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ABSTRACT
Abusive behavior in online retail websites and communities threat-

ens the experience of regular community members. Such behavior

often takes place within a complex, dynamic, and large-scale net-

work of users interacting with items. Detecting abuse is challenging

due to the scarcity of labeled abuse instances and complexity of com-

bining temporal and network patterns while operating at a massive

scale. Previous approaches to dynamic graph modeling either do

not scale, do not effectively generalize from a few labeled instances,

or compromise performance for scalability. Here we present BiDyn,

a general method to detect abusive behavior in dynamic bipartite

networks at scale, while generalizing from limited training labels.

BiDyn develops an efficient hybrid RNN-GNN architecture trained

via a novel stacked ensemble training scheme. We also propose

a novel pre-training framework for dynamic graphs that helps to

achieve superior performance at scale. Our approach outperforms

recent large-scale dynamic graph baselines in an abuse classifica-

tion task by up to 14% AUROC while requiring 10x less memory

per training batch in both open and proprietary datasets.
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1 INTRODUCTION
Detecting abuse is an important problem in online social com-

munities and e-commerce websites. In online social communities

(such as Reddit or Wikipedia), propagating misinformation, trolling,

and using offensive language are considered as abuse [5, 19]. In
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e-commerce websites, abuse consists of fradulent activities such

as artificially raising the search ranking of an item via fake re-

views or purchases [19]. Such abusive behavior reduces user trust,

engagement, and satisfaction.

The online activity of abusive users tends to have significantly

different interaction patterns compared to genuine users. For exam-

ple, in e-commerce websites, abusive customers’ engagement with

items (e.g., daily clicks or purchases) follows fluctuating patterns

[2]. Similar patterns are observed in online forums, where abusive

users target a small set of articles by posting harmful comments

[5]. In the above scenarios, an accurate machine learning approach

is required to model the structural and temporal dynamics of users.

There are three major challenges in detecting abuse in real-

world applications. (1) Abuse in online communities or e-commerce

websites manifests itself over time, giving rise to dynamic graph
structure. Common abusive behaviors, such as continuously click-

ing on an item to boost its ranking, and offering such fraudulent

services to several abusive items [19], involve both temporal and

graph-structured aspects of the data. Thus, it is crucial to effectively

combine both sources of information. (2) The real-world abuse de-

tection problem in industry requires training and prediction on

extremely large-scale graph datasets containing hundreds of mil-

lions of nodes and edges [27]. (3) It is prohibitively costly to obtain

human annotated labels for abusive users to train abuse detection

models, and this difficulty is compounded by the rarity of abusive

behavior [1]. Hence, the model should be able to learn from a very

small amount of annotated data.

There is a plethora of existing work on dynamic graph mod-

els [7, 13, 20, 22, 26]. However, the challenge is to combine the

information at scale while maintaining model performance. For

instance, dynamic graph modeling methods that model the full

interrelationships between users and items incur great runtime

costs, limiting them to small datasets [7]. Another line of work

based on graph neural networks (GNNs) [1, 17, 26] is limited to

shallow networks due to the exponential memory cost of increasing

model depth with minibatch training. On the other hand, scalable

graph modeling techniques based on random walk propagation

[12] are able to efficiently handle large-scale graphs, but they do

not capture dynamic edge feature information and therefore cannot

be extended to dynamic graph settings.

In this paper, we address the above challenges and propose a

novel dynamic graph model BiDyn focused on abuse detection.
1

We apply our work to a large e-commerce dataset as well as to

public datasets. Our work has the following components:

1
Project website with data and code: http://snap.stanford.edu/bidyn
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Joint modeling of time and graph information: We intro-

duce an efficient neural architecture for dynamic graph data on

massive graphs called BiDyn (Bipartite Dynamic Representations).

BiDyn can handle both static and dynamic features via recurrent

(RNN) and graph neural network (GNN) modules. We propose com-

pact feature representations and minibatching practices to ensure

low memory usage, and set aggregations to handle simultaneous

events in a dynamic graph. We outperform the most recent dynamic

graph baselines (TGAT and JODIE) by up to 14% in AUROC on an

abuse classification task in both open and proprietary datasets.

Scalable training scheme:We introduce a scalable alternating

training scheme for our model that is applicable to general node

classification on dynamic bipartite graphs (Figure 1). The training

scheme evolves node embeddings by training on user and item

nodes in alternating optimization rounds. Training on one class

of nodes at a time allows for training of deep non-linear GNNs

without the memory expense of end-to-end training. Our novel

training scheme makes our model 10Xmore memory-efficient than

popular baselines, making training of deeper models feasible, thus

leading to significant performance gains.

Self-supervised pretraining framework:We tackle the prob-

lem of label sparsity by leveraging inductive biases from domain

knowledge. We propose a memory-efficient, self-supervised pre-

training task that simultaneously combines sequence and graph

autoencoder objectives, allowing the model to generalize from lim-

ited training labels. We demonstrate that this task provides an initial

separation of abusive and normal nodes before the main training

stage, providing a significant performance boost.

The rest of the paper is organized as follows. We summarize

the related work in Section 2. We define our problem and notation

in Section 3. We also provide a motivating analysis for our model,

via observations from a subsampled e-commerce dataset in this

section. Our model along with a scalable training mechanism and

pretraining routines is described in Section 4. We provide extensive

empirical evidence demonstrating the practical use of our method

in the presence of a) large datasets and b) label sparsity when

compared to several baselines on multiple datasets in Section 5. We

explain practical deployment strategies in Section 6.

2 RELATEDWORK
Dynamic graph modeling. General machine learning models

have been introduced for dynamic graph data [7, 13, 17, 20, 22, 26].

However, due to the high number of events associated with each

node compared to static graphs, dynamic graph models suffer from

high memory requirements needed to maintain a wide receptive

field in both time and graph. Existing models either do not scale to

large graphs [7] or make concessions by not propagating gradients

back in time [13, 20], or by using a very small receptive field in

large graphs [22, 26]. As a result, existing models either cannot be

applied to large-scale graphs, or are limited to short-term predic-

tions [13, 20]. In contrast, BiDyn models node behavior considering

a long time range and large number of interactions (edges), crucial

for high performance in abuse detection.

Scalable graph neural networks. A number of scalable static

graph neural network methods have been proposed [12, 24, 25,

27]. Such methods decouple model depth from receptive field size,

Figure 1: BiDyn iteratively learns embeddings through al-
ternating item and user updates. In the item round, a graph
convolution is applied to each item’s neighbors. In the user
round, a recurrent neural network is applied to each user’s
neighbors. This training scheme improves efficiency by 10x
over popular baselines, and allows BiDyn to run on datasets
with more than 100M edges.

by either removing nonlinearities between model layers [24] or

using random walks to propagate messages over long distances

[12, 27]. These techniques reduce the runtime and memory usage

of the models. However, removing nonlinearities also reduces the

expressiveness of the model, potentially reducing performance for

complex tasks. Furthermore, unlike previous works, BiDyn extends

scalable static GNNs to the dynamic graph setting.

Anomaly detection. Unsupervised approaches have been intro-

duced for detecting anomalous behavior both for static [2, 14, 15, 19]

and dynamic [3, 28, 30] graphs. A general principle for anomaly

detection is to look for nodes whose behavior has low probability

compared to normal behavior [4]. Such methods circumvent the

need to collect expensive ground truth labels, but are limited to

detecting specific behaviors from prior knowledge. This strategy

is fundamentally hard for detecting abuse, since a shrewd abuser

will look to “blend in" with normal users [1], making unsupervised

anomaly detection methods perform poorly. BiDyn demonstrates

that combining scalable pretraining and supervised fine-tuning

effectively incorporates inductive bias from this probabilistic ap-

proach while also making use of supervised training labels.

3 ABUSE DETECTION PROBLEM
We first introduce our problem setup and the model architecture.

We further demonstrate an efficient training algorithm to scale to

large-scale graph datasets. Finally, we use pretraining to improve

performance in rare-label scenarios, crucial for abuse detection.

3.1 Problem Setup and Notation
Throughout, let [𝑥1, . . . , 𝑥𝑛] represent an ordered sequence and ;

denote concatenation of vectors. We consider dynamic bipartite

graphs 𝐺 = (𝑉 , 𝐸, 𝑓 , 𝑔, ℎ) with nodes representing users 𝐴 ⊂ 𝑉

and items 𝐵 ⊂ 𝑉 (𝐴 ∪ 𝐵 = 𝑉 ,𝐴 ∩ 𝐵 = ∅), and timestamped edges

between them, of the form (𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 , 𝑡 ∈ R) ∈ 𝐸, where 𝑡 is
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(a) Temporal signals of abuse. (b) Graph signals of abuse.

Figure 2: (a) Degree of abusive and non-abusive users in the
e-commerce network as a function of time. Abusive users
(red) havemore fluctuating activity levels than normal users
(blue), which remain relatively constant. (b) Abusive nodes
in the e-commerce network have systematically lower log-
probability than normal nodes under a graph autoencoder
model.

the timestamp, and 𝑢 ∈ 𝐴 iff 𝑣 ∈ 𝐵. Note that 𝐸 may be a multiset

if there are co-occurring events between two nodes. The graph is

considered to be undirected ((𝑢, 𝑣, 𝑡) ∈ 𝐸 iff (𝑣,𝑢, 𝑡) ∈ 𝐸)). We also

assume without loss of generality that all timestamps occur in a

time interval [0,𝑇𝑚𝑎𝑥 ]. Let 𝑁 (𝑢) = {(𝑢 ′, 𝑣, 𝑡) ∈ 𝐸 |𝑢 ′ = 𝑢} denote
the set of temporal neighbors of node 𝑢, also referred to as 𝑢’s

events. Let𝑤 (𝑢, 𝑣) denote the “weight” of the static edge between
𝑢 and 𝑣 , defined by the number of events that occur between them,

𝑤 (𝑢, 𝑣) = |{(𝑢 ′, 𝑣 ′, 𝑡) ∈ 𝐸 |𝑢 = 𝑢 ′, 𝑣 = 𝑣 ′}|. Nodes and edges may

contain arbitrary feature vectors; let 𝑓 (𝑣) ∈ R𝑑 denote the features

of a user or item node 𝑣 , and 𝑔(𝑢, 𝑣, 𝑡) ∈ R𝑑𝑒 denote the features

of edge (𝑢, 𝑣, 𝑡). The goal is to predict the binary label 𝑦𝑣 ∈ {0, 1}
of each user 𝑣 ∈ 𝐴. We consider a transductive setup in which a

subset of the user labels are visible during training, and the goal is

to predict the labels of the remaining nodes in the graph.

3.2 Motivating Analysis
Due to the challenges outlined in the previous section for detecting

abusive behavior, it is important we understand the ways in which

it manifests itself in real-world datasets. We first perform an ob-

servational study of such behavior on an anonymized e-commerce

network dataset. The analysis provides insights to building an ef-

fective model for abuse detection.

Dynamic graph information. Time series information is impor-

tant in modeling abuse in the e-commerce domain. Figure 2(a)

shows the degree (a proxy for amount of activity) on each day for

both normal (blue) and abusive (red) nodes. We see that the abusive

nodes fluctuate much more than normal nodes – this “bursty behav-

ior" distinguishes normal and abusive nodes. Furthermore, we see

that it’s important to model the whole sequence of events, taking

the event ordering into account: as shown in Appendix Table 6, an

LSTM model that uses the event sequence to predict the node label

outperforms a model that predicts the node label based on statistics

about the distribution of purchase counts (i.e. ignoring time order,

as in a purely graph-based approach).

Table 1 shows that abusive actors tend to interact with each

other, suggesting that trustworthiness propagates between nearby

Graph statistic Abusive Normal

% abusive neighbors (users) ∼ 1 ∼ 0.3

% abusive neighbors (items) ∼ 1.75 ∼ 1.5

Degree centrality 1.4 ∗ 10−4 2.1 ∗ 10−5
Table 1: High level statistics of the e-commerce network.We
see that there’s homophily in the data: abusive nodes tend to
associate more with other abusive nodes, and also see more
activity.

nodes. Additionally, abusive nodes also tend to have high activity,

with higher centrality in the network. Homophily and structural

information about a node’s local neighborhood are thus important

features of abuse [1], which can be leveraged via transductive graph

models.

Unsupervised modeling of user behavior. Both temporal and

graph models of user behavior reveal differences between abusive

and non-abusive nodes. In a toy experiment, here we use unsu-

pervised models to provide evidence for the importance of graph

structure and temporal information.

• Abusive nodes have unpredictable event sequences: We use

an RNN autoencoder to reconstruct a given item’s purchase

counts for each day in the dataset. The reconstruction error (MSE)

is significantly higher for abusive items, and predicting the abuse

label solely based on the reconstruction error achieves 0.6 AU-

ROC. Hence, the temporal behavior of nodes themselves provides

important information about potential abusive behaviors.

• Abusive nodes have lower likelihoodunder generativemodel:
We use a graph variational autoencoder [10] to reconstruct the

(static) graph, ignoring all temporal information. Given the static

adjacency matrix𝑀 (𝑀𝑖 𝑗 = 1 if ∃𝑡 : (𝑖, 𝑗, 𝑡) ∈ 𝐸 else 0), the model

learns an embedding vector 𝑧𝑖 ∈ R𝑑 for each node such that the

probability of each user node 𝑢 ∈ 𝐴’s connections is given by:

𝑃 (𝑢) :=
∏
𝑗 ∈𝐵

𝑝 (𝑀𝑖 𝑗 |𝑧𝑖 , 𝑧 𝑗 ), with 𝑝 (𝑀𝑖 𝑗 = 1|𝑧𝑖 , 𝑧 𝑗 ) = 𝜎 (𝑧𝑇𝑖 𝑧 𝑗 ), (1)

where 𝜎 is the logistic sigmoid function. We observe that the

probability assigned by the generative model is significantly

lower for abusive nodes than regular nodes (p < 0.001), as shown

in Figure 2(b). Hence, a likelihood model of all nodes in the graph

provides a valuable way to distinguish anomalous nodes.

3.3 Design Choices
The observations in Section 3.2 provide insights into important

components of an abuse detection model, which we take as design

choices for our model. The model should (1) combine modules

which consider the temporal and the graph nature of the interaction

data; (2) use a pretraining objective to model whether nodes are

anomalous in their time or graph behavior, so that anomalous nodes

can be automatically identified by the model even with limited

training data. Next we develop a scalable model that satisfies these

conditions.
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4 PROPOSED METHOD: BIDYN (BIPARTITE
DYNAMIC REPRESENTATIONS)

BiDyn can be viewed as a stacked ensemble learning method [23]

for transductive learning on dynamic graphs, achieving high perfor-

mance by layering many copies of a core architecture and training

them efficiently. The core of the model is a streamlined architec-

ture combining recurrent and graph neural network components

to model time and graph information. Importantly, we introduce

a scalable training scheme for this model that enables training of

the core model on large real-world graphs while maintaining a

wide receptive field. Finally, we introduce a pretraining framework

within this training scheme that allows incorporation of prior do-

main knowledge to tackle label sparsity. We develop an efficient

dynamic graph modeling task that is particularly suited to detect-

ing abuse and other rare events. The architecture, training method

and pretraining framework combine to form a scalable, powerful

method for detecting abuse in production-scale dynamic networks.

4.1 Core Model Architecture
BiDyn consists of a Recurrent Neural Network (RNN) phase, fol-

lowed by a Graph Neural Network (GNN) phase. We process the

time and graph information through these separate components

in order to allow each component to receive tailored representa-

tions of each information source. In particular, in the RNN phase,

we aggregate co-occurring events to obtain a sequence of event

counts over time, resulting in a highly memory-efficient node fea-

ture representation that can also capture bursty behavior. In the

GNN phase, we aggregate neighbors of a node regardless of their

interaction times, allowing the model to capture homophily effects

and enabling memory-efficient batching by subsampling from a

node’s set of neighbors at every layer.

RNN phase. In the RNN phase, an RNN is applied to each node;

a separate RNN is used for each node type. In the bipartite graph

setting, we use RNN𝐴 to denote the RNN component for users and

RNN𝐵 for items. Each RNN receives as input an encoding of the

sequence of neighbors 𝑁 (𝑢) of the given node 𝑢, in time order. In

particular, for a given node 𝑢, it receives a sequence

[𝑓 (𝑣1);𝑔(𝑢, 𝑣1, 𝑡1);𝜙 (𝑡1), . . . , 𝑓 (𝑣𝑘 );𝑔(𝑢, 𝑣𝑘 , 𝑡𝑘 );𝜙 (𝑡𝑘 )] (2)

for each (𝑢, 𝑣𝑖 , 𝑡𝑖 ) ∈ 𝑁 (𝑢), where 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑘 . Here 𝜙 (𝑡𝑖 ) :
R→ R𝐷time

is a sinusoidal encoding of the timestamp [21], defined

per entry by

𝜙2𝑗 (𝑡𝑖 ) = sin( 100
𝑇𝑚𝑎𝑥

𝑡𝑖/100002𝑖/𝐷time ),

𝜙2𝑗+1 (𝑡𝑖 ) = cos( 100
𝑇𝑚𝑎𝑥

𝑡𝑖/100002𝑖/𝐷time ), (3)

where 𝐷time is the dimension of the encoding. The last hidden state

of the RNN is concatenated with 𝑢’s features 𝑓 (𝑢) to produce an

RNNoutputℎ0𝑢 := (RNN𝐴(u); f(u)) for users𝑢 ∈ 𝐴 and (RNN𝐵 (u); f(u))

for items 𝑢 ∈ 𝐵. We use a 2-layer LSTM [9] as the RNN architecture

due to its best performance in handling long-range dependencies.

GNNphase. In the GNN phase, the per-node outputs from the RNN

phase are propagated throughout the static network to generate

a prediction for each node. To compute the prediction for node 𝑢,

we first compute its embedding by applying multiple GNN layers

to the RNN outputs ℎ0𝑢 , which are used as the initial node features

to the GNN. To get from the embedding ℎ𝑙𝑢 at GNN layer 𝑙 to the

embedding ℎ𝑙+1𝑢 at layer 𝑙 + 1, we apply a modification of SAGE

convolution [8] that incorporates edge weights, setting

𝑚𝑙
𝑣,𝑢 = ReLU(𝑊 𝑙

𝑚𝑠𝑔 (ℎ𝑙𝑣 ;𝑤 (𝑢, 𝑣)))

ℎ𝑙+1𝑢 = ReLU

©«𝑊 𝑙

ℎ𝑙𝑢 ;
∑

(𝑢,𝑣,𝑡 ) ∈𝑁 (𝑢)
𝑚𝑙

𝑣,𝑢

ª®¬ . (4)

The final embeddings ℎ𝐿𝑢 are then fed through a logistic regression

classifier to produce the predicted abuse probability and predicted

label 𝑦𝑢 . To enable the model to fit in GPU memory, we use mini-

batching with random neighbor sampling in the GNN phase: at

each layer, instead of considering the full set 𝑁 (𝑢) of neighbors
in the aggregation function, we subsample up to 𝐷 elements from

𝑁 (𝑢) uniformly at random.

Extension to coarse-grained timestamps. Inmany settings, events

are timestamped on a coarse-grained scale, such as to the nearest

day. Subsequently, many events have identical timestamps. For ex-

ample, multiple users interact with an item on a single day, and the

exact sequence in which these users interacted with the item is not

known. BiDyn makes sure that the order in which simultaneous

events are fed to the RNN does not affect the final model output.

We propose an extension to our RNN to make our model in-

variant to reordering of simultaneous events. For a given node

𝑢, the RNN will receive a sequence [Agg(𝑆0), . . . ,Agg(𝑆𝑇𝑚𝑎𝑥
)] of

length 𝑇𝑚𝑎𝑥 as input, where Agg is a permutation-invariant func-

tion and 𝑆𝑡 = {𝑣 | (𝑢 ′, 𝑣, 𝑡 ′) ∈ 𝐸, 𝑡 ′ = 𝑡,𝑢 ′ = 𝑢} is the (multi)set of 𝑢’s

neighbors at time 𝑡 . We use the aggregation function Agg(𝑆𝑡 ) =
( 1

|𝑆𝑡 |
∑

𝑣∈𝑆𝑡 (𝑓 (𝑣);𝑔(𝑢, 𝑣, 𝑡)); |𝑆𝑡 |), concatenating themean node and

edge features with the number of events on each day, since we find

that the mean generalizes better than more complex approaches

such as DeepSets [29], while we found that the number of events is

a useful feature for detecting burstiness. Note that the choice ofAgg

is the degree-scaling used in principal neighborhood aggregation

[6] to better distinguish neighborhoods with similar features. We

adopt this aggregation scheme when testing the core architecture

on large datasets (e-commerce) in the experiments (RNN-GNN),

which proves to be effective and memory efficient.

4.2 Scalable Training
While our core architecture is an effective dynamic network model,

as we demonstrate in the experiments, it suffers from high memory

usage when performing minibatch training on large datasets
1
, since

memory usage has complexity 𝑂 (𝐷𝐿) with increasing number of

GNN layers 𝐿, where 𝐷 is the maximum number of neighbors sub-

sampled at each layer during minibatching. The dynamic graph

setting further compounds this memory problem. First, since tem-

poral edges often represent interactions such as edits, clicks or

purchases, the fanout 𝐷 is often very large (order of hundreds). Sec-

ond, prepending an RNN module to the GNN further exacerbates

the memory cost of backpropagation, in practice limiting 𝐿 to be 1

or 2 in order for the model to fit within a GPU minibatch. These

difficulties combine to make training the core model in a standard

end-to-end fashion impractical for large-scale, real-world networks.

1
Existing alternatives to minibatching, such as SIGN [18], cannot be applied due to

the dynamic RNN component.
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Algorithm 1 Alternating training of users and items

1: 𝑋 ∈ R |𝑉 |×𝑑 is node embedding matrix with rows 𝑥𝑢 (∀𝑢 ∈ 𝑉 )

2: 𝑥𝑢 ← 0,∀𝑢 ∈ 𝑉
3: while stopping condition not reached do
4: for all 𝑢 ∈ 𝐴 do ⊲ User round

5: Clear gradients

6: Let 𝑘 = |𝑁 (𝑢) |, {(𝑢, 𝑣𝑖 , 𝑡𝑖 )} = 𝑁 (𝑢) where 𝑡1 ≤ . . . ≤ 𝑡𝑘
7: 𝑥𝑢 ← RNN1 ( [𝑓 (𝑣1);𝑔(𝑢, 𝑣1, 𝑡1);𝜙 (𝑡1);𝑥𝑣1 , . . . ,
8: 𝑓 (𝑣𝑘 );𝑔(𝑢, 𝑣𝑘 , 𝑡𝑘 );𝜙 (𝑡𝑘 );𝑥𝑣𝑘 ])
9: 𝐿 ← CrossEntropy(LogisticRegression(𝑥𝑢 ), 𝑦𝑢 )
10: Backpropagate 𝐿

11: end for
12: for all 𝑢 ∈ 𝐵 do ⊲ Item round

13: 𝑥𝑢 ← Convolve(𝑢, 𝑁 (𝑢), 𝑋 )
14: end for
15: end while
16: return 𝑋

We tackle this difficulty by introducing an alternative training

scheme that iteratively updates node embeddings by stacking mul-

tiple copies of the core architecture, circumventing end-to-end

training. We (1) extend the core architecture to a deep model that

alternates between the RNN and graph convolution layers, and (2)

train this model one layer at a time. Although training is no-longer

end-to-end, it makes training of a much deeper model possible,

which in practice results in significant performance improvement.

Figure 1 shows the flow of information through the model.

Throughout training, BiDyn maintains a table of current embed-

dings of all nodes, 𝑥𝑢 ∈ R𝑑 , and alternates between updating user

and item embeddings, as shown in Algorithm 1.

User round. In the user round (left component of Figure 1), the

RNN phase is applied to generate updated user embeddings, which

are saved back to the table and trained on the prediction task to

update the RNN and logistic regression weights. With each event

fed into the RNN, we concatenate the embedding of the associated

item. Hence, the updated embedding of user 𝑢 ∈ 𝐴 is computed as

𝑥𝑢 = RNN1 ( [𝑓 (𝑣1);𝑔(𝑢, 𝑣1, 𝑡1);𝜙 (𝑡1);𝑥𝑣1 , . . . ,
𝑓 (𝑣𝑘 );𝑔(𝑢, 𝑣𝑘 , 𝑡𝑘 );𝜙 (𝑡𝑘 );𝑥𝑣𝑘 ]), (5)

a function of the sequence of node and edge features, time encoding

and node embedding for each event. The user embeddings are fed

into a logistic regression layer to compute the final abuse prediction

for each user. The RNN is trained by backpropagating from the

predicted abuse scores (dotted line in Figure 1). We apply the RNN

in the user round since users were observed to be the source of

bursty behavior (Figure 2(a)).

Item round. In the item round (right component of Figure 1), a

graph convolution (i.e. a layer from the GNN phase) is applied to

generate updated item embeddings by propagating the neighboring

user embeddings. Hence, the updated embedding of item 𝑢 ∈ 𝐵 is

computed as

𝑥𝑢 = Convolve(𝑢, 𝑁 (𝑢), 𝑋 ) (6)

for some graph convolution layer Convolve.

In summary, each round improves either the user or item em-

beddings using the updated embeddings from the previous round.

GNN BiDyn APPNP-I

Memory usage per batch 𝑂 (𝐷𝐿) 𝑂 (𝐷) 𝑂 (1)
Receptive field radius 𝐿 𝐿 𝐿

Number of nonlinearities 𝑂 (𝐿) 𝑂 (𝐿) 0

Table 2: The scalable training scheme of BiDyn is memory-
efficient, with memory cost for each training batch compa-
rable to that of a scalable static GNN, APPNP-I. Simultane-
ously, it is capable of a wide receptive field and deep net-
work, enabling high performance. Here 𝐷 is the maximum
number of neighbors subsampled at each layer during mini-
batching, and 𝐿 is the number of layers in the model.

This mutually recursive relationship ensures that the embeddings

continually improve over time. Finally, the process terminates when

a stopping condition for training is reached; in our experiments,

we train for a fixed number of training rounds, then evaluate the

model with lowest validation loss.

Graph convolutionwithout learnable parameters. Since there
is no gradient flow between the user and item round, we opt to

simplify the GNN convolution layer in the item round to a layer

without learnable parameters, while the user round uses a learnable

RNN to characterize user preferences through aggregation of items

over time. Fixed graph convolutions have been shown to be effective

in recent simplified graph neural network methods [12, 24]. In the

spirit of these methods, we divide the separate roles of traditional

graph convolution operations into separate model components,

using a fixed convolution operation to widen the receptive field of

the model, and successive applications of the RNN component to

increase the neural network depth. Hence, we define

Convolve(𝑢, 𝑁 (𝑢), 𝑋 ) = 𝛼𝑥𝑢 + (1 − 𝛼)
∑

𝑣∈𝑁 (𝑢)
𝑥𝑣, (7)

a sum aggregation with running average update. The use of sum

aggregation can be viewed as a multi-dimensional version of the up-

date step of the HITS algorithm for identifying trustworthy nodes

in a network [11]. We demonstrate in the experiments that sum

aggregation performs better than more complex alternatives, such

as autoencoders, while also being much more efficient. We also

compare against mean aggregation, which performs better in some

cases, in the experiments. The hyperparameter 𝛼 ∈ [0, 1] controls
the rate of diffusion of information throughout the network; thus, a

high 𝛼 will more heavily prioritize nodes closer to 𝑢, better preserv-

ing the local neighborhood. We also design a convolution operation

in the setting with coarse-grained timestamps:

Convolve(𝑢, 𝑁 (𝑢), 𝑋 ) = 𝛼𝑥𝑢 + (1−𝛼)
1

|𝑁 (𝑢) |

𝑇max∑
𝑡=0

1

|𝑆𝑡 |
∑
𝑣∈𝑆𝑡

𝑥𝑣 (8)

with the 𝛼 and 𝑆𝑡 as defined from before. We choose this con-

volution empirically, with ablations in the experiments. Overall,

only the RNN component of BiDyn contains learnable parameters,

hence backpropagation only occurs during the user round.

Memory usage. As shown in Table 2, the stacked ensemble train-

ing scheme enables the model to take advantage of many of the

performance benefits of a deep model without the memory expense
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Figure 3: The “random access query” pretraining task learns
static node representations that can be used to make dy-
namic predictions about whether an event occurs between
a user and item in a given time range.

of end-to-end training. The memory usage of BiDyn approaches

that of the inference-time variant of APPNP (denoted by APPNP-I)

[12], a scalable GNN model that trains a classifier on individual

nodes and uses random walk propagation at inference time only.

Each round of backpropagation for BiDyn only requires querying a

node’s direct neighbors, only uses linear memory 𝑂 (𝐷), and mini-

batches can easily fit on a GPU, even with very large number of

neighbors 𝐷1
. At the same time, the receptive field of the model is

not bounded by memory constraints, since each user or item round

increases the receptive field radius by one. Furthermore, each user

round adds at least one additional nonlinearity for all embeddings

that pass through it, so this stacking approach naturally receives

some of the performance benefits of a deeper model.

4.3 Pretraining Framework
We further propose a scheme for pretraining in this alternating

training framework, in order to benefit from unsupervised objec-

tives. To pretrain on an auxiliary objective, simply train on this

auxiliary objective during the user round for a number of epochs,

then switch to the main objective. This method effectively creates

a prior on both the embeddings and the network weights.

Due to the label sparsity common to abuse tasks, we propose an

unsupervised pretraining task that can serve as a prior. We develop

a pretraining task that draws from the anomaly detection approach

to abuse detection, which leverages the phenomenon that abusive

nodes will have lower probability than normal nodes under normal

nodes (Observation 1) [4]. Hence, we propose a probabilistic model

of user behavior in the dynamic graph setting under which abusive

users will be distinct from normal users, thereby providing an initial

separation of nodes for classification. Since user activity on online

platforms often includes both time series and graph information,

we propose a simple pretraining task that generalizes probabilistic

time series and graph models. We assume a probabilistic model of

user behavior in which each node 𝑢 has an associated latent vector

𝑧𝑢 , and the distribution of events (dynamic edges) between two

nodes 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵 is a general point process that depends only

on 𝑧𝑢 and 𝑧𝑣 :

log 𝑃 (𝐺 |𝑍 ) =
∑
𝑢∈𝐴

∑
𝑣∈𝐴
(

∑
𝑡 :(𝑢,𝑣,𝑡 ) ∈𝑁 (𝑢)

log _(𝑧𝑢 , 𝑧𝑣, 𝑡)

+
∫ 𝑇max

0

(1 − _(𝑧𝑢 , 𝑧𝑣, 𝑡))𝑑𝑡) (9)

1
Note that storage requirements for the graph𝐺 and the embedding matrix 𝑋 are not

included in the memory requirements for any of the methods in Table 2, since they

they do not need to be stored on GPU during backpropagation.

where 𝑍 denotes the matrix of all latent vectors 𝑧𝑢 , and

_(𝑧𝑢 , 𝑧𝑣, 𝑡) := lim

Δ𝑡→0

1

Δ𝑡
𝑃 (∃𝑡 ′ ∈ [𝑡, 𝑡 + Δ𝑡] : (𝑢, 𝑣, 𝑡 ′) ∈ 𝐸 |𝑧𝑢 , 𝑧𝑣, 𝑡)

(10)

gives the intensity of an event occurring between nodes 𝑢 and 𝑣 at

time 𝑡 , given their latent vectors and the observed history of events

between the two nodes until time 𝑡 .

We propose the following “random access query” pretraining

task which models dynamics on several levels of resolution. Our

task is to learn an embedding 𝑧𝑢 for each node in the graph. The task

is to predict, for a user-item pair (𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵) and time interval

[𝑡1, 𝑡2], and given 𝑢’s history of events until time 𝑡1, whether an

edge appears between (𝑢, 𝑣) in the desired time interval. We mask

out all edges associated with 𝑢 occurring at any time 𝑡 ≥ 𝑡1. We

use a multi-layer perceptron (MLP) to estimate the probability of

the edge appearing within this time interval:

𝑃 (∃(𝑢, 𝑣, 𝑡) ∈ 𝐸, 𝑡 ∈ [𝑡1, 𝑡2] |𝑧𝑢 , 𝑧𝑣, 𝑡1) = 𝜎 (MLP(𝑧𝑢 , 𝑧𝑣, 𝜙 (𝑡1), 𝜙 (𝑡2)))
(11)

In principle, modeling the behavior within every time interval

allows us to estimate _ (by taking 𝑡2 → 𝑡1), hence the task fully

models the time series between two nodes, while being extremely

lightweight in terms of memory consumption (requiring no back-

propagation through time). Furthermore, the random access objec-

tive allows for simultaneous modeling of different time scales: a

model trained on this objective can perform both time series and

graph autoencoder tasks, predicting events at a specific time when

𝑡1 ≈ 𝑡2 and predicting static links when 𝑡1 = 𝑇min and 𝑡2 = 𝑇max.

The objective, given an edge (𝑢, 𝑣, 𝑡) ∈ 𝐸 and arbitrary time

interval [𝑡1, 𝑡2], is as follows:

𝐿(𝑢, 𝑣, 𝑡1, 𝑡2) = 𝑀 (𝑧𝑢 , 𝑧𝑣, 𝑓 (𝑢), 𝑓 (𝑣), 𝜙 (𝑡1), 𝜙 (𝑡2))
+𝑀 (𝑧𝑢 , 𝑧𝑣′, 𝑓 (𝑢), 𝑓 (𝑣 ′), 𝜙 (𝑡1), 𝜙 (𝑡2)) (12)

Here𝑀 is the cross entropy loss of the MLP, where the label is

whether an edge truly appears between the given user and item in

the given time interval. 𝑣 ′ is a randomly chosen (perturbed) item

node (hence the second term represents negative examples). We

encode 𝑡1 and 𝑡2 using the sinusoidal encoding 𝜙 used previously.

We optimize this objective for uniformly randomly selected time

intervals and perturbed item nodes.

5 EXPERIMENTS
We perform many comparisons to demonstrate the efficacy of each

component of our model. We demonstrate that BiDyn effectively

predicts abuse on several domains, thus the approach is general.

(1) BiDyn’s dynamic graph architecture shows favorable perfor-

mance in the transductive prediction setting compared to both

ablations and alternative dynamic graph methods.

(2) Alternating training improves performance across datasets com-

pared to end-to-end training, while using much less GPU mem-

ory, enabling higher throughput for production-scale use cases.

(3) Our pretraining framework and task improve performance com-

pared to alternatives.

Experimental setup. We consider a transductive framework in

which the entire dynamic graph is visible during training, but only

a subset of the user labels are visible. The goal is to predict the labels
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of the remaining users in the graph. 5% of the labels are visible

during training; the remainder are split equally between validation

and test. We train all models on all datasets for 20 epochs and take

the test performance on the model with lowest validation loss.

Datasets. We perform experiments on the following proprietary (e-
commerce) and open dynamic graph datasets (Wikipedia,Reddit).

• e-commerce. We used anonymized and subsampled data from

an e-commerce website. The data is subsampled in a manner so as

to be non-reflective of actual production traffic. The data consists

of 500K users (1K positive), 6M items and 113M interactions

aggregated over an arbitrary 2 month window. Labels indicate

users marked for abusive behavior.

• Wikipedia. TheWikipedia dataset consists of users linked to the

pages they edit. Positive users indicate those who were banned

in the data collection period. There are 8227 users (187 positive),

1000 pages and 157474 interactions.

• Reddit. This dataset consists of users linked to the communities

they participate in. Positive users indicate thosewhowere banned

in the data collection period. There are 10000 users (333 positive),

1000 communities and 672447 interactions.

Baselines. We compare against alternative dynamic graph models,

as well as models that only use graph or time information.

• Dynamic graphmodels.We compare against TGAT [26], JODIE

[13], DyRep [20] and TGN [17], four recently-proposed dynamic

graph models. TGAT uses a GNN with temporal attention layers

to attend to a node’s history. JODIE predicts trajectories of node

embeddings over time as a form of self-supervision. DyRep mod-

els dynamics jointly on small and large time scales. TGN makes

use of memory modules and graph-based operators. We adapt

them to the transductive setting by training their dynamic node

embeddings to predict the abuse labels (details in Appendix). We

also compare against the core model architecture, RNN-GNN,

with standard end-to-end training, using a 2-layer GNN (the max-

imum that can fit in GPU memory for the e-commerce dataset).

• GNNmodels. We compare against a static GNN to demonstrate

that incorporating time information can improve performance

in the transductive setting.

• Recurrent models. We compare against an RNN model with

time encoding to demonstrate the value of a semisupervised

approach (using information from neighboring nodes).

See the Appendix for implementation details and extended ex-

perimental results.

5.1 Model Comparison
Table 3 shows the performance of BiDyn in AUROC compared to the

baselines. We compare different graph convolution variants: BiDyn

(sum) represents the convolution in equation (6), BiDyn (mean)

uses equation (7) but takes the mean
1

|𝑁 (𝑢) |
∑

𝑣∈𝑁 (𝑢) 𝑥𝑣 rather

than the sum

∑
𝑣∈𝑁 (𝑢) 𝑥𝑣 over embeddings, and BiDyn (coarse) is

the convolution in equation (8).

We evaluate the e-commerce data in both the regime where 5% of

labels are seen in training (“e-com (5%)”) and 50% of labels are seen

in training (“e-com (50%)”) (the 5% regime is used for the remainder

of the experiments).

Method e-com (5%) e-com (50%) Wikipedia Reddit

A
bl
at
io
n GNN +0.0 +0.0 69.6 ± 0.2 53.7 ± 1.8

RNN +0.0 ± 0.4 +1.8 ± 0.2 78.0 ± 2.3 51.3 ± 4.7

RNN-GNN -2.2 ± 0.5 +1.9 ± 0.5 70.0 ± 0.2 53.8 ± 2.2

Ba
se
lin

es TGAT -4.0 ± 0.1 -2.5 ± 0.6 73.6 ± 4.7 51.5 ± 2.9

TGN OOM OOM 49.0 ± 0.6 67.0 ± 0.6
DyRep OOM OOM 52.5 ± 0.2 61.4 ± 0.8

JODIE OOM OOM 53.0 ± 0.5 61.2 ± 0.4

O
ur
s

BiDyn (coarse) +1.2 ± 0.5 +3.9 ± 0.1 — —

BiDyn (mean) — — 80.5 ± 2.3 56.0 ± 3.3

BiDyn (sum) — — 86.5 ± 1.6 46.8 ± 3.9

+ pretraining +4.5 ± 0.5 +1.6 ± 0.2 87.5 ± 0.6 50.5 ± 2.6

Table 3: Model comparison (AUROC; absolute gain for e-
commerce) classifying whether users in the network are
abusive. For e-commerce, we report model performance rel-
ative to a GNN, while for public datasets we report absolute
numbers. We observe that the scalable training scheme of
BiDyn gives performance benefits over end-to-end training
of an RNN-GNN architecture, as well as baseline dynamic
graphmodels. Pretraining leads to further improvements in
the regime with limited training labels. Many baselines do
not scale, running out of memory (OOM) on e-commerce. ‘–’
denotes entries that do not apply, e.g. BiDyn (coarse) only
applies to datasets with coarse-grained timestamps.

Dynamic graph models. We see that BiDyn (even with standard

end-to-end training), and indeed the pure RNN model, outperforms

TGAT in the transductive setting. Hence, we confirm the importance

of modeling the entire time series of events, which TGAT’s attention

layers do not sufficiently capture. By prepending an RNN making

use of a compact event representation, we ensure that BiDynmodels

the entire time series while being light on memory usage.

Furthermore, alternating training leads to competitive or even

improved performance compared to end-to-end training, despite

using a GNN layer without learnable parameters. We attribute this

improvement to the increased model depth made possible by a

stacked model. While JODIE navigates the performance-scalability

tradeoff by disconnecting gradient flow through time, BiDyn discon-

nects gradient flow across the layers of the stacked model, which is

a more effective compromise in the transductive setting.

Finally, the performance of TGN, DyRep and JODIE are varied,

with the models failing to learn the Wikipedia task (achieving

near random performance) but achieving higher performance than

BiDyn on the Reddit task. We hypothesize that BiDyn is more

successful on Wikipedia due to its success in domains with greater

network homophily: the Pearson correlation between the labels of

pairs of users who share an item is 3% on Wikipedia, and only 0.5%

on Reddit (different with 𝑝 < 0.001). Despite their advantages on

the Reddit domain, these models are unable to scale to the larger

e-commerce dataset, running out of memory (OOM) when trained

on GPU and taking over 300 hours per epoch when trained on

CPU, hence cannot be used in a web-scale abuse detection pipeline.

Appendix B also demonstrates that BiDyn performs comparably to

these baselines on another dynamic graph dataset, MOOC [13].

Graph models. BiDyn outperforms a static GNN (the GNN phase

of the Core Model Architecture), hence demonstrating the value of

incorporating time information for abuse detection.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3644



Figure 4: Comparison between BiDyn and baselines (RNN,
TGAT) on AUROC by varying the amount of observed node
labels on Wikipedia. Even when we observe less then 5% of
node labels, BiDyn achieves high AUROC compared to base-
lines, hence it is robust to rare training labels.

Recurrent models. BiDyn outperforms the RNN model with time

encoding (the RNN phase of the Core Model Architecture), hence

leveraging information from nearby nodes is advantageous for

dealing with label sparsity.

Pretraining. Pretraining leads to further performance improve-

ment, indicating that incorporating domain knowledge via the

random access query objective can help to deal with label sparsity.

We select the best-performing variant of BiDyn on each dataset

(either coarse, mean or sum) for pretraining.

5.2 Robustness to Sparse Training Data
Figure 4 compares the effectiveness of BiDyn compared to TGAT

and RNN at different amounts of supervision, varying the percent-

age of labeled nodes seen in training. We chose these baselines as

they were the two best competitors to BiDyn on the Wikipedia

dataset (Table 3). BiDyn outperforms the baselines when the num-

ber of training samples seen is very low (< 5%). Moreover, when

the number of samples is low, the methods that rely on graph infor-

mation (BiDyn, TGAT) outperform RNN. For our abuse detection

use case, performing well with limited supervised data is crucial.

5.3 Memory and Time Comparison
Figure 5 shows BiDyn uses 10x less memory than the base RNN-

GNN model (which already uses memory-saving feature represen-

tations) on the e-commerce dataset. These memory savings allow

it to fit comfortably on a GPU instance and hence be efficiently

trained in a production setting. Note in particular that it does not

use extra memory per “layer” (training round), while TGAT and

RNN-GNN increase rapidly per layer. Its low memory usage allows

for larger receptive fields and less subsampling during minibatch-

ing, accounting for its higher performance. Note that TGAT uses

less memory than RNN-GNN, but does not perform as well in our

transductive problem setting, which prioritizes modeling the whole

time series associated with each node. Furthermore, BiDyn achieves

comparable or lower runtime than the baselines. When comparing

memory and runtime, all models are trained with the same batch

size of 64. A 128-dimensional feature is used for user nodes, and no

features are used for item nodes. Though RNN-GNN (barely) fits

on GPU in 2 layers, the small batch size of 64 (which was used to

provide an common ground for comparison) is too small to enable

Figure 5: GPU memory usage (left) and runtime (right) for
BiDyn, RNN-GNN and TGAT. TGAT and RNN-GNN run out
of memory for 3 or more layers (denoted by X), while mem-
ory usage of BiDyn remains constant with increasing depth.
Furthermore, BiDyn achieves comparable or lower runtime
than the baselines.

high throughput in a production setting, and the memory footprint

is too large to accommodate higher-dimensional node features.

5.4 Architecture Ablation
Table 4 compares different choices for the convolution operation.

In “predict item labels”, the model must predict the binary label

of the item for a separate but related item classification task. In

“autoencoder”, the layer takes in an RNN sequence of its neigh-

bors’ embeddings as input, outputs a bottleneck embedding and

uses that embedding as the first hidden state of a decoder RNN

whose task is to output the same sequence of neighbor embeddings,

with minimum mean-squared error. The coarse-grained convolu-

tion operation of equation (7) performs best on the e-commerce

dataset. The autoencoder objective performs worst, which could be

explained by the high MSE of the learned model, which suggests

the task may be too difficult to learn usable representations from.

5.5 Pretraining Validation
Table 5 compares the random access query pretraining task with a

standard (static) graph autoencoder objective [10] and finds that

the random access query task leads to superior performance on

the abuse detection task. Thus, it is important to jointly model the

temporal and graph structure to provide useful embeddings for

the abuse detection task. Figure 6 confirms that the pretraining

task provides a useful prior by creating an initial separation of

nodes: we see a separation between abusive and normal nodes after

pretraining, which is further accentuated after regular training as

the model fine-tunes the embeddings for the abuse detection task.

6 DEPLOYMENT STRATEGIES
BiDyn can be deployed to detect abuse on e-commerce websites,

social media, etc. The training method is scalable, and existing

GPU infrastructure can be easily used to train and deploy these

models into production. Since periodic retraining of graph models

as the graph data evolves is essential in practice, efficient GPU

training and light memory usage can make it easier to retrain

more often for best performance. All training happens offline, and

once the abusive nodes are identified, they can be passed to other

downstream systems that act on this information, such as banning

the users in case of Wikipedia or Reddit.
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e-com

Autoencoder -13.4

Predict item labels -3.8

BiDyn (sum) -7.1

BiDyn (mean) -3.3

BiDyn (coarse) 0.0

Wikipedia

Autoencoder 79.8 ± 2.8

BiDyn (mean) 80.5 ± 2.3

BiDyn (sum) 86.5 ± 1.6

Table 4: Comparison of different objectives and aggrega-
tion schemes in the item step (relative change in AUROC).
Coarse-grained convolution performs best on e-commerce,
while sum aggregation performs best on Wikipedia.

e-commerce Wikipedia

No pretraining 0.0 86.5 ± 1.6

Graph autoencoder -0.5 ± 2.2 86.7 ± 1.9

Random access +3.3 ± 0.5 87.5 ± 0.6
Table 5: Comparison of performance on the abuse task af-
ter pretraining on different self-supervised tasks. The ran-
dom access query pretraining task boosts performance on
the abuse task compared to no pretraining, while the graph
autoencoder task does not improve performance, hence self-
supervision on both the temporal and graph structure pro-
vides an important advantage on the abuse detection task.

Figure 6: Pretraining provides initial separation between
abusive and normal node embeddings on Wikipedia (left),
which is further enhanced through fine-tuning on the abuse
detection task (right). Here, blue nodes are normal users, red
nodes are abusive users and green nodes are items. Visual-
ized with TSNE.

One can also envision a human-in-the-loop scenario, where Bi-

Dyn determines a set of users to be banned. These users can be sent

to a human auditor who makes the final decision. This process will

help improve the yield of human auditors, who can rely on the ML

model to send them relevant users to audit, rather than (potentially)

random users. Augmenting machine learning models with a human

to take the final labeling decision has been explored before [16].

7 CONCLUSION
We have presented BiDyn, a scalable dynamic graph model, train-

ing scheme and pretraining framework for detecting abuse on

production-scale graphs. BiDyn efficiently combines time and struc-

tural information to detect bad actors. Our model achieves state of

the art results on both public and proprietary datasets.
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Model Rel. AUROC

LSTM 0.0

Transformer -5.2

Distribution -9.5

Table 6: The LSTMmodel outperforms aTransformermodel,
and a model using handcrafted features about the distribu-
tion of event counts, at predicting whether a user is abusive.

Table 6 shows that an LSTM model trained to predict a node’s

abuse label outperforms a Transformer model, as well as a model

that predict the label based on the mean and standard deviation

of the number of events on each day in the training data, on the

ecommerce dataset. All models receive as input a sequence of the

number of edges that occurred on that day for which the given node

was an endpoint, and the objective is to classify the node’s binary

abuse label. Thus, considering the full time series, particularly the

time ordering of events, is crucial to modeling abuse.

B EXTENDED PERFORMANCE COMPARISON

Method MOOC

RNN 63.1 ± 0.7

TGAT 70.0 ± 0.5

TGN 68.0 ± 0.4

BiDyn (mean) 63.5 ± 0.8

BiDyn (sum) 69.7 ± 1.0

+ pretraining 70.7 ± 1.5

Table 7: Model comparison on MOOC dataset (AUROC).
BiDyn achieves performance comparable to that of more
resource-heavy dynamic graph baselines, TGAT and TGN,
and makes further gains through the self-supervised pre-
training objective.

We further demonstrate the effectiveness of BiDyn as a general

model for semi-supervised node classification on dynamic bipartite

graphs. We evaluate its performance in binary node classification

on the MOOC dataset [13], which consists of students in an online

course linked to the videos and other course activities participate in.

Positive users indicate those who dropped out of the course. There

are 7047 users (2463 positive), 98 items and 411749 interactions. We

see that BiDyn achieves performance comparable to that achieved

by more resource-heavy dynamic graph baselines, TGAT and TGN.

Furthermore, the pretraining task leads BiDyn to make further

performance gains.

C IMPLEMENTATION DETAILS
Here we describe the hyperparameters and other implementation

details of the models tested in the experiments. We manually tuned

the hyperparameters for each model. Due to the proprietary na-

ture of the e-commerce dataset, we describe settings on the open

Wikipedia and Reddit datasets. We plan to make our code publicly

available.

C.1 General
We test all methods for 10 trials and report mean and standard

deviation AUROC. For RNN, RNN-GNN and BiDyn, we use a time

encoding of dimension 𝐷time = 32.

C.2 GNN
The hyperparameters to the GNN are listed in Table 8. The GNN is

the GNN phase defined in CoreModel Architecture (using a logistic

regression on the last hidden state to predict the abuse label). We

observe a slight performance advantage from using separate weight

matrices𝑊 𝑙
and𝑊 𝑙

𝑚𝑠𝑔 when computing embeddings for user versus

item nodes.

Parameter Value

Hidden dimension 128

Learning rate 10
−3

Neighbors sampled per layer 60

Batch size 1000

Epochs 30

Layers 2

Table 8: Hyperparameters for the GNN model.

C.3 RNN
The hyperparameters to the RNN are listed in Table 9. The RNN is

the RNN phase defined in Core Model Architecture (using a logistic

regression on the last hidden state to predict the abuse label).

Parameter Value

Hidden dimension 64

Learning rate 10
−3

Batch size 256

Epochs 20

Layers 2

Dropout 0.5

Table 9: Hyperparameters for the RNN model.

C.4 RNN-GNN
When testing on e-commerce, we do not use node or edge features

in the RNN phase (so the RNN is fed a sequence of the number of

events on each timestamp), in order to fit themodel in GPUmemory;

node features are used in the GNN phase. For the other datasets, we

use the full RNN (i.e. equation (2), not the coarse-grained version).

The hyperparameters to the RNN-GNN are listed in Table 10.

C.5 Baselines
TGAT. We adopt the TGAT architecture, but adapt the training

objective to our transductive task. We compute the embedding

of each user node on its last time step and use a logistic regres-

sion head on this embedding to predict the binary abuse label,

trained via cross-entropy loss. We use the official implementation

provided in https://github.com/StatsDLMathsRecomSys/Inductive-
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Parameter Value

Hidden dimension 32

Learning rate 10
−3

Batch size 1000

Epochs 20

RNN layers 2

GNN layers 2

Dropout 0

Table 10: Hyperparameters for the RNN-GNN model.

representation-learning-on-temporal-graphs. The hyperparame-

ters to TGAT are listed in Table 11.

Parameter Value

Layers 2

Neighbors sampled per layer 60

Attention heads 2

Learning rate 10
−4

Node dimension 100

Time dimension 100

Batch size 256

Epochs 20

Dropout 0.1

Table 11: Hyperparameters for the TGAT model.

TGN, JODIE, DyRep. We use the implementation for TGN, JODIE

and DyRep provided in https://github.com/twitter-research/tgn.We

first pretrain all models with their respective self-supervised event

prediction tasks. Then, we fine-tune the models on a transductive

prediction task. In this task, we append each model’s respective

decoder head to the temporal node embedding of each user, which

predicts the binary abuse label. Finally, at evaluation time, we pre-

dict the abuse label of each user by applying the decoder head to the

last temporal embedding of that user. We use the default parameters

for each model.

C.6 BiDyn
Hyperparameters. The hyperparameters to BiDyn are listed in

Table 12. While the model can support much higher number of

neighbors sampled per layer, we choose to uniformly randomly

subsample 200 neighbors for each node during preprocessing due to

diminishing performance gains with higher number of neighbors.

Parameter Value

Neighbors sampled per layer 200

Learning rate 10
−3

Embedding dimension 64

Batch size 256

Epochs 20

Dropout 0.5

Table 12: Hyperparameters for the BiDyn model.

C.7 Pretraining
Link prediction. We use the non-probabilistic graph autoencoder

model [10] to learn node embeddings. To create a training batch,

we sample a random set of user nodes and a random set of item

nodes, and predict all the pairwise edge relationships between them,

where the ground truth label is whether than edge actually appears

between that user and item. The model parameters are the same as

in Table 12.
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