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ABSTRACT
Transmission of infectious diseases, propagation of information,
and spread of ideas and influence through social networks areall
examples of diffusion. In such cases we say that a contagion spreads
through the network, a process that can be modeled by a cascade
graph. Studying cascades and network diffusion is challenging due
to missing data. Even a single missing observation in a sequence of
propagation events can significantly alter our inferences about the
diffusion process.

We address the problem of missing data in information cascades.
Specifically, given only a fractionC′ of the complete cascadeC, our
goal is to estimate the properties of the complete cascadeC, such
as its size or depth. To estimate the properties ofC, we first formu-
latek-treemodel of cascades and analytically study its properties
in the face of missing data. We then propose a numerical method
that given a cascade model and observed cascadeC′ can estimate
properties of the complete cascadeC. We evaluate our methodol-
ogy using information propagation cascades in the Twitter network
(70 million nodes and 2 billion edges), as well as information cas-
cades arising in the blogosphere. Our experiments show thatthe
k-tree model is an effective tool to study the effects of missing data
in cascades. Most importantly, we show that our method (and the
k-tree model) can accurately estimate properties of the complete
cascadeC even when 90% of the data is missing.

Categories and Subject Descriptors:H.2.8 [Database Manage-
ment]: Database Applications –Data mining
General Terms: Algorithms, theory, experimentation.

1. INTRODUCTION
Social and information networks are a fundamental medium for

the spread of information, ideas, viruses and behavior. A cascade
graph can be used to represent the contagion across the network.
For example, if Alice is connected to Bob in a social network and
Bob participates in the “Fight Against Cancer” campaign, hemay
influence Alice to do the same. Or similarly, Bob may spread infor-
mation to Alice, if Bob reads some article and shares it with Alice.
As information or actions spread from a node to node through the
social network, acascadeis formed. Nodes of the cascade are the
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nodes of the network that performed an action of interest andedges
represent influence relations [3, 7, 8]. Thus, when Alice joins the
campaign under Bob’s influence, we observe a directed edge from
Bob to Alice in the cascade. We define social networks and cas-
cades formally in Section 2, but to illustrate now, Figure 1 gives a
network and two types of cascades.

We may not observe all actions performed by the nodes of inter-
est, and hence our cascades may be incomplete, i.e., have missing
data. For example, Figures 1(d, e) show cascades when some ofthe
data (i.e., actions of nodes) is missing. The cascades with miss-
ing data may no longer have the same properties (e.g., depth,the
number of edges) as the original cascade, and may not even be con-
nected. Here, we address the problem of estimating properties of a
complete cascadeC from a small observed partC′ of the complete
cascade. Specifically, can we infer properties, like size and depth,
of the complete cascade, when data is missing?

There are a number of reasons why cascades may have missing
data. Most social networks do not provide full information about
their user activity and thus we only observe a subset of userspartici-
pating in the cascade. For example, Twitter does not providepublic
access to its full stream of tweets and most Facebook users keep
their activity and profiles private. Furthermore, there have been
growing concerns about Facebook’s privacy policy, which indicates
that users are generally reluctant to share their data. Finally, full in-
formation may not be available because of the costs of collecting it.
Overall, the rapid growth of the social networks themselves, the in-
creasing volume of their generated data, and the growing concerns
of users over privacy will likely to only exacerbate the problem of
missing data over time.

Why estimate properties of complete cascades?Processes that
form cascades in a social network have been studied in a num-
ber of domains, including the diffusion of medical and technolog-
ical innovations [22], adoption of strategies in game-theoretic set-
tings [6], product adoption, promotion, and viral marketing [7, 14].
Diffusion and cascades have been studied in the context of Face-
book [25], Twitter [12], Flickr [4], blogs [17], and email chain-
letters [18]. To study diffusion processes underlying the cascades,
one needs accurate knowledge of the cascade properties, such as
node out-degree, in-degree, or cascade depth. However, observed
properties may differ from the properties of the complete cascade
which highly biases inferences about the diffusion processes.

Cascades are also essential for selecting trendsetters forviral
marketing [21, 10], finding inoculation targets in epidemiology [20],
and explaining trends in blogosphere [9]. Missing data in informa-
tion cascades can have large effect on these applications. Consider,
for example, the problem of influence maximization for viralmar-
keting. The task here is to select a set of most influential nodes in
the network where the influence of a node could be the average size
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Figure 1: Missing data in cascades. (a) A social network. (b)Influence cascade: we observe edges over which the information
propagated. (c) Network cascade: we only observe participating nodes, not propagation edges; edges are inferred from the network
based on time order. (d, e) Influence and network cascades, respectively, with missing data (information about nodes is missing).

of the cascades it creates. However, a cascade can become discon-
nected with missing data, so the size cannot be reliably estimated.
Accordingly, the influence maximization algorithm will perform
poorly and the targeted marketing campaign will likely fail.

Related work on missing data. Missing data in networks is a
longstanding but relatively poorly understood problem. Related to
our work here are the works that study the effects of missing data
on measured properties of social networks [11] and the studyof
biases when obtaining a graph of the Internet based on measure-
ments [13, 1]. Another related line of work is on sampling in large
networks [15, 19, 24], where given a large network we would like
to find some procedure to sample a small set of nodes such that
important structural properties of the network are preserved.

In terms of the effects of missing data in information cascades
prior work is practically nonexistent. The exception is therecent
work by Choudhury et al. [5] that considers the effect of various
sampling strategies on the measured properties of diffusion series
(similar notion to cascades). While this work tries to find a sam-
pling strategy that least distorts the observed properties, our work
here differs. We work under consideration of uniform randomsam-
pling, where each node is missing independently with probability
1− σ. However, we are able not only to bothanalyticallyand em-
pirically understand the distortion created by sampling (i.e., miss-
ing data) but also tocorrect for the distortion (i.e., infer properties
of the complete cascade). To our knowledge this is the first attempt
to analytically understand the distortions under missing data and,
more importantly, to correct for them. This is especially challeng-
ing as cascades, tree-like graphs, are very fragile, easilydiscon-
nected even with a small fraction of missing nodes.

Outline. In the following we first propose ak-tree model of cas-
cades and derive properties of the resulting cascades, suchas size,
number of edges, etc. Then, given an observed cascadeC′ with
missing data, we show how to select a “proxy”k-tree model that
best approximatesC′. The model can then be used to estimate the
properties of the complete cascadeC. We experimentally show that
the properties estimated via a proxy cascade are much closerto
the true properties ofC than the observed properties onC′ for any
sample ratioσ less than 0.7. Hence, we can effectively correct for
missing data.

We evaluate our findings on a Twitter social network of 70 mil-
lion nodes and 2 billion edges. We run our experiments on more
than 1 billion tweets. In addition, we also study information dif-
fusion cascades formed on the blogosphere. We show that our
methodology can reliably infer structural properties of complete
cascades with as much as 90% of missing data.

2. PROBLEM STATEMENT
We model a social network, over which cascades unfold, as a di-

rected graphG(V,E), where nodesV represent entities (e.g., peo-
ple, web sites, blogs) and edgesE represent directed interactions.
For example, in network in Fig. 1(a), nodesr ands interact witht.

We focus on nodes ofG that have performed a particular type
of action, e.g., joined the “Fight against cancer” campaign, partici-
pated in an online poll, or bought a camera. The process starts with
an initially active noder (the root) and the decision to perform an
action can be seen as an infection transmitted over the edgesof G
from a node to node as a result of their interaction. Anaction se-
quenceA is a sequence of pairs(s, t), one pair for each nodet that
performed the action of interest, wheres influencedt. For example,
if s bought a camera under the influence ofr, then(r, s) appears in
the action sequence. The initially active noder is not influenced by
anyone, denoted by(⊥, r). The order of the pairs inA represent
the order in which nodes performed the action of interest. For the
scenario so far, we haveA = 〈(⊥, r), (r, s)〉. We assume a node
can be influenced by at most one other node, much like a disease
is transmitted to a person from a specific individual in epidemic
models [2]. If a node performs the action multiple times, we only
consider the first action.

The subgraph ofG defined by the influence relations in the ac-
tion sequence forms aninfluence cascadeCi. The nodes inCi

are the nodes in the action sequence and an edge(r, s) is in Ci

if (r, s) ∈ A (since actions only spread along the edges ofG then
(r, s) ∈ E). Figure 1(b) shows one possible influence cascade,
wherer is the initially active node, which then influenced node
s, which in turn influenced nodesv and thent. Note, there is only
oneroot node, which is not influenced by any other nodes – the first
node in the action sequence. Influence cascades are trees because
nodes cannot repeat in the action sequence and each non-rootnode
s has one incoming edge (from the influencer ofs). Such tree-like
cascades are common in real data: we will show in Section 5, for
example, that influence cascades arise in the blogosphere.

In some real-world scenarios, however, it may be hard to identify
an influencing node. We may only observe action sequence pairs
of the form(∅, u) where we know that nodeu performed an action
but do not know which node influenced the action. In this case,we
construct anetwork cascadeCn. The nodes inCn are the nodes in
the action sequence and an edge(r, s) is in Cn if (r, s) ∈ E andr
appears befores in the action sequence. Intuitively, there is an edge
betweenr ands in the network cascade ifr performed the action
befores andr is connected tos in the social networkG. Network
cascades, as we will see in Section 5, arise on Twitter.

For example, Figure 1(c) shows a network cascade. In particular,
note thatt is now connected to all nodes that could have possibly
influenced it. We call the edges that are in the network cascade but
not in the influence cascadespurious, e.g., edge(r, t) is spurious.
Since each node may have more than one incoming edge, network
cascades are not trees but rather directed acyclic graphs (DAGs).

As discussed in Section 1, we may not observe the complete ac-
tion sequence, so we may have missing data in our cascades. In
particular, say, we have a sample of the action sequence. Then if
we use the sampled action sequence instead of the complete action
sequence in the definitions above, we obtain asampled influence



Figure 2: Methodology.

cascadeor asampled network cascade. For example, Figures 1(d)
and (e) show the sampled influence and sampled network cascades
for the sampled action sequence where information about nodes is
missing. Note how cascades become disconnected in both cases.

In this paper, we assume that missing data is a result of uniform
random sampling. Specifically, each node in the complete action
sequence is included in the sample at random with probability σ,
independent of other nodes. We callσ thesample ratio. We con-
sider uniform random sampling because this is the most common
sampling strategy and is in fact used by Twitter for its public stream
of tweets.

Methodology. Our goal is to obtain a set of propertiesX of a given
complete (influence or network) cascadeC. For example, size and
depth are two such properties. However, we do not have accessto
the cascadeC itself but to a sampleC′. Thus, we can only compute
the propertiesX′ of the sampleC′. Note that the propertiesX′

can be very different from the propertiesX of C. For example, in
Figure 1, the depth of the influence cascade is 2, while the depth of
its sample is 0.

Figure 2 illustrates our approach. To estimate the propertiesX of
C, we first propose ak-treemodel of cascades. The box labeled “k-
tree cascade” represents a parameterized family of cascades. The
samples of these cascades are represented by the box labeled“sam-
pled k-tree cascade.” We can compute the propertiesXM of the
completek-tree cascade andX′

M of the sampledk-tree cascade.
Our strategy now is to find a sampledk-tree cascade with prop-

ertiesX′
M similar to the propertiesX′ of the sampled cascadeC′.

For example, we can find a completek-tree cascade (i.e., its pa-
rameters) by finding a sampledk-tree cascade with the expected
number of edges equal to the number of edges inC′. Once we find
suchk-tree cascade, we can approximate the propertiesX of the
complete target cascadeC by the propertiesXM of the complete
k-tree cascade. For example, we estimate the size ofC as the size
of the completek-tree cascade.

We start in Section 3 by defining ourk-tree model of cascades
and analytically derive their important properties. Then in Sec-
tion 4, we discuss how to estimate model parameters so thatX′

M

andX′ are similar. Finally, in Section 5 we experimentally show
the soundness of our approach. For our evaluation, we need com-
plete target cascades in order to check whetherX matchesXM.
We consider two types of target cascades: (a) synthetic cascades
obtained from a simulated action propagation process, (b) actual
cascades obtained from Twitter and blogs. In addition, through our
experiments, we show that thek-tree model is an effective tool to
study the sensitivity of cascade properties to sampling.

3. CASCADE MODEL
Next we introducek-tree model of cascades. The model allows

for mathematical analysis of cascade properties without the need

Figure 3: k-tree cascade with branching factorb = 2, number
of parentsk = 2, and depthh = 3.

Symbol Description

σ Fraction ofC nodes observed inC′ (sample ratio)
p Probability of observing a node in thek-tree model
b Number of children (out-degree) via influence edges
h Height of the tree on influence edges
k Number of parents (in-degree) of non-root nodes

n Number of nodes in the completek-tree,n = bh+1−1
b−1

m Number of nodes in the sampledk-tree,m = p · n

Table 1: Table of symbols

for asymptotic analysis. We cannot assume cascades of infinite
size or depth as real cascades are rather shallow. Obtainingprecise
constant factors in the expressions describing cascade properties is
essential in order to be able to reconstruct the complete cascade.

A k-treeΓ(b, h, k) is generated from a balanced tree of height
h and branching factorb. We then augment each node of the tree
with k − 1 edges from itsk − 1 closest ancestors, starting from its
grandparent. Thus nodes havek parents, except for nodes near the
root which do not have enough ancestors. Figure 3 shows ak-tree
with b = 2, h = 3, andk = 2. Original edges of the balanced tree
model influence edges while thek − 1 additional edges per node
model spurious edges. In Figure 3, influence edges are darkerand
spurious edges are lighter.

As noted earlier, influence cascades are trees, so we model influ-
ence cascades byk-trees withk = 1, equivalent to regular balanced
trees. Network cascades, on the other hand, are modeled byk-trees
with k > 1, since each node of a network cascade can have more
than one parent. Even though real cascades may be imbalanced, we
have found that they are usually shallow and follow a monotonic
growth pattern where the number of nodes at any depthi usually
increases asi increases. Hence,k-trees are a good model of the
real cascades. We will see in Section 5, that the effect of missing
data on the real cascades is the same as it is on thek-trees.

When ak-tree cascade has missing data, we refer to it assampled
k-tree. We useΓ(p, b, h, k) to refer to ak-treeΓ(b, h, k) with p
fraction of its nodes observed. Each node is included in the sampled
k-tree with probabilityp, independently of other nodes.

In what follows, we derive structural propertiesX1, . . . , X6 of
sampledk-treesΓ(p, b, h, k) as a function of the four parameters
p, b, h, andk. Some of the properties we study are important in
their own right. Others make it easier to match ak-tree cascade to
the target cascade, as described in Section 2. Table 1 provides a
reference for the symbols used in the theorems and proofs.

X1: Number of nodes. We first derive an expression for the ex-
pected number of nodesm in a sampledk-treeΓ(p, b, h, k).

THEOREM 1. The expected number of nodesm in a sampled

k-treeΓ(p, b, h, k) is p bh+1−1
b−1

.

PROOF. Let n be the number of nodes in the completek-tree.

By summing the geometric series we getn =
∑h

i=0 b
i = bh+1−1

b−1
.

We know thatm = n · p (expectation of binomial random variable

with parameters(n, p)). Thenm = p bh+1−1
b−1

.



X2: Number of edges.Observe that any regular tree (i.e.,k = 1)
has(n − 1) edges (one incoming edge per each non-root node),
while anyk-tree generally has close tok(n − 1) edges (k incom-
ing edges per each non-root node). More formally, the numberof
observed edges is given by the following theorem:

THEOREM 2. The expected number of edges in a sampledk-
treeΓ(p, b, h, k) is equal to:

p2

b− 1

(b(1− bk)

b− 1
+ kbh+1)

PROOF. LetZi be the random variable representing the number
of nodes at leveli andWi be the random variable representing the
number of observed parents of a node at leveli. Then the number
of edges is equal to

∑h

i=0 Zi · Wi. By linearity of expectation,
E[

∑h

i=0 Zi · Wi] =
∑h

i=0 E[Zi · Wi]. Furthermore, sinceZi is
independent ofWi (because each node is observed independently
of other nodes),

∑h

i=0 E[Zi · Wi] =
∑h

i=0 E[Zi]E[Wi]. Since
Zi is a binomial random variable with parameters(bi, p) andWi

is a binomial random variable with parameters(min({i, k}), p),

E[
∑h

i=0 Zi · Wi] =
∑h

i=0 p
2bi · min({i, k}) = p2

b−1

(

b(1−bk)
b−1

+

kbh+1
)

.

X3: Number of isolated nodes.A node becomes isolated if and
only if its parents and its children are not observed. Thus, to de-
rive the number of isolated nodes, let’s first derive the number of
children each node has.

LEMMA 1. The expected number of children of a node at level

i(i ≤ h) in a sampledk-treeΓ(p, b, h, k) is p bl+1−b
b−1

, wherel =
min(k, h− i).

PROOF. Any non-leaf node at leveli ≤ (h − k) has outgoing
edges to all of its descendants at the nextk levels. Hence, each non-
leaf node at leveli ≤ (h−k) has the following number of outgoing

edges in the complete tree:
∑k

j=1 b
j = ( b

k+1−1
b−1

− 1) = bk+1−b
b−1

.
If i > (h − k), thenk > (h − i), and accordingly, the node can
only connect to(h − i) levels of descendants. Hence, such node

will have
∑h−i

j=1 b
j = bh−i+1−b

b−1
children. Combining both cases,

a node at leveli in the complete tree hasb
l+1−b
b−1

children, where
l = min(k, h− i). Since each node is included in the sample inde-
pendently of other nodes with probabilityp, the expected number

of children in the sampled tree isp bl+1−b
b−1

.

Now using Lemma 1, we can derive the expected number of iso-
lated nodes in a sampledk-tree:

THEOREM 3. In a sampledk-treeΓ(p, b, h, k) the expected num-
ber of isolated nodes is equal to:

h
∑

i=0

bip(1− p)l+
b
c+1

−b

b−1

wherel = min{i, k} andc = min{h− i, k}.

PROOF. LetZi be the random variable representing the number
of nodes at leveli andWi be the indicator random variable for any
node at leveli, equal to 1 if all of the node’s parents and children are
not observed and 0 otherwise. The number of isolated nodes isthen
∑h

i=0 Zi ·Wi and, by linearity of expectation,E[
∑h

i=0 Zi ·Wi] =
∑h

i=0 E[Zi ·Wi].
For a node at leveli, the probability that all of its parents are

excluded from the sample is(1− p)l wherel = min{i, k}. On the
other hand, for the same node the probability that all its children are

excluded from the sample is given by(1 − p)
b
c+1

−b

b−1 wherec =

min{h−i, k} (since a node at leveli hasbc+1−b
b−1

children). Hence,
Wi is a Bernoulli random variable with success probability(1 −

p)l+
b
c+1

−b

b−1 . On the other hand,Zi is a binomial random variable
with parameters(bi, p). Noting thatZi andWi are independent
(because parents and children of a node are at different levels and
each node is observed independently of other nodes):

∑h

i=0 E[Zi ·

Wi] =
∑h

i=0 E[Zi]E[Wi] =
∑h

i=0 b
ip(1− p)l+

b
c+1

−b

b−1

X4: Number of weakly connected components.A new weakly
connected component is formed in a sampledk-tree if and only if
all parents of a given node are not observed. Hence, the number of
weakly connected components of a sampledk-tree is equal to the
number of roots of such tree, i.e., nodes with no incoming edges.

THEOREM 4. The expected number of connected components
of a sampledk-treeΓ(p, b, h, k) is equal to:

p
[(1− p)b]a+1 − 1

(1− p)b− 1
+

{

p(1− p)k bh+1−ba

b−1
if h > k

0 if h ≤ k

wherea = min({k, h}).

PROOF. Let Zi be the random variable representing the num-
ber of nodes at leveli andWi be the indicator random variable
for any node at leveli, equal to 1 if all of the node’s parents are
not observed and 0 otherwise. The number of weakly connected
components is then

∑h

i=0 Zi · Wi. By linearity of expectation,
E[

∑h

i=0 Zi · Wi] =
∑h

i=0 E[Zi · Wi]. Furthermore, sinceZi is
independent ofWi (because parents of a given node are not among
the nodes at the current level and each node is observed indepen-
dently of other nodes),

∑h

i=0 E[Zi · Wi] =
∑h

i=0 E[Zi]E[Wi].
Now we know thatZi is a binomial random variable with param-
eters(bi, p) andWi is a Bernoulli random variable with success
probability (1 − p)min({k,i}). Hence, the number of weakly con-
nected components is in expectation

∑h

i=0 pb
i(1 − p)min({k,i}).

Simplifying this expression, we obtain:

p
[(1− p)b]a+1 − 1

(1− p)b− 1
+

{

p(1− p)k bh+1−ba

b−1
if h > k

0 if h ≤ k

wherea = min({k, h})

X5: Out-degree of a non-leaf node.The expected out-degree of a
non-leaf node is equal to:

number of edges
number of nodes− number of leaves

(1)

By noticing that a node is a leaf if it has no children we derivethe
number of leaves in a sampledk-tree:

THEOREM 5. In a sampledk-treeΓ(p, b, h, k) the expected num-
ber of leaves is equal to:

h
∑

i=0

bip(1− p)
b
c+1

−b

b−1

wherec = min{h− i, k}.

PROOF. Let Zi be the random variable representing the num-
ber of nodes at leveli andWi be the indicator random variable
for any node at leveli, equal to 1 if all of the node’s children
are not observed and 0 otherwise. The number of leaves is then
∑h

i=0 Zi ·Wi and, by linearity of expectation,E[
∑h

i=0 Zi ·Wi] =
∑h

i=0 E[Zi ·Wi]. The number of children a node at leveli has is in

the general form:b
c+1−b
b−1

wherec = min{h−i, k}. Hence,Wi is a

Bernoulli random variable with success probability(1−p)
b
c+1

−b

b−1 .
On the other hand,Zi is a binomial random variable with parame-
ters(bi, p). SinceZi andWi are independent (because children of
a node are not among the nodes at the current level and each node



is observed independently of other nodes), we have:
∑h

i=0 E[Zi ·

Wi] =
∑h

i=0 E[Zi]E[Wi] =
∑h

i=0 b
ip(1− p)

b
c+1

−b

b−1

Now, using Theorems 1, 2, 5, and assuming independence between
the number of nodes, the number of edges, and the number of
leaves, we find an approximation for the out-degree of non-leaves.
The approximation for an arbitraryk follows from expression (1)
above. However, in the theorem that follows, we consider thecase
of k = 1 in particular, because it yields an expression forb that
does not depend onh, as further discussed in Section 4.

THEOREM 6. The expected out-degree of a non-leaf node in a
sampledk-treeΓ(p, b, h, k) for k = 1 is approximately:

pb

1− (1− p)b

PROOF. Assuming independence between the number of nodes,
the number of edges, and the number of leaves, using Theorems1,
2, 5, the expected out-degree of non-leaves is equal to:

p2 bh+1−b
b−1

p bh+1−1
b−1

− (p(1− p)b bh−1
b−1

+ pbh)
=

pb

1− (1− p)b

X6: Average node degree.Assuming independence between the
number of nodes and the number of edges, we can derive an ap-
proximation for the average node degree:

THEOREM 7. Average node degree in a sampledk-tree
Γ(p, b, h, k) with h ≫ k, is approximatelypk.

PROOF. The average degree of a node in ak-tree can be approx-
imated by making independence assumption between the number
of nodes and the number of edges. Then using Theorem 1 and 2,
we get:

p2

b−1

(

b(1−bk)
b−1

+ kbh+1
)

p bh+1−1
b−1

=
p( b(1−bk)

b−1
+ kbh+1)

bh+1 − 1

If h ≫ k, the above expression approachespk.

Whenk = 1 andh ≫ 1, the theorem above shows that the average
node degree is proportional top.

Although expressions in both Theorems 6 and 7 give approxi-
mate results, we have experimentally observed that both expres-
sions are accurate in practice.

4. MODEL ESTIMATION
Recall from Figure 2 that we observe a sampleC′ of the tar-

get cascadeC. We aim to estimate parameters of the sampledk-
treeΓ(p, b, h, k), such that its propertiesX′

M closely resemble the
propertiesX′ of the sampled cascadeC′. The premise is that ifX′

M

matchesX′, thenXM will matchX. Here we show how we esti-
matek-tree parameters fromX′ using the expressions for X1–X6
(i.e.,X′

M) we derived in Section 3. We estimate model parameters
in two steps. We first obtainp and then obtainb, h, andk.

Obtaining p. For influence cascades, we use property X6, and
specifically Theorem 7, to obtain an estimate forp, p̂. Recall that
for k = 1 (which is always the case for influence cascades), average
node degree is equal to the fraction of observed nodesp. Accord-
ingly, p̂ equals to the average node degree measured onC′.

For network cascades, on the other hand, we cannot solve ana-
lytically for p. Thus, we obtain̂p by other means. If the sample
ratio σ used to obtainC′ is known, p̂ = σ. If σ is unknown, we
estimateσ and set̂p to the estimatedσ. For example, if we have
multiple cascadesC′, all of which were obtained with the sameσ,

Figure 4: Fitting a k-tree model. Two alternativek-tree models
with respect to the observed cascade property.

one can estimateσ as the fraction of cascades where the root node
is observed (granted that we can identify the root of each cascade).

Obtaining b, h and k. Settingp to p̂ from the previous step and
equating analytical expressions for X1–X4 to the measured X1–
X4 on C′ yields a set of equations with 3 unknowns:b, h, k. For
example, ifm′ is the number of observed nodes (property X1), then
equating the expression form from Theorem 1 yields the following
equation:p̂ bh+1−1

b−1
= m′.

Since the derived equations are non-linear, we cannot directly
solve this system. Instead, we solve for the unknowns by find-
ing the set of parameters with the minimum sum of the squares
of the errors made in solving every single equation. Specifically,
if x′ is the measured value of one property onC′ andx′

M is the
corresponding value predicted by the modelΓ(p̂, b, h, k), then the
squared error for that value is(x′ − x′

M )2.
We have experimentally observed that minimizing the errorsin

this fashion gives poor results. To explain why, consider Figure 4.
The solid curve corresponds to the valuex′(σ) of some property
x, e.g., the number of nodes in the cascade, as a function of the
sample ratioσ. Of course, in reality we do not see this curve; we
only see the valuex′(σ∗) at the sample ratioσ∗ used to obtainC′

(and in many cases we do not even know the value ofσ∗). Our goal
is to estimate the value ofx′(σ) at σ = 1. The two dashed lines
illustrate the valuex′

M (p) of the same propertyx for two k-tree
modelsΓ1 andΓ2. Even though atp = p̂ modelΓ1 fits better than
Γ2 (point B is closer to the solid line thanA), modelΓ2 may be
preferred. Atσ = 1 pointD of Γ2 is closer toE thanC of Γ1.

In order to prefer models likeΓ2 overΓ1, we should look for
models that match thex′(σ) curve better – more than just at the
point σ = σ∗. But how can we do this fitting when we do not
know the shape ofx′(σ)? We can discover other points on the
x′(σ) curve by further subsampling the sampled cascadeC′.

Say we re-sample the cascadeC′ with rateα (0 < α ≤ 1) and
evaluate the properties. The effect is the same as if we had sampled
the original cascadeC with sample rateα · σ∗. Thus by using mul-
tiple values ofα we obtain multiple points along thex′(σ) curve.
Eachα yields a new error term of the form:(x′(ασ∗) − x′

M)2,
wherex′

M is the value predicted by a model whenp = α · p̂. Mini-
mizing the sum of the error terms for allα values, we fit the model
not only at a single pointσ∗, but along the whole interval(0, σ∗).
We found it best to generate several samples at the sameα, and
then average the measuredx′ values.

Figure 5 summarizes the parameter estimation procedure:

1. Subsample observed cascadeC′ for multiple values ofα ∈
(0, 1]. For eachα, generate multiple subsamples ofC′ and
average measured properties X1 through X4.

2. For eachα (and forα = 1), generate an error term: the
squared difference between the measured (averaged) value



Figure 5: Parameter estimation ofk-tree model. We subsample
the observed cascade to obtain more accurate parameters.

and the value predicted by the k-tree model (function ofαp̂,
b, h, andk).

3. Apply the least squares method (we use grid-based search)to
find parameterŝb, k̂, ĥ that minimize the sum of the errors.

Influence cascades.In-degree of non-roots in influence cascades
is always 1. So when estimating parameters for influence cascades,
k is explicitly set to 1 and we only have to solve forb andh.

Furthermore, we found that betterk-tree models can be found by
first solving forb using X5. Specifically, we measure the out-degree
of non-leaves onC′, say it isx′, and equate it to the expression from
Theorem 6 to obtain:̂pb/(1− (1− p̂)b) = x′. Then we solve this
equation forb numerically using bisection. Having found̂b esti-
mate this way, we then estimateh using X1–X4 and subsampling
as described above (X1 alone would also suffice).

Integer-valued vs. real-valued parameters. Our k-tree model
assumes integer values for all three parameters. However, in real
cascades nodes have varying branching factorb and in-degreek,
and different leaf nodes are at different heights. Hence, weallow
real valued parameters fork-trees.

Real-valued parameters have natural interpretation in ourk-tree
model. Real-valuedb can be interpreted as an average number of
direct children (not counting children attached via spurious edges),
e.g., if b is 2.5, half of the nodes have 2 children and half of the
nodes have 3 children. Similarly, real-valuedk is interpreted as an
average in-degree of non-roots, e.g. ifk is 2.5, half of the nodes
have connections from 2 closest ancestors while half have connec-
tions from 3 closest ancestors. Finally, modulo ofh can be inter-
preted as the fraction of nodes with children at level⌊h⌋, e.g. ifh
is 3.5, half of the nodes at level 3 have children, while half do not.

However, the expressions for X1–X5 do not allow non-integer
values forh and k (because bounds of summations need to be
integer-valued). To address this, we linearly interpolatethe func-
tion value between two integer values. For example, ify0 = f(x0)
for integerx0 andy1 = f(x0 + 1), then the value off(x) for
x ∈ [x0, x0+1] is y0+(x−x0)(y1−y0). In our case we linearly
interpolate betweenf(h, k) andf(h+ 1, k + 1) in 2 dimensions.

5. EXPERIMENTS
In this section, we evaluate our cascade model and our method

for correcting for missing data in the cascades. We first evaluate
whetherk-tree cascades’ properties are affected by the missing data
in the same way as the properties of the target cascades. In other
words, is there ak-tree for each target cascade such that the prop-

erties of the target cascade are similar to the properties ofthe k-
tree at each sample ratio? Next, we evaluate the soundness ofthe
method. Specifically, do the propertiesXM of the completek-tree
parameterized based onC′ match the propertiesX of the complete
target cascadeC? Finally, we study the parameters of the model
itself. b, k, andh can themselves be viewed as properties of the
original cascade. Hence, we look at how wellk-tree parameters
match the corresponding properties of the target cascade. If k-tree
parameters match the corresponding cascade properties then each
parameter indeed has an intuitive meaning.

5.1 Experimental Setup
For our evaluation, we need complete target cascades. We con-

sider two types of target cascades: (a)synthetic cascadesgenerated
on real and synthetic networks, (b) actual cascades obtained from
Twitter and blogs which we refer to asreal cascades. Each com-
plete cascade, in our experiments, can actually be sampled at sev-
eral ratios, not just at one ratioσ∗, as it is the case for the target
cascade of Figure 2. Hence, in this section we refer to the sample
ratio of the observed cascade using variableσ, and notσ∗.

Synthetic cascades.Synthetic cascades are generated using an ac-
tion propagation model simulated on a given network. The model
takes as input a network and action sequence size, set to 127 in our
simulations, and generates an action sequence which specifies in-
fluences. We use both synthetic networks and the real networkof
Twitter users to simulate our action propagation model.

We use a variant of the Susceptible-Infected (SI) model [2],com-
monly used in studies of virus and information diffusion. Here are
the steps of the simulation. First, we select at random a rootnode
r with non-zero out-degree. Then,r is added to the initially empty
list of infected nodesI and all of its outgoing edges(r, s) are added
to the initially empty FIFO queue of infected-susceptible node pairs
S. After that, we repeat the following steps until 127 elements of
the action sequenceA are produced:

1. Remove the first pair(r, s) from the queueS.
2. With probabilityβ, output an action sequence element(r, s).

Then adds to I and add all edges(s, u) whereu /∈ I to S.
Otherwise (i.e., with the remaining probability1− β), push
(r, s) back intoS.

Our action propagation model requires a network as input. We
used two types of networks: synthetic networks and real social net-
work of “who follows whom” of Twitter.

Synthetic networks were generated using three network models:
Erdős-Rényi random graph, Scale Free random graph and Forest
Fire model [16]. We do not present results for all of them in this
paper, but complete results for all the models can be found inthe
extended version of the paper [23]. All networks were generated
with 106 nodes. Erd̋os-Rényi graph was generated with an average
degree of 10, Forest fire network was generated with parameters
pf = 0.36 andpb = 0.315 (yielding average degree of 10). And
Scale Free graph was generated with power law degree distribution
exponentα = 2.0 (roughly corresponding to the power law degree
exponent of the Twitter network).

The Twitter “who follows whom” network was collected via the
Twitter API in a breadth-first manner from June through December
2009 with the set of seed user IDs taken from the public stream
of tweets (Twitter status updates) monitored in that period. In other
words, for every useru for which we observed a tweet, we collected
friends ofu followed by their friends of friends, etc. in a breadth-
first manner. The network we obtained has 71,804,410 nodes and
2,040,072,198 directed edges (average degree of 28.4), where each
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Figure 6: X2-X4 properties on estimatedk-tree and observed cascades. First row: synthetic cascadeson Twitter network. Second
row: a single Twitter retweet cascade. Error bars correspond to 95% confidence interval. Note agreement between the properties of
the target cascade (solid line) and the properties of thek-tree cascade (dashed line) as we vary the fraction of missing data.

edge corresponds to the “follows” relationship among users(if A
follows B, A receivesB’s tweets).

We also consider real cascades that are constructed from action
sequences extracted from traces of human activity. We use Twit-
ter retweets as natural action sequences that when combinedwith
the Twitter network form network cascades. In addition, we also
use the action sequences of link creation between blog poststhat
naturally form influence cascades.

Retweet Cascades.Tweets are Twitter status update messages and
retweets are re-postings of the previously posted tweets. We fo-
cus on how a given URLx propagates through the Twitter social
network by people reposting (i.e., forwarding) the original Tweet.

We took acompleteset of tweets, collected by Topsy, for the
most popular URLs posted on Twitter between June and Decem-
ber 2009. From the set of tweets with URLs, we then extracted
retweets. If useru posts a tweet with URLx, any tweet of the
form “RT @u t”, wheret contains URLx, is a retweet ofx. For
example, suppose userA posts a tweet with URLx, then userB
who followsA posts “RT @A x” and another userC who follows
B (but may not followA) posts: “RT @A x”. This sequence of
tweets forms an action sequence〈(⊥, A), (∅, B), (∅, C) 〉. This ac-
tion sequence, combined with the network of who follows whom,
can then be used to construct a network cascade (if a node retweets
more than once, we consider only the first retweet).

Note that there is no way to tell which node influenced which
other node from retweets. Using the same example, if anothernode
D retweetsA’s x andD follows bothB andC (but does not follow
A), then bothB andC could have influencedD. Thus to obtain
influence cascades from retweet network cascades, we selecta sin-
gle incoming edge for each node giving credit to the last neighbor
to retweet. In our example, ifC retweeted afterB, we say(C,D).

Although we had to drop some of the tweets due to changed and
deleted usernames, our final cascades were nearly 95% complete
with the experiments performed on their largest connected compo-
nents. We considered only cascades of more than 100 nodes with
the total of 250 such cascades.

Blog Cascades.Blog posts and links in them to other blog posts
provide action sequences with explicit influence relations. Specif-
ically, each post with no outgoing links starts an action sequence.
Suppose blogA makes a posta and blogB links to posta in one
of its postsb, then we can infer action sequence(A,B). If blog
C then makes a postc linking to b, our action sequence becomes
〈(⊥, A), (A,B), (B,C)〉. Accordingly, we can then construct an
influence cascade. IfC has links to say bothx andy, we arbitrarily
pick one of the links. In our dataset, blog posts linking to more
than one post in the same cascade were extremely rare (less than
0.01%), validating our model of influence cascades as trees.

For our experiments, we extracted influence cascades from the
set of blog posts collected by Spinn3r between August and Novem-
ber 2008. This data set includes essentially a complete snapshot of
the English blogosphere. We considered only cascades of 100and
more nodes with the total of 100 such cascades. We did not con-
sider network cascades in the context of blogs because thereis no
explicit blog network (although implicitly created blog networks
have been studied before [17]).

5.2 Soundness of thek-tree Model
One of the assumptions underlying our methodology is that sam-

pling (i.e., missing data) has the same effect onk-trees as on tar-
get cascades. We test this assumption to validate our methodand
demonstrate thatk-tree is a useful model for real cascades.

In this experiment we work with complete target cascades so
σ = 1 (i.e.,C′ = C). We sample each target cascade at ratesα =
0.1, 0.2, . . . , 1.0 and measure properties X1–X4 at each rate. Then
we estimate ak-tree modelΓ(b̂, ĥ, k̂) as discussed in Section 2.
Estimated parameterŝb, ĥ, k̂ are the same for all four properties.

Figure 6 shows a grid with 6 graphs. The top row corresponds
to synthetic cascades on the Twitter network and the bottom row
corresponds to a retweet cascade1. Each column of the grid cor-
responds to one of the X2–X4 properties. Consider the bottom

1We estimate model parameters for each real cascade individually,
so we are showing results for only one cascade as an example.
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Figure 7: Observed vs. estimated properties. First row: blog influence cascades. Second row: retweet influence cascades. Third row:
retweet network cascades. All errors are averaged over a setof cascades, error bars correspond to 95% confidence interval.

rightmost graph for a single retweet network cascade and itscor-
responding influence cascade. The dark dashed curve shows X4
(number of weakly connected components) measured on the net-
work cascade as a function of subsample rateα. The dark solid
curve shows analytically calculated X4 for the network cascade’s
k-tree model as a function ofα. Similarly, the light dashed curve
shows X4 measured on the influence cascade and the light solid
curve shows analytically calculated X4 for itsk-tree model. Ob-
serve that the model predicts the actual values fairly well.

Now consider the top row. Here, for the target influence and net-
work cascades, each measured property value at each sample rate
is an average across 1000 synthetic cascades simulated on the Twit-
ter network (all of the same size). Accordingly, thek-tree models
for both influence and network cascades are fitted to the average of
measured values. Again, the fits are fairly close.

Note that the model curves in each row correspond to the same
k-tree (estimated for either network or influence target cascade), so
the curves in each graph were not fitted individually. Yet theana-
lytical model values match closely the measured values for all the
properties. Although we do not present results here, the same close
fit for all properties, including X1, was observed for synthetic cas-
cades simulated on synthetic graphs and real cascades constructed
from blogs. More importantly, we performed the same experiment
with cascade properties that are not explicitly fitted (e.g., size of the
largest weakly connected component) and found similar close fits.
Overall, we conclude thatfor every target cascade there is ak-tree
model such that their properties are alike at each sample rate.

5.3 Estimating Target Cascade Properties
Next, we evaluate to what degree do the properties of the es-

timatedk-tree model approximate the properties of the complete
target cascade.

We reconstruct the following cascade properties: (1) number of
nodes, (2) number of edges, (3) width, which is defined as the max-
imum number of nodes at any depth/level [5], and (4) participation,
which is defined as the number of non-leaf nodes [5].

Figure 7 shows a grid of 12 plots. The top row corresponds
to blog cascades, the middle row corresponds to retweet influence
cascades, and the bottom row corresponds to retweet networkcas-
cades. Each column corresponds to one of the four properties. The
results are averaged across 250 retweet and 100 blog cascades (the
results for synthetic cascades are similar to those presented here).

For example, consider the top leftmost graph for the number of
nodes measured on blog cascades. Sayx is the number of nodes in
C, x′(σ) is the number of nodes inC′ obtained with sample ratio
σ andxM is the number of nodes in thek-tree model estimated
from C′. The relative error of thek-tree model estimate at sample
ratio σ is thenê = |xM−x|

x
, shown by a dark curve in the plots

(k-tree model may differ at eachσ). Similarly, the relative error of
the observed value at sample ratioσ is e′ = |x′(σ)−x|

x
, shown by a

light curve in the plots. As expected, the light curve is a straight line
because the observed cascade size, and its relative error, is linear
with σ.

In all of the plots of Figure 7, except for the width on retweet
influence cascades, the error of the estimated properties isbetter
than the error of the observed properties for almost allσ values.
In general, with 70% or less of the target cascadeC, our method
provides a significantly better estimate ofC’s properties than what
is observed onC′. However, forσ > 0.9, our method does worse
than working withC′ directly and ignoring the missing data. This
suggests that if estimated sample ratiop̂ is high, one is better off
measuring properties onC′ directly. But, of course, most proper-
ties are not perturbed by missing data at such such highσ values
and one would not bother to correct for missing data in such case.



Network Cascade Influence Cascade
estimated observed estimated observed
error (̂e) error (e′) error (̂e) error (e′)

p – – 0.02 –
b 0.03 0.29 0.03 0.32
k 0.14 0.21 – –
h 0.00 0.39 0.00 0.46

Table 2: Relative errors for estimated and observed parameters
averaged over synthetic cascades on Twitter network,σ∗ = 0.5

Distortions due to missing data become a bigger issue at lower σ
values and this is where our method is most effective and signif-
icantly outperforms measurements made onC′. 20-30% relative
error is especially encouraging for such low values ofσ as 0.1.

As seen in the rightmost plot of the second row of Figure 7, our
method performs poorly on the width of retweet influence cascades.
We found that while blog influence cascades are mostly shallow
balanced trees (star-shaped), retweet influence cascades resemble
more imbalanced trees, possibly because they were artificially gen-
erated from the network cascades. This is the reason we believe we
are unable to estimate well the width of retweet influence cascades.

Finally, observe that while the number of nodes and edges areex-
plicitly fitted during parameter estimation, participation and width
are not fitted. Yet, our model predicts these properties fairly well.

5.4 Estimated vs. Observed Parameters
Parameters of thek-tree model can themselves be viewed as cas-

cade properties. For example, parameterk naturally maps to the
average node in-degree in a cascade. We next evaluate how well
the model parameters match the corresponding cascade properties.

As described in Section 3,k accounts for the spurious edges
(k−1 spurious edges per node), whileb andh are branching factor
and height of the tree, respectively, without the spurious edges. A
network cascade is essentially an influence cascade with spurious
edges. Accordingly, if a network cascade has a corresponding in-
fluence cascade (which is always the case, given our experimental
settings),p, b andh values must be the same for both cascades.
Becausek is trivially 1 for influence cascades, the estimated pa-
rameterk is specific to a network cascade.

Now let’s define how model parameters map to cascade proper-
ties. p corresponds to the sample ratioσ of C′, so we say thetrue
value ofp is σ. For b, h, andk, the true value of each will be its
corresponding property value measured onC. The true value ofb
is the average out-degree of non-leaves in the influence cascade.
The true value ofh is the average weighted depth over all leaves
of the influence cascade. The weight of each leaf is the numberof
its descendants at the max level of the tree had the tree been bal-
anced (consistent with real-valuedh in Section 4). Finally, the true
value ofk is the average in-degree of non-roots. Recall that we
only considerk for network cascades.

To have a baseline when comparing estimated parameters to the
true ones, we also measure properties corresponding tob, h, andk
on C′. We will refer to these measured properties as toobserved
parameters. Observed parameters are defined similarly to the true
ones but unlike the true parameters these are measured onC′ as
opposed toC 2. For example, observedb is defined as the average
out-degree of non-leaves measured onC′.

In this experiment, the goal is to compare estimated model pa-
rameters to the true parameters. As a baseline, we also compare the
observed parameters to the true parameters. To make comparison
2We cannot assume to have access to both influence and network
cascades, so the parameters are measured on whateverC′ we are
given (either network or influence).

Spurious Edges No Spurious Edges
estimated observed estimated observed
error (̂e) error (e′) error (̂e) error (e′)

p – – 0.02 –
b 0.03 0.86 0.02 0.31
k 0.02 0.43 – –
h 0.05 0.66 0.10 0.43

Table 3: Relative errors for estimated and observed parameters
for k-trees with 127 nodes,b ∼ Normal(2, 1), k = 3.5, σ∗ = 0.5

direct, as in the previous experiment, we use relative errors ê and
e′. For example, ifb∗ is the true value of branching factor,b̂ is its
estimate, andb′(σ) is the observed value at sample ratioσ, then

ê = |b̂−b∗|
b∗

ande′ = |b′(σ)−b∗|
b∗

.

Performance on synthetic cascades.We generated synthetic cas-
cades on synthetic networks and Twitter network. Due to space
constraints we show results here only for Twitter network; the re-
sults for other networks are similar to the ones we present here.
Synthetic cascades were generated with 127 nodes each with ato-
tal of 1000 cascades simulated on each network.

Table 2 shows results averaged over all simulations on Twitter
network with sampled cascadesC′ at σ = 0.5. Each row cor-
responds to one of the four parameters. There are two sets of
columns, one for the network cascades and one for the influence
cascades. Each set has two columns: the left one correspondsto
the estimated error̂e (with respect to one of the four parameters),
the right one corresponds to the observed errore′. Note that we are
not showing the observed error forp because this parameter cannot
be directly measured from observed data. Also we cannot analyt-
ically estimatep for network cascades, so we omit values forp’s
estimated error for network cascades.

Observe that the errors of the estimated parameters are verylow:
almost all below 5%. Contrast them with 20-40% errors for ob-
served parameters. Finally, note how accurately we are ableto infer
p for influence cascades. This demonstrates the effectiveness of X6
as an estimate ofσ.

Recall that both influence and network cascades, in our setting,
are constructed from the same action sequence. Accordingly, b and
h are the same for the network and influence cascades, as discussed
above. Interestingly enough, although model parameters for net-
work and influence cascades are estimated independently, the es-
timated errors forb andh are low in both cases. Hence, similar
b andh values are predicted for both influence and network cas-
cades. This is yet another strength of our method: we are ableto
detect close similarity between the equivalent network andinflu-
ence cascades.

Robustness of parameter estimation.Finally, we test the robust-
ness of parameter estimation. By generating and sampling ak-tree
cascade with constant integerb, h, k parameters andσ sample ra-
tio, we experimentally verified that we can match all parameters
precisely (̂e = 0 for all parameters). So we added variance to
parameterb and used real-valuedk. Specifically, we generated cas-
cades with 127 nodes,b ∼ Gaussian(2, 1) andk = 3.5 (sinceb is
stochastic, the actual height varied). All cascadesC were generated
1000 times and sampled to obtainC′ with σ = 0.5.

Table 3 shows the results. The table is similar to Table 2 with
the two sets of columns referring to cascades with and without the
spurious edges instead of network and influence cascades, respec-
tively. Although we added variance to the branching factor and
used a real-valuedk, the estimated parameters have a very small
error with respect to the true values. This result demonstrates the
robustness of our parameter estimation.



6. DISCUSSION AND CONCLUSION
In this paper, we addressed the problem of estimating properties

of a target cascadeC, given only its fractionC′ obtained by uniform
sampling ofC nodes. This is the first attempt to our knowledge to
analytically study the effect of missing data on cascade properties
and, most importantly, the first attempt to correct for missing data
in cascades. In summary, our contributions are as follows:

• Proposed an analyticalk-tree model of cascades and rigorously
derived a number of their important properties.

• Experimentally showed that thek-tree model is an effective
proxy to study the effect of missing data on the observed prop-
erties ofC′.

• Proposed a method that, given a cascade model (k-tree, in our
case), estimates properties ofC givenC′.

• Experimentally demonstrated that the estimated properties ofC
using our method are significantly more accurate than the ob-
served properties onC′ (effectively correcting for the property
distortions due to missing data inC′).

• Experimentally showed that thek-tree model parameters have
an intuitive meaning: they roughly correspond to the properties
of the target cascadeC.

Our methodology for estimating cascade properties in the face of
missing data is a practical necessity. For instance, Twitter provides
public access to only up to 10% of its stream of tweets, whereas
Facebook users are becoming more concerned about privacy of
their data. Current algorithms and methods for finding influential
nodes, designing viral marketing campaigns, or studying informa-
tion diffusion processes assume access to complete cascadedata.
These algorithms fail given the distorted cascade properties caused
by incomplete data. The method we propose can address these is-
sues. For example, using our method one could estimate how many
people influenced their followers to retweet a given tweet (equiva-
lent to node participation) even when 90% of the tweets are miss-
ing. Furthermore, one could even estimate how much data is miss-
ing in the first place. For example, if one was studying cascades
formed by links between blogs posts, one could use our techniques
to estimate what fraction of posts are missing from the data set.

There are a number of future directions for this work. Thek-tree
model for cascades, although simple and thus relatively easy to an-
alyze, may not work for all types of cascades. As we have seen for
retweet influence cascades, cascade trees which are severely imbal-
anced, may create challenges for our model. Hence, we may need
more sophisticated models of cascades, possibly stochastic in na-
ture based on Galton-Watson trees [26]. Given a different model,
however, our method to correct for missing data could still be ap-
plied. Finally, in this paper we worked in the regime of sampled
action sequences but complete knowledge of the underlying net-
work. One interesting venue for future work could be studying the
effect of missing data in both action sequences and the network.
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