
0% of the population wearing masks in mid-March to 60% by the
end of May 2020 (Figure 2).
COVID-19 deaths (New York Times). To calibrate our model,
we compare its predicted death counts to data on reported deaths.
We use The New York Times’ COVID-19 dataset,7 which contains
daily reported deaths per US county. For each MSA that we model,
we sum over the county-level counts to produce overall counts for
the entire MSA. As shown in Figure 2, Washington DC—along with
much of the US—experienced two major waves of infections, one
in the spring of 2020 and the second near the end of the year.
Demographic data (US Census). We utilize data about each CBG
from the American Community Survey (ACS) of the US Census
Bureau. We use the 5-year ACS data (2013–2017) to extract the me-
dian household income, the proportion of white residents, and the
proportion of Black residents of each CBG. For the total population
of each CBG, we use the most-recent one-year estimates (2018);
one-year estimates are noisier, but we wanted to minimize system-
atic downward bias (due to population growth) by making them
as recent as possible. The model uses CBG populations as input,
but it does not use income or race during the simulation. Instead,
we use income and race data to analyze the model’s output; for
example, to compare the predicted infection rates of lower-income
and higher-income CBGs (Section 3.2).

2.2 Epidemiological model
Mobility network. We overlay a disease transmission model on
a dynamic mobility network, which is represented as a complete
undirected bipartite graph G = (V, E) with time-varying edges.
The nodesV are partitioned into two disjoint sets C = {21, · · · , 2<},
representing< CBGs, and P = {?1, · · · , ?=}, representing = POIs.
The weightF (C )

8 9 on an edge (28 , ? 9 ) indicates the number of people
from CBG 28 who visited POI ? 9 in hour C ; we refer the reader to
Chang et al. [8] for the details of how we derive the hourly edge
weights from SafeGraph data. From US Census data, each CBG 28

6https://covid19.healthdata.org/united-states-of-america/virginia?view=mask-use.
7https://github.com/nytimes/covid-19-data.
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is labeled with its population #28 , and from SafeGraph data, each
POI ? 9 is labeled with its area 0? 9 and median dwell time 3? 9 .
Model dynamics. We assume that every individual is in one of
four disease states at any given time: susceptible ((), exposed (⇢),
infectious (� ), or removed ('). Susceptible individuals can acquire
the virus through contact with infectious individuals. They then
enter the exposed state, during which they have been infected but
are not yet infectious. Individuals transition from exposed to infec-
tious at a rate inversely proportional to the mean latency period.
Finally, they transition from the infectious state to the removed
state at a rate inversely proportional to the mean infectious period.
In the removed state, they can no longer infect others or become
infected again (e.g., because they have recovered or died).

In our model, each CBG maintains its own SEIR states, with ( (C )28 ,
⇢ (C )
28 , � (C )28 , and ' (C )

28 representing how many individuals in CBG 28

are in each disease state at hour C , and #28 = ( (C )28 +⇢ (C )
28 + � (C )28 +' (C )

28 .
At each hour C , we sample the transitions between states as follows:

# (C )
(28!⇢28

⇠ Pois

 
( (C )28

#28

=’
9=1

_ (C )? 9
F (C )
8 9

!

|                         {z                         }
new infections from visiting POIs

+ Binom
⇣
( (C )28 , _ (C )28

⌘
|                 {z                 }

base rate of new CBG infections

(1)

# (C )
⇢28!�28

⇠ Binom
⇣
⇢ (C )
28 , 1/X⇢

⌘
, (2)

# (C )
�28!'28

⇠ Binom
⇣
� (C )28 , 1/X�

⌘
, (3)

where _ (C )? 9
is the rate of infection at POI ? 9 at hour C ; _

(C )
28 is the

base rate of infection that is independent of visiting POIs; X⇢ is the
mean latency period; and X� is the mean infectious period.

The number of new exposures, # (C )
(28!⇢28

. We assume that any
susceptible visitor to POI ? 9 at hour C has the same independent
probability _ (C )? 9

of being infected. Since there are F (C )
8 9 visitors

from CBG 28 to POI ? 9 at hour C , and we assume that a ( (C )28 /#28
fraction of them are susceptible, the number of new infections
among these visitors is distributed as Binom(F (C )

8 9 ( (C )28 /#28 , _
(C )
? 9

) ⇡
Pois(_ (C )? 9

F (C )
8 9 ( (C )28 /#28 ). The number of new infections among all

outgoing visitors from CBG 28 is therefore distributed as the sum of
the above expression over all POIs, Pois

�
(( (C )28 /#28 )

Õ=
9=1 _

(C )
? 9

F (C )
8 9

�
.

We de�ne the infection rate _ (C )? 9
at POI ? 9 at hour C as the product

of three time-varying factors: (1) the transmission rate V (C )? 9
; (2) the

density of infectious visitors � (C )? 9
/+ (C )

? 9
; (3) a mask-wearing factor

(1�nc (C ) )2 [12], where n 2 [0, 1] represents mask e�cacy and c (C )

indicates the proportion of the MSA population wearing a mask at
hour C (see Section A.1.2 for details).

_ (C )? 9
= (1 � nc (C ) )2V (C )? 9

� (C )? 9

+ (C )
? 9

. (4)

The transmission rate is V (C )? 9
:= k32? 9

(+ (C )
? 9

/0? 9 ), wherek is a trans-
mission constant (shared across all POIs) that we� t to data, the

dwell time 3? 9 2 [0, 1] is the average fraction of an hour a visitor
spends at ? 9 , and 0? 9 is the physical area of ? 9 .

In addition to new infections from POIs, wemodel a CBG-speci�c
base rate of new infections that is independent of POI visit activity.
This captures other sources of infections, e.g., household infections
or infections at POIs that are absent from the SafeGraph data. At
each hour C , every susceptible individual in CBG 28 has a base
probability _ (C )28 of becoming infected, where

_ (C )28 := (1 � nc (C ) )2V (C )base
� (C )28

#28
(5)

is the product of the mask-wearing scaling factor, the base trans-
mission rate V (C )base, and the proportion of infectious individuals in 28 .

We parameterize Vbase by de�ning a starting point V (0)base and ratio

AV , so that Vbase updates linearly from V (0)base to AVVbase. V
(0)
base and

AV are free parameters, shared across all CBGs, which we� t to data.
We allow Vbase to vary over time to capture changes in behavior
outside of POIs (e.g., if home gatherings increase). However, we
restrict the amount that it can vary by using a conservative range
for AV , allowing Vbase to change up to 30% (in either direction) over
the 2-month periods that we simulate.
The number of reported deaths. We assume that a time-varying
proportion of infections A (C )deaths will result in reported deaths, and
that they will be reported exactly Xdeaths = 432 hours (18 days)
after the individual became infectious.8 From these assumptions,
the predicted number of newly reported deaths from CBG 28 on
day 3 is

#̂ (day 3)
deaths,28

=
243�Xdeaths’

g=24(3�1)+1�Xdeaths
A (g)deaths#

(g)
⇢28!�28

, (6)

where we de�ne # (g)
⇢28!�28

to be 0when g < 1. This conversion from
(⇢�' states to reported deaths allows us to� t our models on daily
reported deaths, which we describe in the following section, as well
as to initialize the (⇢�' states at the beginning of the simulation
based on historical reported deaths (Section A.1.3).

The time-varying reported death rate A (C )deaths is the product of
three factors: (1) the initial infection fatality rate IFR0 = 0.0068 [23];
(2) the relative reduction in the infection fatality rate A (C )IFR over time;
(3) the proportion of COVID-19 deaths that are detected A (C )detect. We

use existing estimates of A (C )IFR, which, based on hospital fatality rates,
estimate that the infection fatality rate was nearly halved by the
summer of 2020 [15]. To estimate A (C )detect, we compute the weekly
ratio of reported COVID-19 deaths in the US, from The New York
Times, over weekly select-cause excess deaths, as estimated by the
National Center for Health Statistics (NCHS).9 The NCHS provides,
for select causes of deaths determined to be related to COVID-19
(e.g., pneumonia, heart failure), the expected (based on 2015-2019)
and actual numbers of deaths due to these causes for each week
since the pandemic began; the weekly excess select-cause deaths

8It is simplifying to assume that the delay is� xed, but we performed sensitivity analyses
in the original work that showed that model predictions would remain essentially
identical if delays were sampled stochastically from a distribution.
9https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm.
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are the di�erence between the expected and actual (or 0, if the
expected exceeds the actual). If we assume that all select-cause
excess deaths can be attributed to COVID-19, then we� nd that
the death detection rate A (C )detect increased from around 20% at the
beginning of the pandemic to 60%-80% after June 2020.
Model�tting . Most of our model parameters can either be es-
timated from data or taken from prior work (see Table A1 for a
summary). This leaves 3 model parameters that we need to cali-
brate with data: the POI transmission constant,k , and the starting
point and ratio for the base transmission rate, V (0)base and AV . We cali-
brate these parameters per MSA by� tting to published numbers of
con�rmed deaths, as reported by The New York Times (NYT). NYT
data provides the daily cumulative number of COVID-19 deaths
per county, so� rst we sum over county-level counts to produce
cumulative death counts for the MSA. Then, we convert this to the
daily number of new deaths and apply two-week averaging to the
raw daily counts to smooth over weekly e�ects (e.g., not reporting
on weekends) and other sources of noise.

Let# (day 3)
deaths represent the (smoothed) number of reported deaths

on day 3 in the MSA, and let #̂ (day 3)
deaths represent the model’s pre-

diction for this quantity, which we compute by summing over
the model’s CBG-level predictions (Equation 6). We compare our
model predictions to the actual counts by computing the root-mean-
squared-error (RMSE) between each of the⇡ days of our simulation:

RMSE =

vut
1
⇡

⇡’
3=1

⇣
# (day 3)
deaths � #̂ (day 3)

deaths

⌘2
. (7)

For each parameter set, we quantify model� t by running 30 sto-
chastic realizations and averaging their RMSE.

Throughout this paper, we report aggregate predictions from
the best-�tting parameter sets. For each MSA, we:

(1) Grid-search over 1,050 combinations ofk , V (0)base, and AV .
(2) Find the best-�t parameter set with the lowest average RMSE.
(3) Select all parameter sets that achieve an RMSE within 20%

of the RMSE of the best-�t parameter set.
(4) Pool together all predictions across those parameter sets and

all of their stochastic realizations, and report their mean and
2.5th/97.5th percentiles.

This procedure captures uncertainty from two sources: (1) stochas-
tic variability between model runs with the same parameters, and
(2) uncertainty in the model parameters. In Table 2, we describe the
selected parameters for each of the MSAs that we model.

2.3 Large-scale implementation
In this section, we describe computational challenges that arise from
implementing this system at scale, and discuss how we addressed
them with engineering solutions.
Handling large mobility networks. The hourly POI-CBG net-
works store large amounts of data; for example, across the three
Virginia MSAs we focus on in this work, their networks contain 3.4
billion hourly edges from November to December 2020 (Table 1). In
order to reduce computation time, we run our network inference
algorithm ahead of any disease modeling, and save the inferred
edge weights so that they can be loaded later on. For each network,

we save the weights separately per hour (as sparse matrices), so
that the model only needs to load as many hours of data as neces-
sary for the current simulation. The model dynamics bring their
own challenges: in every hour, we need to estimate the infection
rate per POI (Equation 4), and the base infection rate per CBG
(Equation 5). However, because each POI’s hourly infection rate is
conditionally independent of the other POIs’ infection rates (given
the current (⇢�' states for each CBG), we can parallelize the hourly
computations across POIs; for similar reasons, we can parallelize
across CBGs and random seeds (i.e., stochastic realizations). These
strategies greatly reduce simulation time; for instance, bringing the
average runtime for a 2-month multi-seed simulation with Wash-
ington DC down to 5.5 minutes, even as each simulation requires
computing 1.78 billion hourly, seed-speci�c POI infection rates and
215 million hourly, seed-speci�c CBG infection rates.
Scaling model experiments. One of the strengths of our ap-
proach is� exibility: for example, our dashboard allows policymak-
ers to test any combination of opening 5 di�erent POI categories
to 4 di�erent levels of mobility (Section 3.3). However, this� exi-
bility also creates an exponential number of scenarios to simulate
(45 = 1, 024). Furthermore, for each scenario, we run 30 stochastic
realizations for every parameter set; thus, with 9 parameter sets
(Table 2), we need to run nearly 300,000 model realizations. As
described above, part of the solution lies in our model implemen-
tation, which runs the stochastic realizations per parameter set in
parallel. However, the key to completing these experiments is that
we distribute the work across multiple computers, with collectively
288 cores. This allows us to run hundreds of simulations in parallel,
compressing 2 years of compute time into a few days.

3 RESULTS
3.1 Model validation
First, we calibratedmodels for each of the three VirginiaMSAs using
input data from November 1 to December 31, 2020 and reported
deaths from November 19 to January 18, 2021 (there is a 18-day
o�set between these ranges due to the lag from becoming infectious
to date of death, X2 ). In Figure 3b–d, we show that our models
are able to accurately� t daily deaths for these MSAs during this
time period. The� t is especially good for Washington DC, with a
normalized RMSE of 7.2% (Table 2). The normalized RMSEs for the
Richmond and Eastern MSAs are slightly higher at 11.5% and 17.3%,
respectively; these regions were more challenging to� t during
this time period due to the large amount of noise relative to their
single-digit reported daily deaths (Figure 3d).

To further test our model, we conduct a series of extended analy-
ses withWashington DC as our case study.We focus onWashington
DC because its daily death counts are less noisy than the counts
for the other two MSAs, due to its substantially larger size (it is 4⇥
their sizes, and in fact the 6th largest MSA in the US). In addition
to the November to January period that we� tted above, we�t
our model using input data from March 15 to May 14, 2020 and
reported deaths from April 2 to June 1, 2020.10 We choose these

10We choose two contrasting periods to� t, instead of� tting the entire time period
from March 2020 to January 2021, because� tting the entire time period would have
required loading over 8,000 hourly mobility network weights, which would be around
100GB.
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(a) (b) (c) (d)

Figure 3:Model� t with “full” (non-ablation)model.We calibratemodels for each of the threeMSAs for the secondwave period
(b–d) and a model for Washington DC in the� rst wave (a). We apply 2-week averaging to the raw counts for daily reported
deaths (grey) to smooth over weekly e�ects and noise. We� t the model to the smoothed daily deaths (orange). The shaded
regions indicate the 2.5th to 97.5th percentiles over model parameters and stochastic realizations.

Period MSA # parameter sets k V (0)base AV nRMSE
1st wave Washington DC 3 4452.89 (3051.76-6204.30) 0.013 (0.009-0.016) 0.733 (0.700-0.800) 0.053
2nd wave Washington DC 3 4817.52 (628.32-9006.72) 0.027 (0.015-0.039) 1.133 (1.100-1.200) 0.072
2nd wave Richmond 5 4817.52 (628.32-9006.72) 0.023 (0.009-0.039) 1.100 (1.000-1.200) 0.115
2nd wave Virginia Beach 13 7932.57 (628.32-11799.52) 0.017 (0.003-0.045) 0.962 (0.700-1.300) 0.173

Table 2: Quantitative results frommodel� tting. For each model, we keep all parameter sets that achieve an RMSE within 20%
of the RMSE of the best-�t parameter set. Here, we report the number of parameter sets kept per model, and the mean and
range over the values for each parameter. nRMSE indicates the normalized RMSE, i.e., the RMSE divided by the MSA’s mean
daily reported deaths over this period; we normalize in order to facilitate comparison across periods and MSAs. Note that the
four rows in this table correspond to the four visualizations in the� gure above.

two periods since they overlap with the� rst and second waves of
infection, and because they re�ect vastly di�erent points in the
pandemic, with di�erent distancing behaviors, proportions of peo-
ple infected, weather conditions, and so on. For each time period,
we also conduct ablation studies to test the importance of several
model features. In the� rst ablation, we remove mobility data by
�xingk , the POI transmission constant, to 0, and allow the model
to search over a wider and� ner grid for the base transmission rate,
V (0)base. In the second ablation, we remove mask-wearing data by
�xing the mask-wearing proportion c to 0, but we search over the
same grids as in the original model since c was not a free parameter.
The third ablation keeps Vbase constant for the entire time period,
instead of allowing it to vary slightly over time. To do this, we�x
AV to 1, and search over a wider and� ner grid for V (0)base.

First, we� nd that our model can also accurately� t the non-linear
daily deaths curve from the� rst wave (Figure 3a), with a normalized
RMSE of 5% (Table 2). Furthermore, the model outperforms its
ablations in both periods, although the impact of removing any
feature is substantially larger in the� rst wave than the second, due
to the larger changes in behavior early on. For example, removing
mask-wearing data results in a severe increase in the model’s RMSE
(+591%) during the� rst wave, where the increase in mask-wearing
allowed the model to capture the downward trend in deaths in May
2020, even as mobility began to slightly climb during this period
(Figure 2). Removing mobility during this time period also has a
large e�ect, nearly doubling the model’s RMSE, and�xing Vbase
over time results in a 74% increase. In the second wave, the impacts

are more subtle: removing mobility data, removing mask-wearing
data, and�xing Vbase over time result in 14%, 13%, and 5% increases
in the model’s RMSE, respectively (Table A2).

3.2 Use cases
Our� tted model can be applied to a wide variety of use cases,
including retrospective analyses investigating who was infected
where and when, and forward-facing experiments that modify the
model’s inputs to test hypothetical changes in policy or behavior
in the near future. In this section, we provide a few examples that
demonstrate the retrospective and forward-facing capabilities of our
model, and highlight the usefulness of our� ne-grained approach
in capturing heterogeneity in risk across POIs and CBGs.
Analyzing disparities in infection rates. Our� rst use case is an
example of retrospective analysis. After� tting the model, we might
be interested in studyingwhat themodel learned about the infection
rates for lower-income versus higher-income CBGs, since it is well-
reported in the real world that lower-income neighborhoods have
been impacted more severely by COVID-19 [33]. To analyze this,
we stratify CBGs by median household income and compare the
cumulative infection rates over time (anyone in ⇢, � , or ') of the
CBGs in the bottom income decile versus top income decile. We
�nd that the model correctly predicts a large disparity between the
bottom and top income deciles in Washington DC [29] (Figure 4).
This gap is especially striking in the� rst wave period: from March
15 to May 14, cumulative predicted infections per 100,000 increased
around 60% more for the bottom income decile than the top income
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Figure 4: Retrospective analysis of disparities in infection
rates, comparingWashington DC CBGs in the bottom decile
(purple) vs. top decile (gold) of median household income.
The overall population (blue) is also shown. The shaded re-
gions indicate the 2.5th to 97.5th percentiles over model pa-
rameters and stochastic realizations.

decile (9,900 versus 6000). This di�erence can only be attributed to
di�ering mobility patterns, since the CBGs were initialized to very
similar levels of infection at the beginning of the simulation and
all other model parameters are shared across CBGs. This matches
our� rst wave� ndings from the original work [8], where we found
across 10 of the largest MSAs in the US (including Washington DC),
CBGs in the bottom income decile always had a higher infection
rate by the end of the simulation than the top income decile. What
we found in the mobility data that explained this di�erence was
that lower-income CBGs could not reduce their mobility as much
and, even within the same POI category, the POIs that they visited
tended to be more crowded and thus higher-risk.

In the second period, the bottom income decile begins at a dis-
advantage, re�ecting actual cumulative deaths by the beginning
of November 2020 (see Section A.1.3 for how we initialized (⇢�'
states using historical reported deaths). However, the disparity con-
tinues to grow: by the end of December 2020, predicted cumulative
infections per 100,000 increased 30% more for the bottom income
decile than the top income decile (8,900 versus 6,800). This di�er-
ence can be partially attributed to mobility patterns, but also to the
self-compounding nature of the virus. Since lower-income CBGs
begin with a larger number of infectious individuals, those individu-
als will generate more infectious people, exacerbating the disparity.
Our model can capture these self-compounding dynamics, as well
as demonstrate how mobility contributes to—but could also be used
to mitigate—these health disparities.
Opening POI categories to di�erent degrees. Our second use
case is an example of a forward-facing experiment. One common
strategy by policymakers has been to implement varying restric-
tions on di�erent business sectors [7], so here we explore the e�ects
of opening POI categories to di�ering levels of mobility. To test
this, we run a simulation starting from November 1, 2020, using the
models that we already calibrated (Section 3.1). Then, we modify
the mobility networks starting on January 1, 2021, and run the
model forward with the modi�ed mobility network for four weeks.
During those four weeks, each POI category either maintains its

current levels of mobility, or we specify it to have a certain fraction
of its “normal” mobility levels, based on SafeGraph data from Jan-
uary 2019. We perform this experiment with 5 POI categories: (1)
Restaurants; (2) Essential Retail (grocery stores, convenience stores,
drug stores); (3) Gyms; (4) Religious Organizations; and (5) Retail
(clothing stores, hardware stores, book stores, pet stores, etc.). For
each category, we consider 4 possible mobility settings: maintaining
the current mobility level, or keeping 0%, 50%, or 100% of 2019 mo-
bility. In order to provide a wide array of options to policymakers,
we test every combination of POI category and mobility setting
(1,024 options per MSA).

These experiments allow us to quantify the trade-o� between
visits and infections. For example, if every POI continued at current
levels of mobility, our model predicts that the Washington DC
MSA would experience around 267,000 new infections (2.9% of
the population) in January 2021. If, instead, the Restaurant POIs
returned to 2019 levels of mobility starting on January 1, we would
see a 34% increase in POI visits, but also a 179% increase in predicted
new infections. In contrast, if the Essential Retail POIs returned to
2019 levels of mobility, we would only see a 4% increase in POI visits
and a 8% increase in predicted new infections. These di�erences are
partially because there are far more Restaurant than Essential Retail
POIs in the Washington DC MSA (10,545 versus 1,606), but also
because Restaurant POIs saw a larger drop in mobility during the
pandemic, so returning them to “normal” levels of mobility would
have a larger impact. Testing every combination of category and
mobility also allows us to inspect interactions between categories.
For example, if we returned Restaurant and Essential Retail POIs
to 2019 mobility levels, we see a 198% increase in predicted new
infections; this is higher than the sum of the predicted infections
from opening each one on its own (which would be 187% = 179%
+ 8%). This result highlights why we simulate each combination
of mobility levels instead of adding individual impacts, since the
whole impact of a policy can be greater than the sum of its parts.

3.3 Dashboard
Our dashboard provides an interface to our model results which
public health o�cials can use to assess the impact of mobility on
COVID-19 transmission. We designed our dashboard through itera-
tive meetings with VDH, where they provided valuable feedback
on how the interface could be made more intuitive and which vi-
sualizations would be most e�ective in conveying the impact of
changing mobility levels. The resulting layout is divided into� ve
parts, as shown in Figure 5; we discuss each part in detail below.
Visits to Points of Interest Navigation Bar. The POI Navigation
Bar is the control center of the tool. From here, users can either
view current mobility levels by POI category or use sliders to set
“target” mobility levels to 0%, 50% or 100%, indicating the fraction
of 2019 mobility levels to use. For each category, we have a cur-
rent mobility ratio associated with each POI (i.e., how their current
mobility compares to their mobility levels from 2019); to commu-
nicate heterogeneity in current mobility ratios across POIs within
each category, we show each category’s median and interquartile
range of current mobility ratios as yellow markers on the slider
axes. When the application loads, the selected region defaults to
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Figure 5: Our dashboard is divided into 5 parts: the POI Navigation Bar (left); the Map Panel (upper right); the Chart Panel
(lower center); the Data Panel (lower right). and the Mobility History Panel (popup).

Virginia, and the current mobility levels displayed are the average
of the mobility levels for the three MSAs.
Map Panel. As the user changes target mobility on the POI Naviga-
tion Bar, the colors of each MSA region on the map also change to
re�ect increases (more red) or decreases (more blue) in the number
of predicted infections. This provides a visual indicator of where a
mobility change is likely to have the greatest impact; to get more
precise measurements, the user can hover the mouse over eachMSA
to display predicted infections at current and target mobility levels,
as well as the percent di�erence between them. Model predictions
can be viewed at 1, 2, 3, or 4 weeks following the “intervention date”
(in this case, January 1, 2021). We provide this option because the
impact of the change in mobility on predicted infections can evolve
over time, typically accumulating in magnitude. For example, rela-
tive to maintaining current levels of mobility, setting Restaurant
POIs in Washington DC to 100% of 2019 mobility levels results in
a 76% increase in predicted infections after 2 weeks, but, as men-
tioned in the previous section, a 179% increase after 4 weeks. The
user can also click on a speci�c MSA to select it; this updates the
POI Navigation Bar with current mobility levels for the selected
MSA, and the Chart Panel with predictions associated with the
selection. The user can click on the “Reset to Virginia” button to
return to the three MSAs as a collective unit.
Chart Panel. While the Map Panel displays the cumulative impact
of the target mobility change for one weekly period at a time, the
Chart Panel displays, for each of the four weeks, the number of new
predicted infections (i.e., incidence) at current and target mobility
levels with their 95% con�dence intervals over model parameters
and stochastic realizations. This makes it easier to visualize how

much predicted infections at target mobility are expected to deviate
from predictions at the current mobility level.
Data Table Panel. The Data Table shows the cumulative di�erence
between predicted infections given current and target mobility
levels. It is responsive to the selection of di�erent target mobility
levels on the POI Navigation Bar, as well as the selected week on
the Map Panel. This feature allows the user to conveniently assess
the quantitative impact of changing mobility levels.
Mobility History. This panel is revealed upon selection of the
“Mobility History” button. It provides a history from January 2019 to
present of weekly POI visits, aggregated byMSA and POI categories,
which helps policy health experts better contextualize the target
mobility levels in the POI Navigation Bar. We provide a screenshot
from and additional details about this panel in Section A.2.

4 RELATEDWORK
Mobility and COVID-19 modeling. The COVID-19 pandemic
and its corresponding social distancing measures have drastically
a�ected human mobility patterns [13, 16]. To accurately capture the
dynamics of COVID-19 transmission and infection, epidemiological
models must account for these changes in mobility. Many such mod-
els have been proposed in the last year: for example, it is common
for models to use some aggregate measure of real-time mobility
to modulate transmission rates [9, 17, 19]. Others have focused
on using historical data to model the initial spread of the disease
before social distancing measures were put into place [20, 28], or
on using synthetic data for analytical purposes [5, 18]. In this work,
we extend the model from Chang et al. [8], as it uses mobility data
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that is both� ne-grained and up-to-date, which enables us to predict
the e�ects of di�erent mobility restriction measures at the level of
granularity required for policy-making [4, 6].
COVID-19 tools for policymakers. Recently, there has been an
intense interest in developing interfaces to support computational
infectious diseases epidemiology. Much of the e�ort is focused on
providing surveillance information [11, 27]; for example, apps to
monitor trends in cases over time [34], tracking their growth rate
[1] or aiming to detect clusters [14]. Other modeling tools that are
being used for the COVID-19 pandemic include EpiC and Gleamviz
[31], for global mobility and epidemic simulations; DiCon, for opti-
mization and control problems related to epidemic dynamics [24];
and, most related to our tool, FRED [25] and GAIA [26], which
are open source systems that support research in networked epi-
demiology. Our team has also been developing epidemiological
applications in support of policymakers for over 15 years, including
SIBEL, an epidemic modeling tool that allows users to experiment
with� ne-grained interventions [2, 3, 10, 21, 22], and EpiViewer, a
tool for visualizing epidemic time series [30]. What sets the tool
described in this paper apart from the others is the way it incorpo-
rates� ne-grained mobility data with the SEIR model, enabling a
more detailed ability to create and test interventions. Our tool also
focuses on near real-time response; this marks a crucial evolution
from earlier e�orts that were largely used for planning studies.

5 CONCLUSION
We have introduced a decision-support tool that allows policy-
makers to inspect the predicted impacts of thousands of di�erent
policies, speci�c to their jurisdictions. Our tool utilizes large-scale
data and epidemiological modeling to simulate the e�ects of�ne-
grained changes in mobility on infection rates, and leverages a
robust computational infrastructure to run model experiments at
scale. As policymakers face di�cult challenges ahead, our tool will
provide them with much-needed analytical machinery to assess
tradeo�s between future infections and mobility restrictions.

Our approach is not without its limitations, which we have dis-
cussed with policymakers. For instance, our mobility data from
SafeGraph does not cover all POIs or populations (e.g., children),
and our model makes necessary but simplifying assumptions about
the dynamics of disease transmission. Furthermore, we specialize in
modeling the e�ects of changes in mobility on infection rates, but
not all of the mobility policies that we analyze are directly action-
able; for example, changing current mobility levels to 50% of 2019
mobility. Further work is required to analyze how to leverage the
tools in policymakers’ toolbox to actually reach target levels of mo-
bility. Despite these limitations, our approach captures a valuable
piece of the puzzle, as we provide policymakers with a quantitative
and comprehensive near real-time analysis of the e�ects of mobility
on transmission. As we move forward, we will build dashboards for
other US states and regions, and continue developing new use cases
and technical advances for our model so that we can best support
the needs of policymakers around the country.
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A APPENDIX
A.1 Details to our approach
A.1.1 POI and CBG inclusion criteria. Since we model one MSA
at a time, we need to de�ne� ltering criteria to determine which
POIs and CBGs to include in the model. First, we include all POIs
that meet the following requirements: (1) the POI is located in the
MSA; (2) SafeGraph has visit data for this POI for every hour from
12am on September 1 2020 to 11pm on November 30 202011; (3)
SafeGraph has recorded this POI’s median dwell time and visitors’
home CBGs for at least one week from January to October 2020; (4)
SafeGraph provides this POI’s area in square feet; (5) this POI is not
a “parent”12 POI. After determining the set of included POIs, we
keep the union of CBGs that are located in the MSA and those that
had at least one recorded visit to at least 100 of the kept POIs; this
means that CBGs from outside the MSA may be included if they
visit this MSA frequently enough.

A.1.2 Derivation for mask-wearing. Here, we explain how we in-
corporated mask-wearing into our model dynamics. First, note that
without mask-wearing, both infection rate equations (4 and 5) can
be written in the generalized form V�/# , where V is the transmis-
sion rate, � is the number of infectious individuals present, and # is
the total number of individuals present. Furthermore, the expected
number of new infections is ( (V�/# ), where ( is the number of
susceptible individuals present. Following Eikenberry et al. [12], let
c 2 [0, 1] represent the fraction of the population wearing a mask.
We can divide the infectious and susceptible populations into the

11We use this range because we want to ensure that the POI was recently active, and
we� x this range even as we model periods from both the� rst and second wave of
infections because we want to keep the set of POIs� xed across experiments.
12Parent POIs consist of a small fraction of POIs that overlap with and include visits
from their “children” POIs (for example, malls). To avoid double-counting visits, we
remove all parent POIs from the dataset.

infectious-unmasked group, �* := (1 � c)� ; the infectious-masked
group, �" := c� ; the susceptible-unmasked group, (* := (1 � c)( ;
and the susceptible-masked group, (" := c( . Let the random vari-
able -* represent the number of unmasked susceptible visitors
who become infected, and let -" represent the number of masked
susceptible visitors who become infected. Then, we can derive the
expected values of these variables by separating the cases where
they become infected by an unmasked infectious person versus by
a masked infectious person:

E[-* ] = (* V ( �*
#

+ (1 � n> )
�"
#

), (8)

E[-" ] = ("V ((1 � n8 )
�*
#

+ (1 � n8 ) (1 � n> )
�"
#

), (9)

where n> 2 [0, 1] is the “outward” e�ciency of the mask (how
much it prevents a masked infectious person from transmitting)
and n8 2 [0, 1] is the “inward” e�ciency (how much the mask
protects a masked susceptible person from catching the disease).
If we assume n> = n8 = n , as [12] do in their experiments, and
substitute back in the de�nitions of �* , �" , (* , and (" , we�nd
that the total expected number of infections - simpli�es to

E[- ] = E[-* ] + E[-" ] = (1 � nc)2(V �

#
. (10)

In other words, we simply scale the original expected number of
new infections by a factor of (1 � nc)2. Plugging this general form
back into the POI and base infection rates yields equations 4 and 5.

A.1.3 Model initialization. We use the county-level death counts
from The New York Times to initialize the (⇢�' states at the be-
ginning of our simulations. For each county in the MSA,� rst we
convert its cumulative death counts to daily new deaths, and apply
2-week smoothing to the raw counts (as we did to the MSA-level
counts). For a county . , let # (3)

deaths,. represent its smoothed actual
number of new deaths on day 3 . Our goal is to use this timeseries
to estimate ( (B). , ⇢ (B)

. , � (B). , and ' (B)
. , the number of people in the

county in each disease state for some simulation start hour B .
First, recall that our model assumes deaths are reported exactly

Xdeaths/24 = 18 days after the person becomes infectious, and that
on day 3 (B) = bB/24c, a fraction A (B)deaths of the newly infectious
cases will eventually result in reported deaths. If we assume 1/24 of
the infections on day 3 (B) occurred at hour B , then the number of
individuals in county. who became newly infectious at hour B must
be # (B)

⇢.!�.
= (1/24) (#3 (B)+18

deaths,. /A
(B)
deaths). Furthermore, our model

assumes that exposed individuals always have a 1/X⇢ probability of
transitioning into the infectious state, so the maximum likelihood
estimate of ⇢ (B)

. is X⇢ · # (B)
⇢.!�.

. Since it takes on average X⇢ hours
for individuals to transition from exposed to infectious, then we
estimate � (B). = ⇢ (B�X⇢ )

. . Similarly, since it takes on average X�
hours for people to transition from infectious to removed, we set
' (B)
. =

ÕB�X�
C=0 # (C )

⇢.!�.
, where C = 0 represents the start of the

pandemic. In other words, by hour B , we assume everyone who
transitioned into � before hour B � X� has reached '. Finally, we
set ( (B). = #. � ⇢ (B)

. � � (B). � ' (B)
. . We note that these are rough

estimates, but the uncertainty captured by our parameter selection
and stochastic realizations should more than cover the uncertainty
carried in our initialization procedure. Furthermore, the estimates
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Parameter Description Value (Source)
X⇢ mean latency period 96 hours [20]
X� mean infectious period 84 hours [20]
Xdeaths lag from becoming infectious to date of death 432 hours (18 days) [32]
Adeaths fraction of deaths reported at time C Variable (NCHS, NYT)
V (0)base starting point for base transmission rate, Vbase Variable (Estimated)
AV ratio controlling how much Vbase will vary Variable (Estimated)
#28 population size of CBG 28 Variable (US Census)
k scaling factor for POI transmission Variable (Estimated)
0? 9 area of POI ? 9 in square feet Variable (SafeGraph)
F (C )
8 9 # visitors from CBG 28 to POI ? 9 at time C Variable (SafeGraph)

c (C ) fraction of population wearing a mask at time C Variable (IHME)
n mask e�ciency 0.5 [12]

Table A1: Model parameters. If the parameter has a� xed value, we specify it under Value; otherwise, we write “Variable” to
indicate that it varies across CBG / POI / MSA. Eikenberry et al. [12] estimate that inward mask e�ciency could range from
20-80% for cloth masks, and outward e�ciency could range from 0-80%, with 50% perhaps typical; thus, we set n to 0.5.

Model 1st wave, RMSE 2nd wave, RMSE
full 2.238 1.486
no mobility 4.361 1.796
no mask 15.473 1.777
�xed Vbase 3.895 1.600

Table A2: Results from ablation studies.We tested theWash-
ington DC model in two time periods, comparing the full
model versus its ablations (Section 3). We� nd that the full
model achieves lower RMSEs than each of the ablations in
both time periods, and the impact of removing any feature
is substantially larger when� tting the� rst wave.

produced by this method align with what we would expect: for
example, it predicts that by November 1, 2020, across all counties
in the US, the median county-level proportion of the population in
' was 19%, with an interquartile range of 9%–34%.

For a CBG 28 in county. , we set its initial states to match the pro-
portions of the county’s states; for example, '̂ (B)

28 = (#28 /#. )' (B)
. .

However, due to uncertainty in reported deaths and in our estima-
tion method, after setting initial estimates for all CBGs in the MSA,
we shrink each CBG’s estimate for every disease state toward the
mean over all CBGs. For example, ultimately we set

' (B)
28 = (1 � U)'̂ (B)

28 + U ( 1
<

<’
:=1

'̂ (B)
2: ), (11)

where< is the total number of CBGs in the MSA and U 2 [0, 1] is
a shrinkage parameter that controls how much we shrink toward
the mean. Shrinkage allows us to be more conservative about our
estimates, especially for CBGs with unusually high or low estimates
for any of the disease states. Since we have greater uncertainty in
reported deaths early in the pandemic, for the� rst wave period
that we model (March to May 2020), we set U = 0.5, and for second
wave period (November 2020 to January 2021), we set U = 0.1.

Figure A1: This plot showing the relative change in foot traf-
�c per category over time is an example of the subreports
available from the dashboard’s Mobility History Panel.

A.2 Dashboard’s Mobility History Panel
The Mobility History report is available upon selection of the “Mo-
bility History" button on the POI Navigation Bar. It provides aggre-
gated POI visits per MSA and POI category, based on SafeGraph
data, for every week from 2019 through the present time. In addi-
tion to providing raw data in tabular format, the report includes
di�erent visualizations of that data, including graphs of mobility
counts in 2019 and 2020; the proportion of 2020-2021 foot tra�c
vs. 2019-2020 foot tra�c by POI category, including bar graphs for
the most recent week in the set for easier visualization; and the
percent di�erence by POI category (Figure A1). This allows public
health experts to review mobility trends and compare them to other
COVID-19 indicators to make correlations and help inform them
as they plan their guidance.
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