
Published as a conference paper at ICLR 2023

AUTOTRANSFER: AUTOML WITH KNOWLEDGE
TRANSFER - AN APPLICATION TO GRAPH NEURAL
NETWORKS

Kaidi Cao Jiaxuan You Jiaju Liu Jure Leskovec

Department of Computer Science, Stanford University

{kaidicao, jiaxuan, jiajuliu, jure}@cs.stanford.edu

ABSTRACT

AutoML has demonstrated remarkable success in finding an effective neural ar-
chitecture for a given machine learning task defined by a specific dataset and an
evaluation metric. However, most present AutoML techniques consider each task
independently from scratch, which requires exploring many architectures, leading
to high computational costs. Here we propose AUTOTRANSFER, an AutoML solu-
tion that improves search efficiency by transferring the prior architectural design
knowledge to the novel task of interest. Our key innovation includes a task-model
bank that captures the model performance over a diverse set of GNN architectures
and tasks, and a computationally efficient task embedding that can accurately mea-
sure the similarity among different tasks. Based on the task-model bank and the
task embeddings, we estimate the design priors of desirable models of the novel
task, by aggregating a similarity-weighted sum of the top-K design distributions
on tasks that are similar to the task of interest. The computed design priors can be
used with any AutoML search algorithm. We evaluate AUTOTRANSFER on six
datasets in the graph machine learning domain. Experiments demonstrate that (i)
our proposed task embedding can be computed efficiently, and that tasks with simi-
lar embeddings have similar best-performing architectures; (ii) AUTOTRANSFER
significantly improves search efficiency with the transferred design priors, reducing
the number of explored architectures by an order of magnitude. Finally, we release
GNN-BANK-101, a large-scale dataset of detailed GNN training information of
120,000 task-model combinations to facilitate and inspire future research.

1 INTRODUCTION

Deep neural networks are highly modular, requiring many design decisions to be made regarding
network architecture and hyperparameters. These design decisions form a search space that is
nonconvex and costly even for experts to optimize over, especially when the optimization must be
repeated from scratch for each new use case. Automated machine learning (AutoML) is an active
research area that aims to reduce the human effort required for architecture design that usually
covers hyperparameter optimization and neural architecture search. AutoML has demonstrated
success (Zoph and Le, 2016; Pham et al., 2018; Zoph et al., 2018; Cai et al., 2018; He et al., 2018;
Guo et al., 2020; Erickson et al., 2020; LeDell and Poirier, 2020) in many application domains.

Finding a reasonably good model for a new learning task1 in a computationally efficient manner is
crucial for making deep learning accessible to domain experts with diverse backgrounds. Efficient
AutoML is especially important in domains where the best architectures/hyperparameters are highly
sensitive to the task. A notable example is the domain of graph learning2. First, graph learning
methods receive input data composed of a variety of data types and optimize over tasks that span
an equally diverse set of domains and modalities such as recommendation (Ying et al., 2018; He
et al., 2020), physical simulation (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020), and bioinformat-
ics (Zitnik et al., 2018). This differs from computer vision and natural language processing where the

1In this paper, we refer to a task as a given dataset with an evaluation metric/loss, e.g., cross-entropy loss on
node classification on the Cora dataset.

2We focus on the graph learning domain in this paper. AUTOTRANSFER can be generalized to other domains.

1

ar
X

iv
:2

30
3.

07
66

9v
1 

 [
cs

.L
G

] 
 1

4 
M

ar
 2

02
3



Published as a conference paper at ICLR 2023

input data has a predefined, fixed structure that can be shared across different neural architectures.
Second, neural networks that operate on graphs come with a rich set of design choices and a large set
of parameters to explore. However, unlike other domains where a few pre-trained architectures such
as ResNet (He et al., 2016) and GPT-3 (Brown et al., 2020) dominate the benchmarks, it has been
shown that the best graph neural network (GNN) design is highly task-dependent (You et al., 2020).

Although AutoML as a research domain is evolving fast, existing AutoML solutions have massive
computational overhead when finding a good model for a new learning task is the goal. Most present
AutoML techniques consider each task independently and in isolation, therefore they require redoing
the search from scratch for each new task. This approach ignores the potentially valuable architectural
design knowledge obtained from the previous tasks, and inevitably leads to a high computational cost.
The issue is especially significant in the graph learning domain Gao et al. (2019); Zhou et al. (2019),
due to the challenges of diverse task types and the huge design space that are discussed above.

Here we propose AUTOTRANSFER3, an AutoML solution that drastically improves AutoML archi-
tecture search by transferring previous architectural design knowledge to the task of interest. Our
key innovation is to introduce a task-model bank that stores the performance of a diverse set of
GNN architectures and tasks to guide the search algorithm. To enable knowledge transfer, we define
a task embedding space such that tasks close in the embedding space have similar corresponding
top-performing architectures. The challenge here is that the task embedding needs to capture the
performance rankings of different architectures on different datasets, while being efficient to compute.
Our innovation here is to embed a task by using the condition number of its Fisher Information Matrix
of various randomly initialized models and also a learning scheme with an empirical generalization
guarantee. This way we implicitly capture the properties of the learning task, while being orders of
magnitudes faster (within seconds). We then estimate the design prior of desirable models for the
new task, by aggregating design distributions on tasks that are close to the task of interest. Finally,
we initiate a hyperparameter search algorithm with the task-informed design prior computed.

We evaluate AUTOTRANSFER on six datasets, including both node classification and graph clas-
sification tasks. We show that our proposed task embeddings can be computed efficiently and the
distance measured between tasks correlates highly (0.43 Kendall correlation) with model performance
rankings. Furthermore, we present AUTOTRANSFER significantly improves search efficiency when
using the transferred design prior. AUTOTRANSFER reduces the number of explored architectures
needed to reach a target accuracy by an order of magnitude compared to SOTA. Finally, we release
GNN-BANK-101—the first large-scale database containing detailed performance records for 120,000
task-model combinations which were trained with 16,128 GPU hours—to facilitate future research.

2 RELATED WORK

In this section, we summarize the related work on AutoML regarding its applications on GNNs, the
common search algorithms, and pioneering work regarding transfer learning and task embeddings.

AutoML for GNNs. Neural architecture search (NAS), a unique and popular form of AutoML
for deep learning, can be divided into two categories: multi-trial NAS and one-shot NAS. During
multi-trial NAS, each sampled architecture is trained separately. GraphNAS (Gao et al., 2020) and
Auto-GNN (Zhou et al., 2019) are typical multi-trial NAS algorithms on GNNs which adopt an
RNN controller that learns to suggest better sets of configurations through reinforcement learning.
One-shot NAS (e.g., (Liu et al., 2018; Qin et al., 2021; Li et al., 2021)) involves encapsulating the
entire model space in one super-model, training the super-model once, and then iteratively sampling
sub-models from the super-model to find the best one. In addition, there is work that explicitly studies
fine-grained design choices such as data augmentation (You et al., 2021), message passing layer
type (Cai et al., 2021; Ding et al., 2021; Zhao et al., 2021), and graph pooling (Wei et al., 2021).
Notably, AUTOTRANSFER is the first AutoML solution for GNNs that efficiently transfer design
knowledge across tasks.

HPO Algorithms. Hyperparameter Optimization (HPO) algorithms search for the optimal model
hyperparameters by iteratively suggesting a set of hyperparameters and evaluating their performance.
Random search samples hyperparameters from the search space with equal probability. Despite not

3Source code is available at https://github.com/snap-stanford/AutoTransfer.

2

https://github.com/snap-stanford/AutoTransfer


Published as a conference paper at ICLR 2023

Task-Model Bank
(historical performance records)

Task Embedding Space Design Distributions

Task Agg Dim Epoch ... Val_loss
Cora sum 64 80 ... 0.22
Cora mean 128 200 ... 0.26
TU-DD sum 64 200 ... 0.46
TU-DD mean 128 200 ... 0.86
TU-DD max 256 800 ... 0.52
Arxiv mean 128 200 ... 0.68
… … … … … …

Agg

Dim

Epoch

Agg

Novel Task 
of interest

Dim

Epoch

...

...

Figure 1: Overview of AUTOTRANSFER. Left: We introduce GNN-BANK-101, a large database
containing a diverse set of GNN architectures and hyperparameters applied to different tasks, along
with their training/evaluation statistics. Middle: We introduce a task embedding space, where each
point corresponds to a different task. Tasks close in the embedding space have similar corresponding
top-performing models. Right: Given a new task of interest, we guide the AutoML search by
referencing the design distributions of the most similar tasks in the task embedding space.

learning from previous trials, random search is commonly used for its simplicity and is much more
efficient than grid search (Bergstra and Bengio, 2012). The TPE algorithm (Bergstra et al., 2011)
builds a probabilistic model of task performance over the hyperparameter space and uses the results
of past trials to choose the most promising next configuration to train, which the TPE algorithm
defines as maximizing the Expected Improvement value (Jones, 2001). Evolutionary algorithms (Real
et al., 2017; Jaderberg et al., 2017) train multiple models in parallel and replace poorly performing
models with “mutated” copies of the current best models. AUTOTRANSFER is a general AutoML
solution and can be applied in combination with any of these HPO algorithms.

Transfer Learning in AutoML. Wong et al. (2018) proposed to transfer knowledge across tasks by
reloading the controller of reinforcement learning search algorithms. However, this method assumes
that the search space on different tasks starts with the same learned prior. Unlike AUTOTRANSFER,
it cannot address the core challenge in GNN AutoML: the best GNN design is highly task-specific.
GraphGym (You et al., 2020) attempts to transfer the best architecture design directly with a metric
space that measures task similarity. GraphGym (You et al., 2020) computes task similarity by
training a set of 12 ”anchor models” to convergence which is computationally expensive. In contrast,
AUTOTRANSFER designs light-weight task embeddings requiring minimal computations overhead.
Additionally, Zhao and Bilen (2021); Li et al. (2021) proposes to conduct architecture search on a
proxy subset of the whole dataset and later transfer the best searched architecture on the full dataset.
Jeong et al. (2021) studies a similar setting in vision domain.

Task Embedding. There is prior research trying to quantify task embeddings and similarities. Similar
to GraphGym, Taskonomy (Zamir et al., 2018) estimates the task affinity matrix by summarizing
final losses/evaluation metrics using an Analytic Hierarchy Process (Saaty, 1987). From a different
perspective, Task2Vec (Achille et al., 2019) generates task embeddings for a given task using the
Fisher Information Matrix associated with a pre-trained probe network. This probe network is
shared across tasks and allows Task2Vec to estimate the Fisher Information Matrix of different image
datasets. Le et al. (2022) extends a similar idea to neural architecture search. The aforementioned
task embeddings cannot be directly applied to GNNs as the inputs do not align across datasets.
AUTOTRANSFER avoids the bottleneck by using asymptotic statistics of the Fisher Information
Matrix with randomly initiated weights.

3 PROBLEM FORMULATION AND PRELIMINARIES

We first introduce formal definitions of data structures relevant to AUTOTRANSFER.

3



Published as a conference paper at ICLR 2023

…

𝑎"!Model 𝑀1

Model 𝑀2

Model 𝑀𝑈

𝑅 Rand Inits FIM Scale-Invariant Measure

Task Feature Task Embedding

𝑔

𝑓

𝑓

𝑓

Task i

Training Objective

Task j

x

Task i Task k

x

Margin Ranking Loss

𝑎""

𝑎"#

𝑧$ 𝑧%
𝑧%
(') 𝑧%

()) 𝑧%
(') 𝑧%

(*)

Figure 2: Pipeline for extracting task embeddings. Left: To efficiently embed a task, we first
extract task features by concatenating features measured from R randomly initialized anchor models.
Then, we introduce a projection function g(·) with learned weights to transform the task features into
task embeddings. Right: Training objective for optimizing g(·) with triplet supervision.

Definition 1 (Task) We denote a task as T = (D,L(·)), consisting of a datasetD and a loss function
L(·) related to the evaluation metric.

For each training attempt on a task T (i), we can record its model architecture Mj , hyperparameters
Hj , and corresponding value of loss lj , i.e., (Mj , Hj , lj). We propose to maintain a task-model bank
to facilitate knowledge transfer to future novel tasks.

Definition 2 (Task-Model Bank) A task-model bank B is defined as a collection of tasks, each with
multiple training attempts, in the form of B = {(T (i), {(M (i)

j , H
(i)
j , l

(i)
j )})}.

AutoML with Knowledge Transfer. Suppose we have a task-model bank B. Given a novel task
T (n) which has not been seen before, our goal is to quickly find a model that works reasonably well
on the novel task by utilizing knowledge from the task-model bank.

In this paper, we focus on AutoML for graph learning tasks, though our developed technique is
general and can be applied to other domains. We define the input graph as G = {V,E}, where V
is the node set and E ⊆ V × V is the edge set. Furthermore, let y denote its output labels, which
can be node-level, edge-level or graph-level. A GNN parameterized by weights θ outputs a posterior
distribution P(G, y, θ) for label predictions.

4 PROPOSED SOLUTION: AUTOTRANSFER

In this section, we introduce the proposed AUTOTRANSFER solution. AUTOTRANSFER uses the task
embedding space as a tool to understand the relevance of previous architectural designs to the target
task. The designed task embedding captures the performance rankings of different architectures on
different tasks while also being efficient to compute. We first introduce a theoretically motivated
solution to extract a scale-invariant performance representation of each task-model pair. We use these
representations to construct task features and further learn task embeddings. These embeddings form
the task embedding space that we finally use during the AutoML search.

4.1 BASICS OF THE FISHER INFORMATION MATRIX (FIM)

Given a GNN defined above, its Fisher Information Matrix (FIM) F is defined as

F = EG,y[∇θ logP(G, y, θ)∇θ logP(G, y, θ)>].

which formally is the expected covariance of the scores with respect to the model parameters. There
are two popular geometric views for the FIM. First, the FIM is an upper bound of the Hessian and
coincides with the Hessian if the gradient is 0. Thus, the FIM characterizes the local landscape of
the loss function near the global minimum. Second, similar to the Hessian, the FIM models the loss

4



Published as a conference paper at ICLR 2023

landscape with respect not to the input space, but to the parameter space. In the information geometry
view, if we add a small perturbation to the parameter space, we have

KL(P(G, y, θ)‖P(G, y, θ + dθ)) = dθ>Fdθ.

where KL(·, ·) stands for Kullback–Leibler divergence. It means that the parameter space of a model
forms a Riemannian manifold and the FIM works as its Riemannian metric. The FIM thus allows us
to quantify the importance of a model’s weights in a way that is applicable to different architectures.

4.2 FIM-BASED TASK FEATURES

Scale-invariant Representation of Task-Model Pairs. We aim to find a scale-invariant representa-
tion for each task-model pair which will form the basis for constructing task features. The major
challenge in using the FIM to represent GNN performance is that graph datasets do not have a
universal, fixed input structure, so it is infeasible to find a single pre-trained model and extract its
FIM. However, training multiple networks poses a problem as the FIMs computed for different
networks are not directly comparable. We choose to use multiple networks but additionally propose
to use asymptotic statistics of the FIM associated with randomly initialized weights. The theoretical
justification for the relationship between the asymptotic statistics of the FIM and the trainability
of neural networks was studied in (Karakida et al., 2019; Pennington and Worah, 2018) to which
we refer the readers. We hypothesize that such a measure of trainability encodes loss landscapes
and generalization ability and thus correlates with final model performance on the task. Another
issue that relates to input structures of graph datasets is that different models have different number
of parameters. Despite some specially designed architectures, e.g., (Lee et al., 2019; Ma et al.,
2019), most GNN architecture design can be represented as a sequence of pre-processing layers,
message passing layers, and post-processing layers. Pre-process layers and post-process layers are
Multilayer Perceptron (MLP) layers, of which the dimensions vary across different tasks due to
different input/output structures. Message passing layers are commonly regarded as the key design
for GNNs and the number of weight parameters can remain the same across tasks. In this light, we
only consider the FIM with respect to the parameters in message passing layers so that the number
of parameters considered stays the same for all datasets. We note that such formulation has its
limitations, in the sense that it cannot cover all the GNN designs in the literature. We leave potential
extensions with better coverage for future work. We further approximate the FIM by only considering
the diagonal entries, which implicitly neglects the correlations between parameters. We note that this
is common practice when analyzing the FIMs of deep neural networks, as the full FIM is massive
(quadratic in the number of parameters) and infeasible to compute even on modern hardware. Similar
to Pennington and Worah (2018), we consider the first two moments of FIM

m1 =
1

n
tr[F ] and m2 =

1

n
tr[F 2] (1)

and use α = m2/m
2
1 as the scale-invariant representation. The computed α is lower bounded by 1

and captures how concentrated the spectrum is. A small α indicates the loss landscape is flat, and its
corresponding model design enjoys fast first-order optimization and potentially better generalization.
To encode label space information into each task, we propose to train only the last linear layer of
each model on a given task, which can be done efficiently. The parameters in other layers are frozen
after being randomly initialized. We take the average over R initializations to estimate the average ᾱ.

Constructing Task Features. We denote task features as measures extracted from each task that
characterize its important traits. The design of task features should reflect our final objective: to use
these features to identify similar tasks and transfer the best design distributions. Thus, we select U
model designs as anchor models and concatenate the scale-invariant representations āu of each design
as task features. To retain only the relative ranking among anchor model designs, we normalize the
concatenated feature vector to a scale of 1. We let zf denote the normalized task feature.

4.3 FROM TASK FEATURES TO TASK EMBEDDINGS

The task feature zf introduced above can be regarded as a means of feature engineering. We construct
the feature vector with domain knowledge, but there is no guarantee it functions as anticipated. We
thus propose to learn a projection function g(·) : RU → RD that maps task feature zf to final task

5



Published as a conference paper at ICLR 2023

embedding ze = g(zf ). We do not have any pointwise supervision that can be used as the training
objective. Instead, we consider the metric space defined by GraphGym. The distance function in
GraphGym - computed using the Kendall rank correlation between performance rankings of anchor
models trained on the two compared tasks - correlates nicely with our desired knowledge transfer
objective. It is not meaningful to enforce that task embeddings mimic GraphGym’s exact metric
space, as GraphGym’s metric space can still contain noise, or does not fully align with the transfer
objective. We consider a surrogate loss that enforces only the rank order among tasks. To illustrate,
let us consider tasks T (i), T (j), T (k) and their corresponding task embeddings, z(i)

e , z(j)
e , z(k)

e . Note

that ze is normalized to 1 so z
(i)
e

>
z
(j)
e measures the cosine similarity between tasks T (i) and T (j).

Let dg(·, ·) denote the distance estimated by GraphGym. We want to enforce

z(i)
e

>
z(j)
e > z(i)

e

>
z(k)
e if dg(T

(i), T (j)) < dg(T
(i), T (k)).

To achieve this, we use the margin ranking loss as our surrogate supervised objective function:

Lr(z(i)
e , z(j)

e , z(k)
e , y) = max(0,−y · (z(i)

e

>
z(j)
e − z(i)

e

>
z(k)
e ) + margin). (2)

Here if dg(T (i), T (j)) < dg(T
(i), T (k)), then we have its corresponding label y = 1, and y = −1

otherwise. Our final task embedding space is then a FIM-based metric space with cosine distance

function, where the distance is defined as de(T (i), T (j)) = 1− z
(i)
e

>
z
(j)
e . Please refer to the detailed

training pipeline at Algorithm 2 in the Appendix.

4.4 AUTOML SEARCH ALGORITHM WITH TASK EMBEDDINGS

To transfer knowledge to a novel task, a naïve idea would be to directly carry over the best model
configuration from the closest task in the bank. However, even a high Kendall rank correlation
between model performance rankings of two tasks T (i), T (j) does not guarantee the best model
configuration in task T (i) will also achieve the best performance on task T (j). In addition, since task
similarities are subject to noise, this naïve solution may struggle when there exist multiple reference
tasks that are all highly similar.

To make the knowledge transfer more robust to such failure cases, we introduce the notion of
design distributions that depend on top performing model designs and propose to transfer design
distributions rather than the best design configurations. Formally, consider a task T (i) in the task-
model bank B, associated with its trials {(M (i)

j , H
(i)
j , l

(i)
j )}. We can summarize its designs as a list

of configurations C = {c1, . . . , cW }, such that all potential combinations of model architectures M
and hyperparameters H fall under the Cartesian product of the configurations. For example, c1 could
be the instantiation of aggregation layers, and c2 could be the start learning rate. We then define
design distributions as random variables c1, c2, . . . , cW , each corresponding to a hyperparameter.
Each random variable c is defined as the frequency distribution of the design choices used in the top
K trials. We multiply all distributions for the individual configurations {c1, . . . , cW } to approximate
the overall task’s design distribution P(C|T (i)) =

∏
w P(cw|T (i)).

During inference, given a novel task T (n), we select a close task subset S by thresholding task
embedding distances, i.e., S = {T (i)|de(T (n), T (i)) ≤ dthres}. We then derive the transferred design
prior Pt(C|T (n)) of the novel task by weighting design distributions from the close task subset S.

Pt(C|T (n)) =

∑
T (i)∈S

1
de(T (n),T (i))

P(C|T (i))∑
T (i)∈S

1
de(T (n),T (i))

. (3)

The inferred design prior for the novel task can then be used to guide various search algorithms.
The most natural choice for a few trial regime is random search. Rather than sampling each design
configuration following a uniform distribution, we propose to sample from the task-informed design
prior Pt(C|T (n)). Please refer to Appendix A to check how we augment other search algorithms.

For AUTOTRANSFER, we can preprocess the task-model bank B into Bp =

{(D(i),L(i)(·)), z(i)
e ,P(C|T (i))} as our pipeline only requires using task embedding z

(i)
e

and design distribution P(C|T (i)) rather than detailed training trials. A detailed search pipeline is
summarized in Algorithm 1.

6



Published as a conference paper at ICLR 2023

Algorithm 1 Summary of AUTOTRANSFER search pipeline

Require: A processed task-model bank Bp = {(D(i),L(i)(·)), z(i)
e ,P(C|T (i))}, a novel task

T (n) =
(
D(n),L(n)(·)

)
, U anchor models M1, ...,MU , R specifies the number of repeats.

1: for u = 1 to U do
2: for r = 1 to R do
3: Initialize weights θ for anchor model Mu randomly
4: Estimate FIM F ←− ED[∇θ logP(Mu, y, θ)∇θ logP(Mu, y, θ)

>]

5: Extract scale-invariant representation a(v)u ←− m2/m
2
1 following Eq. 1

6: end for
7: āu ←− mean(a

(1)
u , a

(2)
u , ..., a

(V )
u )

8: end for
9: z

(n)
f ←− concat(ā1, ā2, ..., āU )

10: z
(n)
e ←− g(z

(n)
f )

11: Select close task subset S ←− {T (i)|1− z
(n)
e

>
z
(i)
e ≤ dthres}

12: Get design prior Pt(C|T (n)) by aggregating subset S following Eq. 3
13: Start a HPO search algorithm with the task-informed design prior Pt(C|T (n))

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Task-Model Bank: GNN-BANK-101.

To facilitate AutoML research with knowledge transfer, we collected GNN-BANK-101 as the first
large-scale graph database that records reproducible design configurations and detailed training
performance on a variety of tasks. Specifically, GNN-BANK-101 currently includes six tasks for
node classification (AmazonComputers (Shchur et al., 2018), AmazonPhoto (Shchur et al., 2018),
CiteSeer (Yang et al., 2016), CoauthorCS (Shchur et al., 2018), CoauthorPhysics (Shchur et al., 2018),
Cora (Yang et al., 2016)) and six tasks for graph classification (PROTEINS (Ivanov et al., 2019),
BZR (Ivanov et al., 2019), COX2 (Ivanov et al., 2019), DD (Ivanov et al., 2019), ENZYMES (Ivanov
et al., 2019), IMDB-M (Ivanov et al., 2019)). Our design space follows (You et al., 2020), and we
extend the design space to include various commonly adopted graph convolution and activation
layers. We extensively run 10,000 different models for each task, leading to 120,000 total task-model
combinations, and record all training information including train/val/test loss.

Benchmark Datasets. We benchmark AUTOTRANSFER on six different datasets following prior
work (Qin et al., 2021). Our datasets include three standard node classification datasets (Coauthor-
Physics (Shchur et al., 2018), CoraFull (Bojchevski and Günnemann, 2017) and OGB-Arxiv (Hu et al.,
2020)), as well as three standard benchmark graph classification datasets, (COX2 (Ivanov et al., 2019),
IMDB-M (Ivanov et al., 2019) and PROTEINS (Ivanov et al., 2019)). CoauthorPhysics and CoraFull
are transductive node classification datasets, so we randomly assign nodes into train/valid/test sets fol-
lowing a 50%:25%:25% split (Qin et al., 2021). We randomly split graphs following a 80%:10%:10%
split for the three graph classification datasets (Qin et al., 2021). We follow the default train/valid/test
split for the OGB-Arxiv dataset (Hu et al., 2020). To make sure there is no information leakage,
we temporarily remove all records related to the task from our task-model bank if the dataset we
benchmark was collected in the task-model bank.

Baselines. We compare our methods with the state-of-the-art approaches for GNN AutoML. We use
GCN and GAT with default architectures following their original implementation as baselines. For
multi-trial NAS methods, we consider GraphNAS (Gao et al., 2020). For one-shot NAS methods, we
include DARTS (Liu et al., 2018) and GASSO (Qin et al., 2021). GASSO is designed for transductive
settings, so we omit it for graph classification benchmarks. We further provide results of HPO
algorithms based on our proposed search space as baselines: Random, Evolution, TPE (Bergstra
et al., 2011) and HyperBand (Li et al., 2017).

We by default allow searching 30 trials maximum for all the algorithms, i.e., an algorithm can train 30
different models and collect the model with the best accuracy. We use the default setting for one-shot

7



Published as a conference paper at ICLR 2023

Table 1: Performance comparisons of AUTOTRANSFER and other baselines. We report the average
test accuracy and the standard deviation over ten runs. With only 3 trials AUTOTRANSFER already
outperform most SOTA baselines with 30 trials.

Node Graph
Method Physics CoraFull OGB-Arxiv COX2 IMDB PROTEINS

GCN (30 trials) 95.88±0.16 67.12±0.52 70.46±0.18 79.23±2.19 50.40±3.02 74.84±2.82
GAT (30 trials) 95.71±0.24 65.92±0.68 68.82±0.32 81.56±4.17 49.67±4.30 75.30±3.72

GraphNAS (30 trials) 92.77±0.84 63.13±3.28 65.90±2.64 77.73±1.40 46.93±3.94 72.51±3.36
DARTS 95.28±1.67 67.59±2.85 69.02±1.18 79.82±3.15 50.26±4.08 75.04±3.81

GASSO4 96.38 68.89 70.52 - - -

Random (3 trials) 95.16±0.55 61.24±4.04 67.92±1.92 76.88±3.17 45.79±4.39 72.47±2.57
TPE (30 trials) 96.41±0.36 66.37±1.73 71.35±0.44 82.27±2.01 50.33±4.00 79.46±1.28

HyperBand (30 trials) 96.56±0.30 67.75±1.24 71.60±0.36 82.21±1.79 50.86±3.45 79.32±1.16

AUTOTRANSFER (3 trials) 96.64±0.42 69.27±0.76 71.42±0.39 82.13±1.59 52.33±2.13 77.81±2.19
AUTOTRANSFER (30 trials) 96.91±0.27 70.05±0.42 72.21±0.27 86.52±1.58 54.93±1.23 81.25±1.17

NAS algorithms (DARTS and GASSO), as they only train a super-model once and can efficiently
evaluate different architectures. We are mostly interested in studying the few-trial regime where most
advanced search algorithms degrade to random search. Thus we additionally include a random search
(3 trials) baseline where we pick the best model out of only 3 trials.

5.2 EXPERIMENTS ON SEARCH EFFICIENCY

We evaluate AUTOTRANSFER by reporting the average best test accuracy among all trials considered
over ten runs of each algorithm in Table 1. The test accuracy collected for each trial is selected at
the epoch with the best validation accuracy. By comparing results from random search (3 trials) and
AUTOTRANSFER (3 trials), we show that our transferred task-informed design prior significantly
improves test accuracy in the few-trial regime, and can be very useful in environments that are where
computationally constrained. Even if we increase the number of search trials to 30, AUTOTRANSFER
still demonstrates non-trivial improvement compared with TPE, indicating that our proposed pipeline
has advantages even when computational resources are abundant. Notably, with only 3 search trials,
AUTOTRANSFER surpasses most of the baselines, even those that use 30 trials.

To better understand the sample efficiency of AUTOTRANSFER, we plot the best test accuracy found
at each trial in Figure 3 for OGB-Arxiv and TU-PROTEINS datasets. We notice that the advanced
search algorithms (Evolution and TPE) have no advantages over random search at the few-trial
regime since the amount of prior search data is not yet sufficient to infer potentially better design
configurations. On the contrary, by sampling from the transferred design prior, AUTOTRANSFER
achieves significantly better average test accuracy in the first few trials. The best test accuracy at trial
3 of AUTOTRANSFER surpasses its counterpart at trial 10 for every other method.

Figure 3: Performance comparisons in the few-trial regime. At trial t, we plot the best test accuracy
among all models searched from trial 1 to trial t. AUTOTRANSFER can reduce the number of
trials needed to search by an order of magnitude (see also Table 4 in Appendix).

5.3 ANALYSIS OF TASK EMBEDDINGS

Qualitative analysis of task features. To examine the quality of the proposed task features, we
visualize the proposed task similarity matrix (Figure 4 (b)) along with the task similarity matrix
(Figure 4 (a)) proposed in GraphGym. We show that our proposed task similarity matrix captures
similar patterns as GraphGym’s task similarity matrix while being computed much more efficiently

2Results come from the original paper (Qin et al., 2021).

8



Published as a conference paper at ICLR 2023

(a) (b) (c)

Figure 4: (a) GraphGym’s task similarity between all pairs of tasks (computed from the Kendall rank
correlation between performance rankings of models trained on the two compared tasks), a higher
value represents a higher similarity. (b) The proposed task similarity computed by computing the
dot-product between extracted task features. (c) The Kendall rank correlation of similarity rankings
of the other tasks with respect to the central task between the proposed method and GraphGym.

by omitting training. We notice that the same type of tasks, i.e., node classification and graph
classification, share more similarities within each group. As a sanity check, we examined that the
closest task in the bank with respect to CoraFull is Cora. The top 3 closest tasks for OGB-Arxiv are
AmazonComputers, AmazonPhoto, and CoauthorPhysics, all of which are node classification tasks.

Generalization of projection function g(·). To show the proposed projection function g(·) can
generate task embeddings that can generalize to novel tasks, we conduct leave-one-out cross validation
with all tasks in our task-model bank. Concretely, for each task considered as a novel task T (n), we
use the rest of the tasks, along with their distance metric dg(·, ·) estimated by GraphGym’s exact but
computationally expensive metric space, to train the projection function g(·). We calculate Kendall
rank correlation over task similarities for Task Feature (without g(·)) and Task Embedding (with
g(·)) against the exact task similarities. The average rank correlation and the standard deviation over
ten runs is shown on Figure 4 (c). We find that with the proposed g(·), our task embeddings indeed
correlate better with the exact task similarities, and therefore, generalize better to novel tasks.

Ablation study on alternative task space design. To demonstrate the superiority of the proposed
task embedding, we further compare it with alternative task features. Following prior work (Yang
et al., 2019), we use the normalized losses over the first 10 steps as the task feature. The results on
OGB-Arxiv are shown in Table 2. Compared to AUTOTRANSFER’s task embedding, the task feature
induced by normalized losses has a lower ranking correlation with the exact metric and yields worse
performance. Table 2 further justifies the efficacy of using the Kendall rank correlation as the metric
for task embedding quality, as higher Kendall rank correlation leads to better performance.

Table 2: Ablation study on the alternative task space design versus AUTOTRANSFER’s task embedding.
We report the average test accuracy and the standard deviation OGB-Arxiv over ten runs.

Kendall rank correlation Test accuracy

Alternative: Normalized Loss -0.07±0.43 68.13±1.27
AUTOTRANSFER’s Task Feature 0.18±0.30 70.67±0.52

AUTOTRANSFER’s Task Embedding 0.43±0.22 71.42±0.39

6 CONCLUSION

In this paper, we study how to improve AutoML search efficiency by transferring existing architectural
design knowledge to novel tasks of interest. We introduce a task-model bank that captures the
performance over a diverse set of GNN architectures and tasks. We also introduce a computationally
efficient task embedding that can accurately measure the similarity between different tasks. We
release GNN-BANK-101, a large-scale database that records detailed GNN training information of
120,000 task-model combinations. We hope this work can facilitate and inspire future research in
efficient AutoML to make deep learning more accessible to a general audience.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We thank Xiang Lisa Li, Hongyu Ren, Yingxin Wu for discussions and for providing feedback on our
manuscript. We also gratefully acknowledge the support of DARPA under Nos. HR00112190039
(TAMI), N660011924033 (MCS); ARO under Nos. W911NF-16-1-0342 (MURI), W911NF-16-1-
0171 (DURIP); NSF under Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940
(Expeditions), NIH under No. 3U54HG010426-04S1 (HuBMAP), Stanford Data Science Initiative,
Wu Tsai Neurosciences Institute, Amazon, Docomo, GSK, Hitachi, Intel, JPMorgan Chase, Juniper
Networks, KDDI, NEC, and Toshiba. The content is solely the responsibility of the authors and does
not necessarily represent the official views of the funding entities.

10



Published as a conference paper at ICLR 2023

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C
Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6430–6439,
2019.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Shaofei Cai, Liang Li, Jincan Deng, Beichen Zhang, Zheng-Jun Zha, Li Su, and Qingming Huang. Re-
thinking graph neural architecture search from message-passing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6657–6666, 2021.

Yuhui Ding, Quanming Yao, Huan Zhao, and Tong Zhang. Diffmg: Differentiable meta graph search
for heterogeneous graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pages 279–288, 2021.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data. ICML 2020 Workshop
on Automated Machine Learning, 2020.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
search with reinforcement learning. arXiv preprint arXiv:1904.09981, 2019.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture search.
In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 1403–1409. International Joint Conferences on Artificial
Intelligence Organization, 7 2020. URL https://doi.org/10.24963/ijcai.2020/
195.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In European Conference
on Computer Vision, pages 544–560. Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pages 639–648, 2020.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pages 784–800, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

11

https://doi.org/10.24963/ijcai.2020/195
https://doi.org/10.24963/ijcai.2020/195


Published as a conference paper at ICLR 2023

Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. Understanding isomorphism bias in graph data
sets, 2019.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Wonyong Jeong, Hayeon Lee, Geon Park, Eunyoung Hyung, Jinheon Baek, and Sung Ju Hwang. Task-
adaptive neural network search with meta-contrastive learning. Advances in Neural Information
Processing Systems, 34:21310–21324, 2021.

Donald R Jones. A taxonomy of global optimization methods based on response surfaces. Journal of
global optimization, 21(4):345–383, 2001.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
deep neural networks: Mean field approach. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1032–1041. PMLR, 2019.

Cat P Le, Mohammadreza Soltani, Juncheng Dong, and Vahid Tarokh. Fisher task distance and its
application in neural architecture search. IEEE Access, 10:47235–47249, 2022.

Erin LeDell and Sebastien Poirier. H2o automl: Scalable automatic machine learning. ICML 2020
Workshop on Automated Machine Learning, 2020.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International conference
on machine learning, pages 3734–3743. PMLR, 2019.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

Yanxi Li, Zean Wen, Yunhe Wang, and Chang Xu. One-shot graph neural architecture search with
dynamic search space. In Proc. AAAI Conf. Artif. Intell, volume 35, pages 8510–8517, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with
eigenpooling. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 723–731, 2019.

Jeffrey Pennington and Pratik Worah. The spectrum of the fisher information matrix of a single-
hidden-layer neural network. Advances in neural information processing systems, 31, 2018.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2020.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International conference on machine learning, pages 4095–4104.
PMLR, 2018.

Yijian Qin, Xin Wang, Zeyang Zhang, and Wenwu Zhu. Graph differentiable architecture search with
structure learning. Advances in Neural Information Processing Systems, 34, 2021.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V
Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International Conference
on Machine Learning, pages 2902–2911. PMLR, 2017.

Roseanna W Saaty. The analytic hierarchy process—what it is and how it is used. Mathematical
modelling, 9(3-5):161–176, 1987.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Conference
on Machine Learning, pages 8459–8468. PMLR, 2020.

12



Published as a conference paper at ICLR 2023

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for graph
classification. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pages 2091–2100, 2021.

Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Gesmundo. Transfer learning with neural
automl. Advances in neural information processing systems, 31, 2018.

Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. Oboe: Collaborative filtering
for automl model selection. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, 2019.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pages 40–48. PMLR, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pages
974–983, 2018.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances in
Neural Information Processing Systems, 33:17009–17021, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
In International Conference on Machine Learning, pages 12121–12132. PMLR, 2021.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3712–3722, 2018.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pages 12674–12685. PMLR, 2021.

Huan Zhao, Quanming Yao, and Weiwei Tu. Search to aggregate neighborhood for graph neural
network. arXiv preprint arXiv:2104.06608, 2021.

Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture search of
graph neural networks. arXiv preprint arXiv:1909.03184, 2019.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8697–8710, 2018.

13



Published as a conference paper at ICLR 2023

A ADDITIONAL IMPLEMENTATION DETAILS

Runtime analysis. We have empirically shown that AUTOTRANSFER can significantly improve
search efficiency by reducing the number of trials needed to achieve reasonably good accuracy.
The only overhead we introduced is the procedure of estimating task embeddings. Since we use a
randomly initialized architecture, extracting each task feature only requires at most one forward and a
few backward passes from a single minibatch of data. The wall-clock time depends on the size of the
network and data structure. In our experiments, it typically takes a few seconds on an NVIDIA T4
GPU. We repeat the task feature extraction process 5 times for each anchor model, and for a total of
12 anchor models. Thus, the wall-clock time of the overhead for computing task embedding of novel
task is within a few minutes. We note the length of this process is generally comparable to one trial of
training on a small-sized dataset, and the time saved is much more significant for large-scale datasets.

Details for task-model-bank training. Our GNN model specifications are summarized in Table 3.
Our code base was developed based on GraphGym (You et al., 2020). For all the training trials, We
use the Adam optimizer and cosine learning rate scheduler (annealed to 0, no restarting). We use L2
regularization with a weight decay of 5e-4. We record losses and accuracies for training, validation
and test splits every 20 epochs.

Training details for AUTOTRANSFER. We summarize the training procedure for the projection
function g(·) in Algorithm 2. We set U = 12 and R = 5 throughout the paper. We use the same set
of anchor model designs as those in GraphGym. We use a two-layer MLP with a hidden dimension
of 16 to parameterize the projection function g(·). We use the Adam optimizer with a learning rate of
5e-3. We use margin = 0.1 and train the network for 1000 iterations with a batch size of 128. We
adopt K = 16 when selecting the top K trials that are used to summarize design distributions.

Details for adapting TPE, evolution algorithms. We hereby illustrate how to compose the search
algorithms with the transferred design priors. TPE is a Bayesian hyperparameter optimization method,
meaning that it is initialized with a prior distribution to model the search space and updates the prior
as it evaluates hyperparemeter configurations and records their performance. We replace this prior
distribution with the task-informed design priors. As evolutionary algorithms generally initialize a
large population and iteratively prune and mutate existing networks, we replace the random network
initialization with the task-informed design priors. As we mainly focus on the few trial search regime,
we set the fully random warm-up trials to 5 for both TPE and evolution algorithms.

Table 3: Design choices in our search space
Type Choices

Convolution GeneralConv, GCNConv,SAGEConv,GINConv,GATConv
Number of heads 1, 2, 4

Aggregation Sum, Mean-Pooling, Max-Pooling
Activation ReLU, pReLU, leaky_ReLU, ELU

Hidden dimension 64, 256
Layer connectivity Stack, Skip-Sum, Skip-Concat
Pre-process layers 1, 2

Message passing layers 2,4,6,8
Post-process layers 2, 3

Learning rate 0.1, 0.001
Training epochs 200, 800, 1600

B ADDITIONAL DISCUSSION

Limitations. In principle, AUTOTRANSFER leverages the correlation between model performance
rankings among tasks to efficiently construct model priors. Thus, it is less effective if the novel
task has large task distances with respect to all tasks in the task-model bank. In practice, users can
continuously add additional search trials to the bank. As the bank size grows, it will be less likely
that a novel task has a low correlation with all tasks in the bank.

14



Published as a conference paper at ICLR 2023

Algorithm 2 Training Pipeline for the projection function g(·)

Require: Task features {z(i)
f |T (i)} extracted for each task from the task-model bank. Distance

measure dg(·, ·) estimated in GraphGym.
1: for each iteration do
2: Sample T (i), T (j), T (k)

3: z
(i)
e , z

(j)
e , z

(k)
e ←− g(z

(i)
f ), g(z

(j)
f ), g(z

(k)
f )

4: y ←− 1 if dg(T (i), T (j)) < dg(T
(i), T (k)) else −1

5: Optimize objective function Lr(z(i)
e , z

(j)
e , z

(k)
e , y) in Eq. 2

6: end for

Social Impact. Our long-term goal is to provide a seamless GNN infrastructure that simplifies the
training and deployment of ML models on structured data. Efficient and robust AutoML algorithms
are crucial to making deep learning more accessible to people who are interested but lack deep
learning expertise as well as those who lack the massive computational budget AutoML traditionally
requires. We believe this paper is an important step to provide AI tools to a broader population and
thus allow for AI to help enhance human productivity. The datasets we used for experiments are
among the most widely-used benchmarks, which should not contain any undesirable bias. Besides,
training/test losses and accuracies are highly summarized statistics that we believe should not incur
potential privacy issues.

C ADDITIONAL RESULTS

Search efficiency. We summarize the average number of trials needed to surpass the average best
accuracy found by TPE with 30 trials in Table 4. We show that AUTOTRANSFER reduces the number
of explored architectures by an order of magnitude.

Table 4: Average number of search trials needed to surpass the average best result found by TPE with
30 trials

Node Graph
Physics CoraFull OGB-Arxiv COX2 IMDB PROTEINS

Num. of Trials 3 2 3 4 3 6
Accuracy 96.64±0.42 67.85±1.31 71.42±0.39 82.96 ± 1.75 52.33±2.13 80.21±1.21

Ablation study on number of anchor models and task embedding design. We empirically demon-
strate how the number of anchor models affect the rank correlation in Table 5. While 3 anchor models
are not enough to capture the task distance, we found that 9 and 12 have a satisfactory trade-off
between capturing task distance and computational efficiency. Furthermore, we empirically in Table 6
demonstrate that the learned task embedding space is superior to the proposed task feature space in
terms of correlation as well as final search performance.

Table 5: Average Kendall rank correlation of similarity rankings of the other tasks with respect to the
central task between the proposed method and GraphGym.

Num. of anchor models 3 6 9 12

Task Feature 0.03±0.34 0.11±0.36 0.16±0.34 0.18±0.30
Task Embedding 0.12±0.28 0.26±0.30 0.36±0.24 0.43±0.22

Visualizing model designs. We visualized the transferred design distributions and ground truth
design distributions on the TU-PROTEINS dataset in Figure 5, as well as Coauthor-Physics dataset in
Figure 6. We could observe that the transferred design distributions have a positive correlation on
most of the design choices.

15



Published as a conference paper at ICLR 2023

Table 6: Ablation study of the number of anchor models as well as task embedding vs. task feature
on OGB-Arxiv with 3 trials. We report the average test accuracy and the standard deviation over ten
runs.

Num. of anchor models 3 6 9 12

Task Feature 69.42±0.82 69.86±0.78 70.41± 0.59 70.67±0.52
Task Embedding 69.80± 0.75 70.59±0.63 71.16±0.47 71.42±0.39

1 2
0.0

0.1

0.2

0.3

0.4

0.5

gnn.layers_pre_mp
Transferred Design Prior
Ground Truth Prior

2 4 6 8
0.0

0.1

0.2

0.3

0.4

gnn.layers_mp
Transferred Design Prior
Ground Truth Prior

2 3
0.0

0.2

0.4

0.6

0.8

gnn.layers_post_mp
Transferred Design Prior
Ground Truth Prior

ski
pco

nca
t

ski
psu

m
sta

ck
0.0

0.1

0.2

0.3

0.4

gnn.stage_type
Transferred Design Prior
Ground Truth Prior

ad
d

max
mea

n
0.0

0.1

0.2

0.3

0.4

0.5

gnn.agg
Transferred Design Prior
Ground Truth Prior

25
6 64

0.0

0.1

0.2

0.3

0.4

0.5

0.6

gnn.dim_inner
Transferred Design Prior
Ground Truth Prior

ga
tco

nv

ga
tco

nv
2h

ea
d

ga
tco

nv
4h

ea
d

ge
ne

ral
con

v

gin
con

v

sag
eco

nv

gcn
con

v
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

gnn.layer_type
Transferred Design Prior
Ground Truth Prior

elu

lre
lu_

01
pre

lu rel
u

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
gnn.act

Transferred Design Prior
Ground Truth Prior

0.0
01 0.0

1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

optim.base_lr
Transferred Design Prior
Ground Truth Prior

16
00 20

0
80

0
0.0

0.1

0.2

0.3

0.4

0.5

optim.max_epoch
Transferred Design Prior
Ground Truth Prior

Figure 5: We plot the transferred design distributions and ground truth design distributions on the
TU-PROTEINS dataset.

1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

gnn.layers_pre_mp
Transferred Design Prior
Ground Truth Prior

2 4 6 8
0.0

0.1

0.2

0.3

0.4

gnn.layers_mp
Transferred Design Prior
Ground Truth Prior

2 3
0.0

0.2

0.4

0.6

0.8

gnn.layers_post_mp
Transferred Design Prior
Ground Truth Prior

ski
pco

nca
t

ski
psu

m
sta

ck
0.0

0.2

0.4

0.6

0.8

1.0

gnn.stage_type
Transferred Design Prior
Ground Truth Prior

ad
d

max
mea

n
0.0

0.1

0.2

0.3

0.4

gnn.agg
Transferred Design Prior
Ground Truth Prior

25
6 64

0.0

0.2

0.4

0.6

0.8

gnn.dim_inner
Transferred Design Prior
Ground Truth Prior

ga
tco

nv

ga
tco

nv
2h

ea
d

ga
tco

nv
4h

ea
d

ge
ne

ral
con

v

gin
con

v

sag
eco

nv

gcn
con

v
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

gnn.layer_type
Transferred Design Prior
Ground Truth Prior

elu

lre
lu_

01
pre

lu rel
u

0.0

0.1

0.2

0.3

0.4

0.5

0.6

gnn.act
Transferred Design Prior
Ground Truth Prior

0.0
01 0.0

1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

optim.base_lr
Transferred Design Prior
Ground Truth Prior

16
00 20

0
80

0
0.0

0.1

0.2

0.3

0.4

0.5

optim.max_epoch
Transferred Design Prior
Ground Truth Prior

Figure 6: We plot the transferred design distributions and ground truth design distributions on the
Coauthor-Physics dataset.

16


	1 Introduction
	2 Related Work
	3 Problem Formulation and Preliminaries
	4 Proposed Solution: AutoTransfer
	4.1 Basics of the Fisher Information Matrix (FIM)
	4.2 FIM-based Task Features
	4.3 From Task Features to Task Embeddings
	4.4 AutoML Search Algorithm with Task Embeddings

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiments on Search Efficiency
	5.3 Analysis of Task Embeddings

	6 Conclusion
	A Additional Implementation Details
	B Additional Discussion
	C Additional Results

