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ABSTRACT

Transmission of infectious diseases, propagation of métion,
and spread of ideas and influence through social networkallare
examples of diffusion. In such cases we say that a contagieads

nodes of the network that performed an action of intereseaiges
represent influence relations [3, 7, 8]. Thus, when Alicagahe
campaign under Bob’s influence, we observe a directed edge fr
Bob to Alice in the cascade. We define social networks and cas-

through the network, a process that can be modeled by a @scad cades formally in Section 2, but to illustrate now, Figureiieg a

graph. Studying cascades and network diffusion is chaithendue
to missing data. Even a single missing observation in a seguef
propagation events can significantly alter our inferendesiathe
diffusion process.

We address the problem of missing data in information cascad
Specifically, given only a fractiof’ of the complete cascadg our
goal is to estimate the properties of the complete cas€adech
as its size or depth. To estimate the properties,afe first formu-
late k-tree model of cascades and analytically study its properties
in the face of missing data. We then propose a numerical rdetho
that given a cascade model and observed cas¢adan estimate
properties of the complete cascadleWe evaluate our methodol-
ogy using information propagation cascades in the Twittéwork
(70 million nodes and 2 billion edges), as well as informatas-
cades arising in the blogosphere. Our experiments showttibat
k-tree model is an effective tool to study the effects of nmigsiata
in cascades. Most importantly, we show that our method (had t
k-tree model) can accurately estimate properties of the t&mp
cascad& even when 90% of the data is missing.

Categories and Subject DescriptorsH.2.8[Database Manage-
ment]: Database Applications Bata mining
General Terms: Algorithms, theory, experimentation.

1. INTRODUCTION

Social and information networks are a fundamental medium fo
the spread of information, ideas, viruses and behavior. stade
graph can be used to represent the contagion across therketwo
For example, if Alice is connected to Bob in a social netwarkl a
Bob participates in the “Fight Against Cancer” campaignniey
influence Alice to do the same. Or similarly, Bob may spre&oirin
mation to Alice, if Bob reads some article and shares it wiklc&d
As information or actions spread from a node to node throhgh t
social network, a&ascades formed. Nodes of the cascade are the

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

WSDM'11,February 9-12, 2011, Hong Kong, China.

Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

network and two types of cascades.

We may not observe all actions performed by the nodes of-inter
est, and hence our cascades may be incomplete, i.e., hasiagnis
data. For example, Figures 1(d, e) show cascades when sdhe of
data (i.e., actions of nod¢) is missing. The cascades with miss-
ing data may no longer have the same properties (e.g., déath,
number of edges) as the original cascade, and may not evembe ¢
nected. Here, we address the problem of estimating pregesfia
complete cascade from a small observed pa@¥ of the complete
cascade. Specifically, can we infer properties, like sizkdepth,
of the complete cascade, when data is missing?

There are a number of reasons why cascades may have missing
data. Most social networks do not provide full informatidsoat
their user activity and thus we only observe a subset of yseatii-
pating in the cascade. For example, Twitter does not prqwitidic
access to its full stream of tweets and most Facebook useps ke
their activity and profiles private. Furthermore, there endeen
growing concerns about Facebook’s privacy policy, whichdates
that users are generally reluctant to share their datallfifl in-
formation may not be available because of the costs of doikgd.
Overall, the rapid growth of the social networks themselthes in-
creasing volume of their generated data, and the growingezos
of users over privacy will likely to only exacerbate the gesh of
missing data over time.

Why estimate properties of complete cascadesProcesses that
form cascades in a social network have been studied in a num-
ber of domains, including the diffusion of medical and tealbg-
ical innovations [22], adoption of strategies in game-tk&o set-
tings [6], product adoption, promotion, and viral markgt[d, 14].
Diffusion and cascades have been studied in the contextcd-Fa
book [25], Twitter [12], Flickr [4], blogs [17], and email em-
letters [18]. To study diffusion processes underlying thscades,
one needs accurate knowledge of the cascade propertiésasuc
node out-degree, in-degree, or cascade depth. Howevesrvells
properties may differ from the properties of the completscede
which highly biases inferences about the diffusion proegss
Cascades are also essential for selecting trendsetterdrébr
marketing [21, 10], finding inoculation targets in epidelogy [20],
and explaining trends in blogosphere [9]. Missing data farima-
tion cascades can have large effect on these applicatiamsider,
for example, the problem of influence maximization for vinzar-
keting. The task here is to select a set of most influentiabadd
the network where the influence of a node could be the averzge s



» 3 A4
Q e u < S u < S
= ®
® % O
(a) Network (b) Influence cascade (c) Network cascadé,, (d) Sampled (e) Sampled
influence cascadg; network cascadé;,

Figure 1. Missing data in cascades. (a) A social network. (b)nhfluence cascade: we observe edges over which the informati
propagated. (c) Network cascade: we only observe particiggng nodes, not propagation edges; edges are inferred fromhe network
based on time order. (d, e) Influence and network cascades,spectively, with missing data (information about nodes is missing).

of the cascades it creates. However, a cascade can becaop-dis We focus on nodes aoff that have performed a particular type

nected with missing data, so the size cannot be reliablynestid. of action, e.g., joined the “Fight against cancer” campajartici-
Accordingly, the influence maximization algorithm will perm pated in an online poll, or bought a camera. The process stittt
poorly and the targeted marketing campaign will likely fall an initially active node- (the root) and the decision to perform an
Related work on missing data. Missing data in networks is a  action can be seen as an infection transmitted over the edgés
longstanding but relatively poorly understood problemlai to from a node to node as a result of their interaction. a&tion se-

our work here are the works that study the effects of missatg d ~ guenceA is a sequence of paifs, ¢), one pair for each nodethat
on measured properties of social networks [11] and the stiidy performed the action of interest, wherafluencedt. For example,

biases when obtaining a graph of the Internet based on neeasur if s bought a camera under the influence-ofhen(r, s) appears in

ments [13, 1]. Another related line of work is on samplingdrge the action sequence. The initially active node not i_nfluenced by
networks [15, 19, 24], where given a large network we woutd i~ @nyone, denoted bL, 7). The order of the pairs irl represent
to find some procedure to sample a small set of nodes such thatthe order in which nodes performed the action of interest. the
important structural properties of the network are presrv scenario so far, we havé = ((L,r), (r,s)). We assume a node

In terms of the effects of missing data in information cagsad ~ ¢an be influenced by at most one other node, much like a disease
prior work is practically nonexistent. The exception is teeent is transmitted to a person from a specific individual in epite
work by Choudhury et al. [5] that considers the effect of vas models [2]. If & node performs the action multiple times, waéy/o
sampling strategies on the measured properties of difiusisies consider the first action. , o
(similar notion to cascades). While this work tries to findamns ~ The subgraph of+ defined by the influence relations in the ac-
pling strategy that least distorts the observed properieswork tion sequence forms aimfluence cascade;. The nodes irC;
here differs. We work under consideration of uniform randszm- are the nodes in the action sequence and an edgg is in C;
pling, where each node is missing independently with prisisagb ~ if (7, 5) € A (since actions only spread along the edgeé/dhen
1 — . However, we are able not only to bahalyticallyand em- (r,s) € E). Figure 1(b) shows one possible influence cascade,
pirically understand the distortion created by sampling. (imiss- wherer is the initially active node, which then influenced node
ing data) but also taorrectfor the distortion (i.e., infer properties ~ $» Which'in turn influenced nodesand thert. Note, there is only
of the complete cascade). To our knowledge this is the firstrait onero_ot node, WhICh is not influenced by any other nodes — the first
to analytically understand the distortions under missiatadand, node in the action sequence. Influence cascades are trersbec
more importantly, to correct for them. This is especiallplténg- nodes cannot repeat in the action sequence and each nomedeot
ing as cascades, tree-like graphs, are very fragile, ediion- s has one incoming edgfe (from the |nf|uen.cers)JfSL.Jch treg-llke
nected even with a small fraction of missing nodes. cascades are common in real data: we will show in Sectionr5, fo

example, that influence cascades arise in the blogosphere.

In some real-world scenarios, however, it may be hard tatifyen
an influencing node. We may only observe action sequencs pair
of the form (), v) where we know that node performed an action
but do not know which node influenced the action. In this case,
construct anetwork cascadé€,,. The nodes irC,, are the nodes in
the action sequence and an edgss) isinC, if (r,s) € E andr
appears beforein the action sequence. Intuitively, there is an edge
betweenr ands in the network cascade if performed the action
befores andr is connected ta in the social networkz. Network
cascades, as we will see in Section 5, arise on Twitter.

For example, Figure 1(c) shows a network cascade. In p&atjcu
note thatt is now connected to all nodes that could have possibly
influenced it. We call the edges that are in the network casbatl
not in the influence cascadpurious e.g., edgér, t) is spurious.
Since each node may have more than one incoming edge, network
cascades are not trees but rather directed acyclic gragtG{D
2. PROBLEM STATEMENT As discussed in Section 1, we may not observe the complete ac-
tion sequence, so we may have missing data in our cascades. In
particular, say, we have a sample of the action sequencen iThe
we use the sampled action sequence instead of the complite ac
sequence in the definitions above, we obtaisaenpled influence

Outline. In the following we first propose &-tree model of cas-
cades and derive properties of the resulting cascades asusize,
number of edges, etc. Then, given an observed cas€adéth
missing data, we show how to select a “proxytree model that
best approximateg€’. The model can then be used to estimate the
properties of the complete cascadéNe experimentally show that
the properties estimated via a proxy cascade are much doser
the true properties of than the observed properties 6hfor any
sample ratiar less than 0.7. Hence, we can effectively correct for
missing data.

We evaluate our findings on a Twitter social network of 70 mil-
lion nodes and 2 billion edges. We run our experiments on more
than 1 billion tweets. In addition, we also study informatidif-
fusion cascades formed on the blogosphere. We show that our
methodology can reliably infer structural properties ompbete
cascades with as much as 90% of missing data.

We model a social network, over which cascades unfold, as a di
rected graplz(V, E), where node$” represent entities (e.g., peo-
ple, web sites, blogs) and edgEsrepresent directed interactions.
For example, in network in Fig. 1(a), nodesinds interact witht.
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Figure 2: Methodology.

cascadeor asampled network cascadBor example, Figures 1(d)
and (e) show the sampled influence and sampled network esscad
for the sampled action sequence where information abo sl
missing. Note how cascades become disconnected in both. case
In this paper, we assume that missing data is a result of umifo
random sampling. Specifically, each node in the completeract
sequence is included in the sample at random with probylailit
independent of other nodes. We calthe sample ratio We con-
sider uniform random sampling because this is the most cammo
sampling strategy and is in fact used by Twitter for its peibtream
of tweets.

Methodology. Our goal is to obtain a set of properti&sof a given
complete (influence or network) cascadeFor example, size and
depth are two such properties. However, we do not have atwess
the cascad€ itself but to a sampl€’. Thus, we can only compute
the propertiesX’ of the sampleC’. Note that the propertieX’
can be very different from the properti&s of C. For example, in
Figure 1, the depth of the influence cascade is 2, while thehdsp
its sample is 0.

Figure 2 illustrates our approach. To estimate the progeXtiof
C, we first propose &-treemodel of cascades. The box labeldd “
tree cascade” represents a parameterized family of cascdde
samples of these cascades are represented by the box |&zeted
pled k-tree cascade.” We can compute the properKag of the
completek-tree cascade arX},; of the sampled:-tree cascade.

Our strategy now is to find a sampléetree cascade with prop-
ertiesX},; similar to the propertieX’ of the sampled cascad®.
For example, we can find a completetree cascade (i.e., its pa-
rameters) by finding a samplédtree cascade with the expected
number of edges equal to the number of edge ifOnce we find
suchk-tree cascade, we can approximate the propeMiesf the
complete target cascadeby the propertieXns of the complete
k-tree cascade. For example, we estimate the sizeasf the size
of the complete:-tree cascade.

We start in Section 3 by defining oértree model of cascades
and analytically derive their important properties. ThanSec-
tion 4, we discuss how to estimate model parameters saXhat
and X'’ are similar. Finally, in Section 5 we experimentally show
the soundness of our approach. For our evaluation, we nead co
plete target cascades in order to check whefematchesXy;.
We consider two types of target cascades: (a) synthetiadasc
obtained from a simulated action propagation process, ¢hjaa
cascades obtained from Twitter and blogs. In addition,uihcour
experiments, we show that tlietree model is an effective tool to
study the sensitivity of cascade properties to sampling.

3. CASCADE MODEL

Next we introducek-tree model of cascades. The model allows
for mathematical analysis of cascade properties withoaitrnged

Figure 3: k-tree cascade with branching factorb = 2, number
of parentsk = 2, and depthh = 3.

| Symbol | Description |
o Fraction ofC nodes observed i@" (sample ratio)

P Probability of observing a node in tiietree model

b Number of children (out-degree) via influence edgds
h Height of the tree on influence edges

k Number of parents (in-degree) of non-root nodes

n Number of nodes in the completetree,n = %

m

Number of nodes in the sampléetree,m = p-n

Table 1: Table of symbols

for asymptotic analysis. We cannot assume cascades ofténfini
size or depth as real cascades are rather shallow. Obtgirécgse
constant factors in the expressions describing cascagempies is
essential in order to be able to reconstruct the completadas

A k-treeI'(b, h, k) is generated from a balanced tree of height
h and branching factob. We then augment each node of the tree
with k — 1 edges from its — 1 closest ancestors, starting from its
grandparent. Thus nodes havgarents, except for nodes near the
root which do not have enough ancestors. Figure 3 showtee
with b = 2, h = 3, andk = 2. Original edges of the balanced tree
model influence edges while ttie— 1 additional edges per node
model spurious edges. In Figure 3, influence edges are dankler
spurious edges are lighter.

As noted earlier, influence cascades are trees, so we mdidel in
ence cascades lytrees withk = 1, equivalent to regular balanced
trees. Network cascades, on the other hand, are modeledrbgs
with & > 1, since each node of a network cascade can have more
than one parent. Even though real cascades may be imbalaneed
have found that they are usually shallow and follow a monicton
growth pattern where the number of nodes at any depisually
increases asincreases. Hencéi-trees are a good model of the
real cascades. We will see in Section 5, that the effect o$imgs
data on the real cascades is the same as it is ok-thees.

When ak-tree cascade has missing data, we refer tosaaspled
k-tree. We usel'(p, b, h, k) to refer to ak-treel’(b, h, k) with p
fraction of its nodes observed. Each node is included inahgxed
k-tree with probabilityp, independently of other nodes.

In what follows, we derive structural propertiésl, ..., X6 of
sampledk-treesI'(p, b, h, k) as a function of the four parameters
p, b, h, andk. Some of the properties we study are important in
their own right. Others make it easier to match-tree cascade to
the target cascade, as described in Section 2. Table 1 psowaid
reference for the symbols used in the theorems and proofs.

X1: Number of nodes. We first derive an expression for the ex-
pected number of nodes in a sampled:-treel’(p, b, h, k).

THEOREM 1. The expected number of nodesin a sampled
k-treeT(p, b, h, k) is p2ra—=2.

PROOF Letn be the number of nodes in the complétéree.

By summing the geometric series we get Z bz = bh;l 1
We know thatm = n - p (expectation of blnomlal random varlable

with parametergn, p)). Thenm = pb g




X2: Number of edges.Observe that any regular tree (i.e.= 1)
has(n — 1) edges (one incoming edge per each non-root node),
while any k-tree generally has close idn — 1) edges k incom-
ing edges per each non-root node). More formally, the nurober
observed edges is given by the following theorem:
THEOREM 2. The expected number of edges in a samjted
treeI'(p, b, h, k) is equal to:
p?  b(1—bY)
b—1 ( b—1
PROOF Let Z; be the random variable representing the number
of nodes at level andW; be the random variable representing the
number of observed parents of a node at Iévélhen the number
of edges is equal tczfzo Z; - W;. By linearity of expectation,
E[X Zi - Wi = 3" E[Z; - W;]. Furthermore, sincé; is

+ kbh+1)

independent ofV; (because each node is observed independently

of other nodes)y." | E[Z; - Wi] = Y. E[Z;]E[W;]. Since
Z; is a binomial random variable with parametébs, p) and W;
is a binomial random variable with parametérain({s, k}), p),
: . . 2 _pk
E[Cl, Zi- Wil = X1y p°b' - min({i k}) = 25 (2= +
kp"t). O

X3: Number of isolated nodes.A node becomes isolated if and
only if its parents and its children are not observed. Thoglea-
rive the number of isolated nodes, let’s first derive the nemnddf
children each node has.

LEMMA 1. The expected number of children of a node at level
i(i < h) in a sampledk-tree I'(p, b, h, k) is p%, wherel =
min(k, h — 7).

PROOF Any non-leaf node at level < (h — k) has outgoing
edges to all of its descendants at the riebdvels. Hence, each non-
leaf node at level < (h— k) has the following number of outgoing

edges in the complete tre§>!_, &/ (Bl gy =t
If ¢ > (h — k), thenk > (h — 1), and accordingly, the node can

only connect to(h — 7) levels of descendants. Hence, such node

will have S-"~1 &/ = ¥"-"1=* children. Combining both cases,

a node at level in the complete tree ha’sl% children, where
! = min(k, h — ). Since each node is included in the sample inde-
pendently of other nodes with probability the expected number
of children in the sampled tree;ié%. [l

Now using Lemma 1, we can derive the expected number of iso-
lated nodes in a samplddtree:

THEOREM 3. Inasampled:-treel’(p, b, h, k) the expected num-
ber of isolated nodes is equal to:

—b

h

. bc+1
> bip(l—p) T
=0

wherel = min{i, k} ande = min{h — i, k}.

PROOF. Let Z; be the random variable representing the number
of nodes at level andW; be the indicator random variable for any
node at level, equal to 1 if all of the node’s parents and children are
not observed and 0 otherwise. The number of isolated nodlesris
S, Zi-W; and, by linearity of expectationy[S 0", Z; - W;] =
Z?:o E[Zi . WL]

For a node at level, the probability that all of its parents are
excluded from the sample {8 — p)' wherel = min{i, k}. On the

other hand, for the same node the probability that all itklcbin are
c+1_

excluded from the sample is given gy — p) R=w wherec =

min{h —1, k} (since a node at Ievélhasbcl:l;b children). Hence,

W is a Bernoulli random variable with success probability—

petl_p . . . .
H"5="_ On the other handZ; is a binomial random variable

with parametergb’, p). Noting thatZ; and W; are independent
(because parents and children of a node are at differerislane
each node is observed independently of other node$):, E[Z; -
) petlp

Wil = Ty BZ]EW] = Tl bp(l =) 7T O
X4: Number of weakly connected componentsA new weakly
connected component is formed in a sampiteee if and only if
all parents of a given node are not observed. Hence, the murhbe
weakly connected components of a samplelee is equal to the
number of roots of such tree, i.e., nodes with no incomingesdg

THEOREM 4. The expected number of connected components
of a sampled:-treeI'(p, b, h, k) is equal to:

(1 —ppp]** 1

h+l_;a
( ) _‘_{P(l—P)k%
1—-pb-—1

0
wherea = min({k, h}).

PROOF Let Z; be the random variable representing the num-
ber of nodes at level and W; be the indicator random variable
for any node at level, equal to 1 if all of the node’s parents are
not observed and 0 otherwise. The number of weakly connected
components is thelijf.;o Z; - W;. By linearity of expectation,
E[YX  Zi - Wil = Y E[Zi - W;]. Furthermore, sincé; is
independent ofV; (because parents of a given node are not among
the nodes at the current level and each node is observedeindep
dently of other nodes)y>!" | E[Z: - Wi] = S E[Z]E[W;).
Now we know thatZ; is a binomial random variable with param-
eters(b’, p) and W; is a Bernoulli random variable with success

probability (1 — p)™{*))  Hence, the number of weakly con-
h

if
if

h>k
h <k

nected components is in expectatin’_, pb'(1 — p)™n{kib),
Simplifying this expression, we obtain:
[(A—pt"™ =1 ] p(t=p)P it Ak
d—pb_1 0 it h<k
wherea = min({k,h}) O

X5: Out-degree of a non-leaf nodeThe expected out-degree of a
non-leaf node is equal to:

number of edges 8
number of nodes- number of leaves
By noticing that a node is a leaf if it has no children we detive
number of leaves in a sampléetree:

THEOREM 5. Inasampled:-treel’(p, b, h, k) the expected num-
ber of leaves is equal to:

> b'p(1—p)
=0

wherec = min{h — i, k}.

PROOF. Let Z; be the random variable representing the num-
ber of nodes at level and W; be the indicator random variable
for any node at levet, equal to 1 if all of the node’s children
are not observed and 0 otherwise. The number of leaves is then
S, Zi-W; and, by linearity of expectatioy [0, Z; - W;] =
S°F , E[Z:-Wi]. The number of children a node at levélas is in

the general form.”cbtl*" wherec = min{h—i, k}. Hence W, isa

petl_p
b—1

1

c+1_
Bernoulli random variable with success probability— p) e

On the other hand?; is a binomial random variable with parame-
ters(b’, p). SinceZ; andW; are independent (because children of
a node are not among the nodes at the current level and eaeh nod



is observed independently of other nodes), we h@é:zo E|Z; -
) petl_p
Wil = S, E[Z)EW;] = 31 bip(l—p) =1 O

1

Now, using Theorems 1, 2, 5, and assuming independence dretwe

the number of nodes, the number of edges, and the number of

leaves, we find an approximation for the out-degree of nawxes.

The approximation for an arbitrary follows from expression (1)
above. However, in the theorem that follows, we considerctse
of £ = 1 in particular, because it yields an expressiondhat

does not depend aly, as further discussed in Section 4.

THEOREM 6. The expected out-degree of a non-leaf node in a
sampledk-treeT’(p, b, h, k) for k = 1 is approximately:
pb
1-(1-p)?°
PrROOF Assuming independence between the number of nodes
the number of edges, and the number of leaves, using Thedrems
2, 5, the expected out-degree of non-leaves is equal to:

2 bh+l —b
b—1 pb

— (p(1 - ppP =ty pbh)  1—-(1-p)

ph+1_1
b—1

O

X6: Average node degree Assuming independence between the
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Figure 4: Fitting a k-tree model. Two alternative k-tree models
with respect to the observed cascade property.

one can estimate as the fraction of cascades where the root node
is observed (granted that we can identify the root of eacbachs).

"Obtaining b, h and k. Settingp to j from the previous step and
equating analytical expressions for X1-X4 to the measurgéd X
X4 onC’ yields a set of equations with 3 unknowris:h, k. For
example, ifm’ is the number of observed nodes (property X1), then
equating the expression fotr from Theorem 1 yields the following

. ~phtl_
equation;p2—1

Since the derived equations are non-linear, we cannottbjirec
solve this system. Instead, we solve for the unknowns by find-

=m.

number of nodes and the number of edges, we can derive an aping the set of parameters with the minimum sum of the squares

proximation for the average node degree:
THEOREM 7. Average node degree in a sampledree
T'(p,b, h, k) with h > k, is approximatelypk.
PROOF. The average degree of a node ik-tree can be approx-

of the errors made in solving every single equation. Spexific
if 2’ is the measured value of one property @nand z; is the
corresponding value predicted by the moBép, b, h, k), then the
squared error for that value {8’ — ;).

imated by making independence assumption between the mumbe We have experimentally observed that minimizing the eriors
of nodes and the number of edges. Then using Theorem 1 and 2this fashion gives poor results. To explain why, considguFé 4.

we get:
2 p(1—bF b(1—bF Y
el = LA BPC = SR Ue
pht+1_q phtl _ 1
b—1

If h > k, the above expression approachpés [

Whenk = 1 andh > 1, the theorem above shows that the average
node degree is proportional to

Although expressions in both Theorems 6 and 7 give approxi-
mate results, we have experimentally observed that bothesxp
sions are accurate in practice.

4. MODEL ESTIMATION

Recall from Figure 2 that we observe a sam@leof the tar-
get cascad€. We aim to estimate parameters of the samgled
treel'(p, b, h, k), such that its propertieXy, closely resemble the
propertiesX’ of the sampled cascadé. The premise is that K},
matchesX’, thenX s will match X. Here we show how we esti-
matek-tree parameters frof’ using the expressions for X1-X6
(i.e.,X%;) we derived in Section 3. We estimate model parameters
in two steps. We first obtaip and then obtaim, i, andk.

Obtaining p. For influence cascades, we use property X6, and
specifically Theorem 7, to obtain an estimate fiop. Recall that

The solid curve corresponds to the vald€o) of some property

x, e.0., the number of nodes in the cascade, as a function of the
sample ratiar. Of course, in reality we do not see this curve; we
only see the value’(c*) at the sample ratie™ used to obtairC’

(and in many cases we do not even know the valug*df Our goal

is to estimate the value af () atoc = 1. The two dashed lines
illustrate the valuer, (p) of the same property: for two k-tree
modelsl'; andT'z. Even though ap = p modelT'; fits better than

T’ (point B is closer to the solid line thad), modelT"; may be
preferred. Atc = 1 point D of I's is closer toE thanC' of T';.

In order to prefer models lik&> overT';, we should look for
models that match the’(o) curve better — more than just at the
point o o*. But how can we do this fitting when we do not
know the shape of’(c)? We can discover other points on the
x' (o) curve by further subsampling the sampled case#de

Say we re-sample the cascadewith ratea (0 < o < 1) and
evaluate the properties. The effect is the same as if we mapled
the original cascadé with sample ratex - o*. Thus by using mul-
tiple values ofo we obtain multiple points along thé (o) curve.
Eacha yields a new error term of the form(z’ (ac™) — 2),)?,
wherez, is the value predicted by a model wher= « - p. Mini-
mizing the sum of the error terms for allvalues, we fit the model
not only at a single point*, but along the whole intervdD, o™).
We found it best to generate several samples at the sgraed

for k = 1 (which is always the case for influence cascades), averagethen average the measuredvalues.

node degree is equal to the fraction of observed npdesccord-
ingly, p equals to the average node degree measuréd.on

For network cascades, on the other hand, we cannot solve ana-

lytically for p. Thus, we obtairp by other means. If the sample
ratio o used to obtairC’ is known,p = o. If o is unknown, we
estimates and setp to the estimated. For example, if we have
multiple cascade€’, all of which were obtained with the same

Figure 5 summarizes the parameter estimation procedure:

1. Subsample observed cascaldor multiple values ofe €
(0,1]. For eachw, generate multiple subsamples@fand
average measured properties X1 through X4.

2. For eacha (and fora = 1), generate an error term: the
squared difference between the measured (averaged) value
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Figure 5: Parameter estimation ofk-tree model. We subsample
the observed cascade to obtain more accurate parameters.

and the value predicted by the k-tree model (functionpf
b, h, andk).

3. Apply the least squares method (we use grid-based search)
find parameters, k, i that minimize the sum of the errors.

Influence cascadesIn-degree of non-roots in influence cascades
is always 1. So when estimating parameters for influenceadase
k is explicitly set to 1 and we only have to solve foandh.
Furthermore, we found that bettieitree models can be found by
first solving forb using X5. Specifically, we measure the out-degree
of non-leaves od’, say itisz’, and equate it to the expression from
Theorem 6 to obtaingb/(1 — (1 — p)°) = «’. Then we solve this
equation forb numerically using bisection. Having fouridesti-
mate this way, we then estimateusing X1-X4 and subsampling
as described above (X1 alone would also suffice).

Integer-valued vs. real-valued parameters. Our k-tree model
assumes integer values for all three parameters. Howeveeal
cascades nodes have varying branching faktand in-degreek,
and different leaf nodes are at different heights. Henceallosv
real valued parameters fértrees.

Real-valued parameters have natural interpretation irketuee
model. Real-valued can be interpreted as an average number of
direct children (not counting children attached via spusiedges),
e.g., ifb is 2.5, half of the nodes have 2 children and half of the
nodes have 3 children. Similarly, real-valueds interpreted as an
average in-degree of non-roots, e.g.kifs 2.5, half of the nodes
have connections from 2 closest ancestors while half haweem
tions from 3 closest ancestors. Finally, modulohofan be inter-
preted as the fraction of nodes with children at lee], e.g. ifh
is 3.5, half of the nodes at level 3 have children, while halhadt.

However, the expressions for X1-X5 do not allow non-integer
values forh and k (because bounds of summations need to be
integer-valued). To address this, we linearly interpotagefunc-
tion value between two integer values. For examplgg i f(z0)
for integerxzo andy: = f(xo + 1), then the value off (x) for
x € [zo,xo+ 1] iSyo + (x — z0) (y1 — yo). In our case we linearly
interpolate betweeyfi(h, k) and f(h + 1,k + 1) in 2 dimensions.

5. EXPERIMENTS

erties of the target cascade are similar to the propertigheok-
tree at each sample ratio? Next, we evaluate the soundnéise of
method. Specifically, do the properti&s of the completé:-tree
parameterized based 6hmatch the propertieX of the complete
target cascadé? Finally, we study the parameters of the model
itself. b, k, andh can themselves be viewed as properties of the
original cascade. Hence, we look at how weltree parameters
match the corresponding properties of the target cascdetrée
parameters match the corresponding cascade propertiegdch
parameter indeed has an intuitive meaning.

5.1 Experimental Setup

For our evaluation, we need complete target cascades. We con
sider two types of target cascades: g@)thetic cascadegenerated
on real and synthetic networks, (b) actual cascades obitéinm
Twitter and blogs which we refer to asal cascades Each com-
plete cascade, in our experiments, can actually be sampksai/a
eral ratios, not just at one ratig*, as it is the case for the target
cascade of Figure 2. Hence, in this section we refer to thepleam
ratio of the observed cascade using variahland noto™.

Synthetic cascadesSynthetic cascades are generated using an ac-
tion propagation model simulated on a given network. Theehod
takes as input a network and action sequence size, set to L2ir i
simulations, and generates an action sequence which gseicifi
fluences. We use both synthetic networks and the real netefork
Twitter users to simulate our action propagation model.

We use a variant of the Susceptible-Infected (S1) modeti@p-
monly used in studies of virus and information diffusion.rélare
the steps of the simulation. First, we select at random amodée
r with non-zero out-degree. Thenjs added to the initially empty
list of infected nodeg and all of its outgoing edgds, s) are added
to the initially empty FIFO queue of infected-susceptibbel@ pairs
S. After that, we repeat the following steps until 127 elersesft
the action sequencé are produced:

1. Remove the first paifr, s) from the queues.

2. With probability3, output an action sequence elements).
Then adds to I and add all edgeés, u) whereu ¢ Ito S.
Otherwise (i.e., with the remaining probability— ), push
(r, s) back intoS.

Our action propagation model requires a network as input. We
used two types of networks: synthetic networks and reabsoet-
work of “who follows whom” of Twitter.

Synthetic networks were generated using three network Isiode
Erdés-Rényi random graph, Scale Free random graph and Forest
Fire model [16]. We do not present results for all of them iis th
paper, but complete results for all the models can be fourilén
extended version of the paper [23]. All networks were geteera
with 10° nodes. Eréis-Rényi graph was generated with an average
degree of 10, Forest fire network was generated with parasete
py = 0.36 andp, = 0.315 (yielding average degree of 10). And
Scale Free graph was generated with power law degree disrib
exponenty = 2.0 (roughly corresponding to the power law degree
exponent of the Twitter network).

The Twitter “who follows whom” network was collected via the
Twitter APl in a breadth-first manner from June through Delsem
2009 with the set of seed user IDs taken from the public stream

In this section, we evaluate our cascade model and our methodof tweets (Twitter status updates) monitored in that perinather

for correcting for missing data in the cascades. We firstuatel

words, for every uset for which we observed a tweet, we collected

whetherk-tree cascades’ properties are affected by the missing datafriends ofu followed by their friends of friends, etc. in a breadth-

in the same way as the properties of the target cascadeshen ot

words, is there &-tree for each target cascade such that the prop-

first manner. The network we obtained has 71,804,410 nod®s an
2,040,072,198 directed edges (average degree of 28.4)ewheh
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edge corresponds to the “follows” relationship among uéérd Blog Cascades.Blog posts and links in them to other blog posts
follows B, A receivesB’s tweets). provide action sequences with explicit influence relatiddgecif-
We also consider real cascades that are constructed fraomact ically, each post with no outgoing links starts an actionusege.
sequences extracted from traces of human activity. We use Tw Suppose blogd makes a post and blogB links to posta in one
ter retweets as natural action sequences that when comwitted of its postsb, then we can infer action sequengcé, B). If blog
the Twitter network form network cascades. In addition, & a C then makes a postlinking to b, our action sequence becomes
use the action sequences of link creation between blog posts ((L, A4),(A, B), (B, C)). Accordingly, we can then construct an
naturally form influence cascades. influence cascade. @ has links to say botl andy, we arbitrarily

Retweet CascadesTweets are Twitter status update messages and Pick one of the links. In our dataset, blog posts linking toreno
retweets are re-postings of the previously posted tweets.foy  than one post in the same cascade were extremely rare (&ss th
cus on how a given URL: propagates through the Twitter social 0.01%), valldatlng our model of |nfluen_ce cascades as trees.
network by people reposting (i.e., forwarding) the origifiaeet. For our experiments, we extrgcted influence cascades frem th
We took acompleteset of tweets, collected by Topsy, for the ~Setof blog posts collected by Spinn3r between August andhev
most popular URLs posted on Twitter between June and Decem- ber 2008. This data set includes essentially a completeshoapf

ber 2009. From the set of tweets with URLS, we then extracted the English blogosphere. We considered only cascades ciri0
retweets. If usew posts a tweet with URLz, any tweet of the more nodes with the total of 100 such cascades. We did not con-

form “RT @u t”, wheret contains URLz, is a retweet ofc. For sider network cascades in the context of blogs because ithame
example, suppose user posts a tweet with URLz, then usetB explicit blog ne_twork (although implicitly created blog ta@rks
who follows A posts “RT @ z” and another usef’ who follows have been studied before [17]).

B (but may not followA) posts: “RT @4 z". This sequence of _
tweets forms an action sequenge., A), (9, B), (0, C) ). This ac- 5.2 Soundness of the trge Model _

tion sequence, combined with the network of who follows whom ~ One of the assumptions underlying our methodology is that sa
can then be used to construct a network cascade (if a nodeetstw ~ Pling (i.e., missing data) has the same effectienees as on tar-

more than once, we consider only the first retweet). get cascades. We test this assumption to validate our mettbd
Note that there is no way to tell which node influenced which demonstrate that-tree is a useful model for real cascades.
other node from retweets. Using the same example, if anatiue In this experiment we work with complete target cascades so

D retweetsA’s z andD follows both B andC' (but does notfollow @ = 1 (i.e.,C’" = C). We sample each target cascade at rates

A), then bothB and C' could have influenced. Thus to obtain 0.1,0.2,...,1.0and measure properties X1-X4 at each rate. Then

influence cascades from retweet network cascades, we aefget ~ We estimate d-tree modell'(b, h, k) as discussed in Section 2.

gle incoming edge for each node giving credit to the last g Estimated parametebsh, k are the same for all four properties.

to retweet. In our example, @ retweeted afte3, we say(C, D). Figure 6 shows a grid with 6 graphs. The top row corresponds
Although we had to drop some of the tweets due to changed andto synthetic cascades on the Twitter network and the bottmmn r

deleted usernames, our final cascades were nearly 95% demple corresponds to a retweet cascad&ach column of the grid cor-

with the experiments performed on their largest connecoetpo- responds to one of the X2—X4 properties. Consider the bottom

nents. We considered only cascades of more than 100 nodes wit 7

the total of 250 such cascades.

We estimate model parameters for each real cascade inilyidu
so we are showing results for only one cascade as an example.
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rightmost graph for a single retweet network cascade ancbits

We reconstruct the following cascade properties: (1) nurobe

responding influence cascade. The dark dashed curve shows Xodes, (2) number of edges, (3) width, which is defined as tre m

(number of weakly connected components) measured on the net
work cascade as a function of subsample rateThe dark solid
curve shows analytically calculated X4 for the network ecalsts
k-tree model as a function ef. Similarly, the light dashed curve

imum number of nodes at any depth/level [5], and (4) paridgm,
which is defined as the number of non-leaf nodes [5].

Figure 7 shows a grid of 12 plots. The top row corresponds
to blog cascades, the middle row corresponds to retweeteimtki

shows X4 measured on the influence cascade and the light solidcascades, and the bottom row corresponds to retweet netasrk

curve shows analytically calculated X4 for istree model. Ob-
serve that the model predicts the actual values fairly well.

Now consider the top row. Here, for the target influence ard ne
work cascades, each measured property value at each satele r
is an average across 1000 synthetic cascades simulatee Gwith
ter network (all of the same size). Accordingly, theéree models
for both influence and network cascades are fitted to the geearfa
measured values. Again, the fits are fairly close.

cades. Each column corresponds to one of the four propeTies
results are averaged across 250 retweet and 100 blog cagtiaele
results for synthetic cascades are similar to those predédwre).

For example, consider the top leftmost graph for the number o
nodes measured on blog cascades. :Sgythe number of nodes in
C, 2/(o) is the number of nodes i@’ obtained with sample ratio
o and zys is the number of nodes in thietree model estimated
from C’. The relative error of thé-tree model estimate at sample

Note that the model curves in each row correspond to the sameratio o is thené = 24=2l shown by a dark curve in the plots

k-tree (estimated for either network or influence targetadsy so
the curves in each graph were not fitted individually. Yetdhe-
lytical model values match closely the measured valuesl|fthe
properties. Although we do not present results here, the sdose
fit for all properties, including X1, was observed for syribeas-
cades simulated on synthetic graphs and real cascadesubest
from blogs. More importantly, we performed the same expenim
with cascade properties that are not explicitly fitted (esige of the
largest weakly connected component) and found similaredibs.
Overall, we conclude thdor every target cascade there igcetree
model such that their properties are alike at each sample rat

5.3 Estimating Target Cascade Properties

Next, we evaluate to what degree do the properties of the es-
timated k-tree model approximate the properties of the complete
target cascade.

(k-tree model may differ at each). Similarly, the relative error of

the observed value at sample ratids ¢’ = M shown by a
light curve in the plots. As expected, the light curve is aigtnt line
because the observed cascade size, and its relative arfimear
with .

In all of the plots of Figure 7, except for the width on retweet
influence cascades, the error of the estimated propertiestter
than the error of the observed properties for almostalalues.
In general, with 70% or less of the target cascéd®ur method
provides a significantly better estimate®@$ properties than what
is observed oi€’. However, fore > 0.9, our method does worse
than working withC’ directly and ignoring the missing data. This
suggests that if estimated sample ratie high, one is better off
measuring properties aff directly. But, of course, most proper-
ties are not perturbed by missing data at such such higalues
and one would not bother to correct for missing data in susk.ca



Network Cascade Influence Cascade Spurious Edges No Spurious Edges
estimated| observed|| estimated| observed estimated| observed|| estimated| observed
error €) | error¢’) || error €) | error ¢) error ¢) | error ¢’) || error €) | error ¢)
P - - 0.02 - D - - 0.02 -
b 0.03 0.29 0.03 0.32 b 0.03 0.86 0.02 0.31
k 0.14 0.21 - - k 0.02 0.43 - -
h 0.00 0.39 0.00 0.46 h 0.05 0.66 0.10 0.43
Table 2: Relative errors for estimated and observed parametrs Table 3: Relative errors for estimated and observed paramegrs
averaged over synthetic cascades on Twitter networks™ = 0.5 for k-trees with 127 nodesh ~ Normal(2,1),k = 3.5,0" = 0.5

Distortions due to missing data become a bigger issue atrlewe
values and this is where our method is most effective andfsign
icantly outperforms measurements madeCén 20-30% relative
error is especially encouraging for such low values @fs 0.1. ST s (o) —b]
As seen in the rightmost plot of the second row of Figure 7, our ¢ = & ande’ = =—5——.

method performs poorly on the width of retweet influence adss. Performance on synthetic cascaded/Ve generated synthetic cas-
We found that while blog influence cascades are mostly shallo cades on synthetic networks and Twitter network. Due to espac
balanced trees (star-shaped), retweet influence cascesEslrle constraints we show results here only for Twitter netwohe te-

direct, as in the previous experiment, we use relative ef@nd
e’. For example, ib* is the true value of branching factdrjs its
estimate, and’(o) is the observed value at sample ratipthen

more imbalanced trees, possibly because they were ailtifigen- sults for other networks are similar to the ones we preserd. he
erated from the network cascades. This is the reason weelie Synthetic cascades were generated with 127 nodes each toith a
are unable to estimate well the width of retweet influenceadss. tal of 1000 cascades simulated on each network.

Finally, observe that while the number of nodes and edgesxare Table 2 shows results averaged over all simulations on &witt
plicitly fitted during parameter estimation, participatiand width network with sampled cascadé€$ at o = 0.5. Each row cor-
are not fitted. Yet, our model predicts these propertiet/faiell. responds to one of the four parameters. There are two sets of

. columns, one for the network cascades and one for the inuenc

5.4 Estimated vs. Observed Parameters cascades. Each set has two columns: the left one corresponds

Parameters of the-tree model can themselves be viewed as cas- the estimated erraf (with respect to one of the four parameters),
cade properties. For example, paraméteraturally maps to the the right one corresponds to the observed etfoNote that we are
average node in-degree in a cascade. We next evaluate hdw welnot showing the observed error fpbecause this parameter cannot
the model parameters match the corresponding cascadefigepe  be directly measured from observed data. Also we cannoy@anal

As described in Section 3 accounts for the spurious edges ically estimatep for network cascades, so we omit values &

(k — 1 spurious edges per node), whilandh are branching factor estimated error for network cascades.

and height of the tree, respectively, without the spuriaiges. A Observe that the errors of the estimated parameters aréovery
network cascade is essentially an influence cascade witiiospgu almost all below 5%. Contrast them with 20-40% errors for ob-
edges. Accordingly, if a network cascade has a correspgridin served parameters. Finally, note how accurately we ardabiéer
fluence cascade (which is always the case, given our expetdine  p for influence cascades. This demonstrates the effectiserie&6
settings),p, b and h values must be the same for both cascades. as an estimate of.

Becausek is trivially 1 for influence cascades, the estimated pa-  Recall that both influence and network cascades, in oungetti

rameterk is specific to a network cascade. are constructed from the same action sequence. Accordinghd
Now let’s define how model parameters map to cascade proper-h are the same for the network and influence cascades, assiscus
ties. p corresponds to the sample ratioof C’, so we say thérue above. Interestingly enough, although model parameteradt
value ofp is 0. Forb, h, andk, the true value of each will be its  work and influence cascades are estimated independerglgsth
corresponding property value measuredCorThe true value ob timated errors fob and h are low in both cases. Hence, similar

is the average out-degree of non-leaves in the influenceadasc b andh values are predicted for both influence and network cas-
The true value of is the average weighted depth over all leaves cades. This is yet another strength of our method: we aretable
of the influence cascade. The weight of each leaf is the nuofber detect close similarity between the equivalent network isfid-

its descendants at the max level of the tree had the tree taden b ence cascades.

anced (consistent with real-valuédn Section 4). Finally, the true  Robustness of parameter estimationFinally, we test the robust-
value of k is the average in-degree of non-roots. Recall that we ness of parameter estimation. By generating and samplingee

only considerk for network cascades. ) cascade with constant integgrh, k parameters and sample ra-

To have a baseline when comparing estimated parameters to th tio, we experimentally verified that we can match all pararet
true ones, we also measure properties correspondibgitandk precisely € = 0 for all parameters). So we added variance to
onC’. We will refer to these measured properties asltserved  parameteb and used real-valued Specifically, we generated cas-
parameters. Observed parameters are defined similarly g cades with 127 nodes,~ Gaussiaf2, 1) andk = 3.5 (sinceb is
ones but unlike the true parameters these are measur€d @ giochastic, the actual height varied). All cascadeeere generated
opposed td °. For example, observeldis defined as the average 1000 times and sampled to obtalhwith o = 0.5.
out-degree of non-leaves measured’on Table 3 shows the results. The table is similar to Table 2 with

In this experiment, the goal is to compare estimated model pa the two sets of columns referring to cascades with and witti
rameters to the true parameters. As a baseline, we also cefyea ~ spurious edges instead of network and influence cascadpecre
observed parameters to the true parameters. To make cempari tjvely. Although we added variance to the branching facted a

2We cannot assume to have access to both influence and network!Sed a real-valued, the estimated parameters have a very small
cascades, so the parameters are measured on whétewer are error with respect to the true values. This result demotestréne
given (either network or influence). robustness of our parameter estimation.
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