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ABSTRACT

Curated taxonomies enhance the performance of machine-learning
systems via high-quality structured knowledge. However, manually
curating a large and rapidly-evolving taxonomy is infeasible. In
this work, we propose ARBORIST, an approach to automatically
expand textual taxonomies by predicting the parents of new tax-
onomy nodes. Unlike previous work, ARBORIST handles the more
challenging scenario of taxonomies with heterogeneous edge seman-
tics that are unobserved. ARBORIST learns latent representations of
the edge semantics along with embeddings of the taxonomy nodes
to measure taxonomic relatedness between node pairs. ARBORIST
is then trained by optimizing a large-margin ranking loss with a
dynamic margin function. We propose a principled formulation of
the margin function, which theoretically guarantees that ARBORIST
minimizes an upper-bound on the shortest-path distance between
the predicted parents and actual parents in the taxonomy. Via ex-
tensive evaluation on a curated taxonomy at Pinterest and several
public datasets, we demonstrate that ARBORIST outperforms the
state-of-the-art, achieving up to 59% in mean reciprocal rank and
83% in recall at 15. We also explore the ability of ARBORIST to infer
nodes’ taxonomic-roles, without explicit supervision on this task.
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1 INTRODUCTION

Curated taxonomies have improved the performance of machine-
learning systems on a variety of tasks via high-quality structured
knowledge. Classification using class-label taxonomies has been
shown to be more accurate, both empirically [14, 36, 64, 71] and
theoretically [5, 6]. Products, movie and music taxonomies have
enabled more relevant recommendations in both the static and se-
quential settings [25, 27, 28, 79, 81]. Taxonomies have also powered
advances in web search [1], user-behavior modeling [38] and model
interpretability [34].

*Work done while the author was an intern at Pinterest.

1Google Shopping: http://google.com/basepages/producttype/taxonomy.en-US.txt
2Mozilla Website Directory: http://dmoztools.net

3The Pinterest Taxonomy: [23]
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Figure 1: Overview of ARBORIST expanding a taxonomy with
implicit, heterogeneous edge semantics (colored). ARBORIST
learns to measure the taxonomic relatedness s(q,v) of a
query-node pair with feature-vectors e; and e, . Relatedness
is defined via linear maps Py, ..., Py and node-embeddings
Wy, jointly trained to minimize a large-margin ranking loss.

Several platforms!~3 have come to rely on curated taxonomies to
power their user-profiling, content categorization and recommen-
dation systems. With the influx of new content on the platform, it
is crucial to update these taxonomies to remain relevant. However,
manual curation in the face of rapidly-evolving content is infeasible.
We thus focus on the problem of automatic taxonomy expansion.
We are specifically motivated by the task of expanding the Pinterest
Taxonomy: a curated hierarchy of over 10,000 interests that forms
the backbone of user and content understanding at Pinterest. Inter-
ests are textual phrases describing concepts that may be general
(such as architecture and health) or specific (such as mid-century
architecture and mental well-being). Interests are used to categorize
both Pinterest users and the content they create, and subsequently
used for recommendations [17, 33] and interest-based ad targeting.

In the most recent taxonomy expansion effort, 8 curators ap-
pended a total of 6,000 new taxonomy nodes in a month [23]: a
total of over 500 taxonomist-hours (by conservative estimates) at
the rate of 5 minutes per new taxonomy node. This is in stark con-
trast to the millions of new visual bookmarks added by Pinterest
users every day day, each potentially introducing a new interest to
the platform. Automatic taxonomy expansion is thus the only fea-
sible approach to maintain the relevance of recommended content
and ads as the platform experiences rapid growth.

The taxonomy expansion problem is challenging for several rea-
sons. For large-scale taxonomies having thousands of nodes, any
query node (to be appended to the taxonomy) has a plethora of
potential parents. Learning a binary classifier to predict whether
a query-node pair is taxonomically related is afflicted by the issue
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of lexical memorization [30]. Instead of learning to represent taxo-
nomic relationships, simple classifiers learn that certain nodes are
prototypical parents. For any query-node pair where the node is a
prototypical parent, the classifiers (often incorrectly) predict the
existence of a taxonomic relationship.

Hence, it is crucial to explicitly model taxonomic relationships.
This is difficult when the taxonomy has heterogeneous edge seman-
tics. For example, the Pinterest Taxonomy contains both 1s-IN edges
connecting places and 1s-TYPE-OF edges connecting dog breeds.
Moreover, the edge semantics are not explicitly recorded during
the taxonomic curation process: they are implicit and unobserved.
In addition, the business-critical nature of curated taxonomies man-
dates that automatic taxonomy expansion be overseen by in-house
experts, or risk causing business-wide failures. This introduces the
additional burden of easy human-verification.

Recent successes in textual taxonomy expansion were based on
learning transformations of word-embeddings [18, 20, 62, 75] and
comprise the current state-of-the-art [9, 12]. However, these ap-
proaches assume homogeneous edge semantics. Knowledge-base
embeddings [11, 46, 61] and hierarchical embeddings [21, 44, 63]
enable accurate link-prediction in knowledge graphs with hetero-
geneous, explicit edge-types. Yet, neither embedding approach can
handle unobserved edge-types, or construct embeddings for unseen
nodes. Finally, the issue of ease of human-verification in automatic
taxonomy expansion remains unexplored.

We thus propose ARBORIST, a method to expand textual tax-
onomies with implicit edge semantics. ARBORIST learns node em-
beddings, along with linear maps that are shared across the taxon-
omy, to represent the latent edge semantics. The combination of
local and global taxonomic information equips ARBORIST with the
flexibility to capture heterogeneous edge semantics while remain-
ing robust to missing or misplaced nodes. The node embeddings and
linear maps are trained to optimize a taxonomic-relatedness score,
such that child-parent node pairs are scored higher than other pairs
by a large margin. Distinct from previous approaches, ARBORIST
is guaranteed to predict parents that are near the actual parents
in the taxonomy: this facilitates human-verification by restricting
corrections to small taxonomic neighborhoods. Fig. 1 illustrates
ARBORIST operating on the Pinterest Taxonomy.

In summary, we make the following contributions:

I. We introduce ARBORIST, a taxonomy expansion method that
combines global and local taxonomic information to explicitly
model heterogeneous and unobserved edge semantics.

II. We prove that ARBORIST minimizes an upper-bound on the
shortest-path distances between the predicted and actual tax-
onomy parents. This property is invaluable for human verifica-
tion, since incorrectly appended nodes may be easily corrected
by probing a small local taxonomy neighborhood.

III. We evaluate ARBORIST on several datasets, metrics and com-
pare to several baselines to demonstrate performance exceed-
ing the present state-of-the-art. We conduct an in-depth abla-
tion study to analyze the effect of each hyperparameter.

IV. We explore the ability of ARBORIST to infer nodes’ taxonomic-
roles, without being explicitly trained for role-classification.

Reproducibility: Code and data (for the public taxonomies) are
available at http://cmuarborist.github.io.
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Edge Semantics Predictions
Method Heterogeneous Implicit Inductive
Hypernym Prediction X X 4

via Lexical Patterns [26, 42, 57]

via Word Embeddings [8, 51, 56, 67, 70]

via Projection Learning [9, 20, 62, 75]
Knowledge-Graph Embeddings [11, 46, 61] v X X
Hierarchical Embeddings 4 4 X

in Euclidean Space [15, 31, 43, 63, 65]

in Hyperbolic Space [3, 13, 21, 44]

in Gaussian Space [66]
HIExpaN [55] X v 4
ARBORIST (this work) v v v

Table 1: Related work. Inductive approaches can add both
new nodes and new edges. HIExpaN and lexical-pattern hy-
pernym predictors require a text corpus.

2 RELATED WORK

Taxonomy expansion is related to hypernym prediction. Hypernym
predictors learn to represent the 1s-A relationship using a training
taxonomy with homogeneous 1s-a semantics (such as WordNet [40])
and (optionally) a textual corpus. While earlier approaches relied
on lexical patterns [26, 42, 57], recent methods learn classifiers
operating on pre-trained word-embeddings [8, 51, 56, 67, 70]. A few
methods learn word-embeddings tailored for hypernym prediction
[4, 77], but cannot infer the embeddings of unseen nodes to be added
to the taxonomy (they are not inductive). Taxonomy learning via
hypernym prediction is surveyed in [68].

The state-of-the-art in hypernym prediction is via piecewise
projection-learning on word-embeddings [20]. In this approach, a
projection matrix is learned for each cluster of the word-embedding
space to minimize the Ly-norm between the projected child’s word-
embedding and parent’s word-embedding. This approach was later
extended to use randomly sampled non-parents (negative samples)
during training [62] and to jointly learn the clusters and their pro-
jection matrices [75]. A variant of projection-learning called CRIM
[9] incorporates negative sampling, word-embedding fine-tuning
and multiple projection matrices to achieve the best performance
in the SEMEvAL 2018 hypernym discovery task [12]. We compare
ARBORIST with CRIM in our evaluation.

HIExpAN [55] expands taxonomies with unobserved but homo-
geneous edge semantics, given a training taxonomy and textual
corpus. The method iteratively expands the taxonomy-width via
set-expansion and taxonomy-depth via weakly-supervised rela-
tion extraction. Both subprocedures require a large textual corpus,
which is unavailable in our scenario. The expansion is task-guided,
since the edge semantics are inferred from the training taxonomy
instead of being explicitly provided.

Knowledge-base completion is the closely related task of infer-
ring missing links in knowledge-graphs with heterogeneous edge
semantics that are explicitly observed. Recent approaches learn em-
beddings for nodes and edge types and predict links via algebraic
operations [11, 46, 58, 61], which is reminiscent of earlier work
on learning relational embeddings [47, 53, 54]. Since the embed-
dings are derived from the given knowledge-graph, they cannot be
inferred for unseen nodes or unobserved edge types.
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Hierarchical embeddings have been recently proposed that learn
embeddings for taxonomy nodes in Euclidean [15, 31, 43, 63, 65],
hyperbolic [3, 13, 21, 44, 45] or other expressive spaces [66]. These
embeddings may be supervised by a training taxonomy, or unsu-
pervised and operate on a textual corpus. Hierarchical embeddings
do not assume specific lexical relationship types or homogeneity in
the taxonomy. However, current hierarchical embedding methods
cannot infer the embeddings of unseen taxonomy nodes, and are
only effective in predicting missing taxonomy links.

Taxonomy induction is the related unsupervised task of con-
structing a taxonomy from a textual corpus [7, 35, 76]. Though
the target taxonomy semantics are typically fixed to known lexical
relationships (such as 1s-A or 15-IN), recent work has extended tax-
onomy induction to accommodate arbitrary edge semantics [78].
Taxonomy expansion is complementary to taxonomy induction,
and is the logical next step in the taxonomy learning process [68].

Our proposed method draws on several theoretical concepts
from similarity and distance metric-learning [41, 52, 74]; specifi-
cally their large-margin [71, 72], hierarchical [14, 64] and learning-
to-rank [32, 37] formulations. We are also inspired by work on
graph-embeddings [24, 49, 60]; specifically on structural-role em-
beddings [2, 16, 50]. With our development of ARBORIST we estab-
lish principled connections between these learning tasks and the
taxonomy expansion problem.

3 PROBLEM OVERVIEW

We now formalize the taxonomy expansion problem. Denote by
7 = (V,E) the taxonomy to be expanded, represented as a directed
acyclic graph. Each node u € V is a textual phrase and each directed
edge (u,v) € E represents a taxonomic relationship between a child
u € V and its parent v € V. We assume that each node u is equipped
with a feature-vector e, € R derived using an external procedure,
such as via unsupervised word-embeddings [39, 48, 59].

We impose weak assumptions on the nature of the taxonomy.
Specifically, we expect child-parent relationships in the taxonomy
to satisfy the distributional inclusion hypothesis [22]: the parent is
(i) related to, and (ii) more general than the child. We also expect
the taxonomy to follow a hierarchical structure: each child is only
linked to its least-general related nodes. Note that a taxonomy node
may have multiple parents.

The specific semantics of the edges are unobserved and possibly
heterogeneous, depending on the taxonomist’s business goals. For
example, geographic taxonomies have homogeneous edge seman-
tics (such as 15-1N) whereas more general taxonomies such as the
Pinterest Taxonomy exhibit heterogeneous edge semantics (such
as IS-SUBCLASS-OF and IS-PART-OF).

Given an unseen query node and a ground-truth taxonomy, our
goal is to append the query node to the taxonomy as a new leaf
node. In practice, in-house taxonomists expect an ordered list of
predicted parents for the query node that can be verified before
updating the taxonomy. Thus, we formalize this objective as the
following ranking problem:

ProBLEM 1 (TaxoNOMY EXPANSION). Given a taxonomy 7 =
(V,E), feature vectors e,, € R4 for each node u € V and a query
q ¢ V with feature vectoreq € R4, rank the taxonomy nodes such
that the true parent(s) of q are ranked higher than its non-parents.
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4 PROPOSED METHOD: ARBORIST

At its core, ARBORIST learns to measure the taxonomic related-
ness of node-pairs as a function of their respective feature vectors
(§4.1). Taxonomic relatedness is defined in terms of two learnable
parameters: (i) embeddings of the taxonomy nodes capturing their
taxonomic roles, and (ii) a collection of linear maps that are shared
across the taxonomy. The parameters are trained to minimize a
large-margin ranking loss (§4.2), with a theoretically-grounded
dynamic margin function (§4.3). To ensure fast convergence, ARr-
BORIST employs distance-weighted negative sampling (§4.4). We
now describe ARBORIST in detail.

4.1 Measuring Taxonomic Relatedness

We seek to define a function s : V X V — R that can be trained to
measure the taxonomic relatedness of node-pairs. For a child node
u and parent node v, a straightforward definition of s using a linear

Rdxd

map M € is as follows:

s(u,v) = (eyM) - ey. (1)

where M is learned from the child-parent node-pairs in the ground-
truth taxonomy. Intuitively, M represents each taxonomic relation-
ship as a linear transformation in the nodes’ feature-space. However,
heterogeneous edge semantics may not be represented well by a
single transformation. Hence, we capture the heterogeneity in edge
semantics using a different linear map M, at each parent node v:

s(u,v) = (eyMy) - ey. 2

A similar formulation was used in learning hierarchical similarity
metrics [64]. A critical problem with this formulation is the ex-
plosion in the number of parameters to O(d?|V|), where typically
d = 0(100) and |V| = 0(1000). Additionally, the training data is
fragmented into node-level subsets to train each linear map. Over-
all, this constrains the method’s scalability, reduces its robustness
to training data with missing or misplaced taxonomy nodes, and
increases its tendency to overfit.

We mitigate this problem by exploiting the fact that the number
of distinct edge semantics in a taxonomy is often much smaller
than O(|V]). Concretely, we assume k latent edge semantics and
define each linear map as a weighted combination of k linear-maps
Py,...,PL € R9%4 that are shared across all taxonomy nodes:

k
MUZZWU[i]XPi. 3

i=1

Here, wo, € R¥ is an embedding of the node v to be learned. This
formulation reduces the number of parameters to O(d?k + k|V|)
without fragmenting the training data.

We further constrain the node-embeddings by defining them in
terms of the node feature-vectors as follows:

wy = fley) 4)

where f : R — R is an arbitrary function to be learned. Con-
straining the node-embeddings in this manner improves robustness
for nodes having a large number of missing children, which are
more susceptible to noise. We instantiate f as a simple linear-map;
we did not see significant gains from more complex functions.
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4.2 Learning and Prediction

We now seek to rank the taxonomy nodes for a given query node
such that its true parents are ranked higher than other nodes. To
improve robustness and generalization, we train the model such that
child-parent node-pairs have higher taxonomic relatedness than
other node-pairs by a large margin. Formally, our goal is to satisfy
the following constraint for every child-parent pair (u,v) € E:

s(u,v) = s(u,v’) + y(u,v,0") Vo' €V - H(u), (5)

where H(u) C V is the set of parents of u, v’ is a non-parent node
and y(u,v,v’) is the desired margin defined as a function of the
child, parent and non-parent nodes.

We now derive the loss function to be minimized in order to
satisfy the large-margin constraint (5). Denote by &E(u, v, v’) the
degree to which a non-parent node v’ violates the large-margin
constraint of child-parent pair (u, v):

E(u,v,v") = max[0, s(u, v’) — s(u, v) + y(u,v,v’)]. (6)

When the large-margin constraint is satisfied, &(u,v,v’) = 0 and
the non-parent incurs no violation. Otherwise, &(u, v,v’) > 0.

The overall loss function £(7") is the total violation of the large-
margin constraints by the non-parents corresponding to every
child-parent pair (u, v):

L(T) = Z Z &E(u,v,v") (7)

(u,v)€E v'€V—-H(u)

The node embeddings w, and linear-maps P, .. ., Py are jointly
trained to minimize £(7) via gradient-descent. Given the trained
parameters and a query node q ¢ V having feature-vector e, pre-
dictions are made by ranking the taxonomy nodes v in decreasing
order of their taxonomic relatedness s(g, v).

4.3 Dynamic Margin Function

An Lz-norm variant of the large-margin loss in (7) was recently
proposed as the triplet loss [52] for similarity-learning in computer
vision. The triplet loss employs a constant margin y for all training
pairs, which is tuned via cross-validation. To accommodate more
complex decision boundaries, several approaches extend the triplet
loss with dynamic or adaptive margins, set using heuristics [69] or
learned from the data [19].

We propose a principled dynamic margin function that requires
no tuning, learning or heuristics. We relate the margin to the
shortest-path distances in the taxonomy between the predicted and
true parent nodes. Denote by d(-, -) the undirected shortest-path
distance between two nodes in the taxonomy. With the following
theorem, we bound the undirected shortest-path distance between
the highest-ranked predicted parent 9(u) = arg max s(u, 9) and
any true parent v for every child node u:

PrROPOSITION 1. When y(u,v,v’) = d(v,v’), L(T) is an upper-
bound on the sum of the undirected shortest-path distances between
the highest-ranked predicted parents and true parents:

> d(w,d(u) < L(T).

(u,v)€E
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Proor. The highest-ranked predicted parent for a node is its
most-related taxonomy node. The following inequality thus follows:
s(u,o(uw)) —s(u,0) >0 VoeV. (8)

Since y(u,v,9(u)) = d(v,0(u)), we can use (6) and (8) to lower-
bound the large-margin violation of the predicted parent:

E(w,v,0(u)) = max[0,s(u, o)) —s(u,v) + y(u,v,o(u))]
> s(u,0(u)) —s(u,v) + y(u,v,0(u))
2 y(u,v,9u) = d(v,o(u)) )

Using the fact that &(u, v, v”) > 0 and summing over child-parent
pairs and their corresponding non-parents concludes our proof:

Z Z Eu,v,0") (10)

(u,v)€E v’ €V—H(u)

L(7T)

> ) &wv,4(u)
(u,v)€E

> Z d(v,9(w). O (11)
(u,v)€E

Thus, minimizing the loss in (7) also minimizes an upper-bound
on the sum of shortest-path distances between the highest-ranked
predictions and true parent nodes. This guarantees that the pre-
dicted parent nodes are near the true parent nodes in the ground-
truth taxonomy. Intuitively, setting y(u,v,v’") = d(v,v’) encour-
ages non-parent nodes that are further away in the taxonomy to
be scored relatively lower on taxonomic relatedness.

This guarantee is important from the perspective of taxonomic
experts; if ARBORIST incorrectly predicts the parent of a query-
node, the taxonomic expert need only probe a small neighborhood
around the predicted parent node in the taxonomy in order to
find the correct parent. This requires substantially less effort than
searching the entire taxonomy for the correct parent.

4.4 Scalable Negative Sampling

Summing over all the non-parents v’ € V — H(u) for each pair
(u,v) € E requires computing O(VE) taxonomic relatedness scores
in every iteration of the minimization process, which is infeasi-
ble for large-scale taxonomies. To improve scalability, we instead
sample m non-parents (or negative samples) from V — H(u).

The negative-sampling distribution plays an important role in the
convergence of gradient-based minimization of the large-margin
loss. In practice, sampling negatives uniformly results in extremely
slow convergence. This is because negative samples that incur zero
violation of the large-margin constraint in (6) contribute nothing to
the gradient. Hence, heuristics such as “semi-hard negative mining”
[52] have been proposed to select more effective negative samples.

We employ a negative-sampling distribution based on distance-
weighted negative-sampling [73], which we found provides a favor-
able tradeoff between the computational effort of negative-sampling
and the rate of convergence of minimization. We sample each non-
parent v’ for a node-pair (u, v) with probability:

Pr(v’|(u, v)) < ey, - €. (12)
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Dataset PINTEREST SEMEvAL MAMMAL
Number of edges 10,768 18,827 5,765
Number of nodes 10,792 8,154 5,080

Training nodes 7,919 7,374 4543

Test nodes 2,873 780 537
Depth 7 o0 18
Heterogenous Edges v X 4

Table 2: Taxonomy datasets. Test sets have 15% of the leaf
nodes and their outgoing edges. Taxonomy depth is the
longest shortest-path length, or « if directed-cycles exist.

5 EVALUATION
5.1 Datasets and Metrics

We evaluate ARBORIST in three different scenarios, each correspond-
ing to a different taxonomy dataset (summarized in Table 2).

Semi-synthetic heterogeneous taxonomy (MamMMaL). We con-
struct a taxonomy from WordNet [40] by extracting the subgraph
rooted at mammal.n.@1, restricted to noun nodes and edges of three
types: (i) hypernyms capturing 1s-A semantics (for example, rhino
15-A odd-toed ungulate), (ii) part-holonyms capturing 1s-PART-OF-
WHOLE semantics (for example, hoof 1S-PART-OF-WHOLE ungulate),
and (iii) substance-holonyms, capturing 1S-PART-OF-SUBSTANCE se-
mantics (for example, collagen 1S-PART-OF-SUBSTANCE cartilage).
Other edge types in WordNet were either the reverse-form of the
selected edge types, or cannot exist in a valid hierarchy (such as the
SYNONYM edge type). We compute the 300-dimensional FastText
embedding [10] for each node.

Benchmark homogeneous taxonomy (SEMEvAL). We com-
bine the train and test subsets of the SemEval 1A taxonomy used in
the SemEval 2018 hypernym discovery shared task [12]. While this
taxonomy exhibits homogeneous 1s-A semantics, it is a manually-
verified benchmark for taxonomy expansion that enables compari-
son with the state-of-the-art. As with MAMMAL, we compute the
300-dimensional FastText embedding [10] for each node.

Gold heterogeneous taxonomy (PINTEREST). PINTEREST is an
expert-curated taxonomy that forms a core component of user and
content understanding at Pinterest. The taxonomy nodes may be
concrete entities (such as New York) or abstract concepts (such as
Mental Wellbeing) from a wide array of domains such as fashion,
health and travel. Each node represents an interest associated with
a user or visual bookmark on Pinterest. The taxonomy exhibits
implicit and heterogeneous edge semantics. We compute the 300-
dimensional PinText embedding [80] for each node.

To compute the embeddings of multi-word nodes in any dataset,
we mean-pool the embeddings of their constituent words. For each
dataset, we hold-out a 15% sample of the leaf nodes as a test subset
and use the remainder for training and validation.

Metrics. We measure the ranking quality of the predicted par-
ents using the mean reciprocal rank (MRR). For a test query-parent
pair, the reciprocal rank of the true test parent is the multiplicative
inverse of its rank in the predicted parents list. If a test query has
multiple parents, we use the the reciprocal of the highest ranked
true parent. The MRR is the mean of the reciprocal ranks over all
test queries, ranging from 0% (worst) to 100% (best).

Pinterest SemEval Mammal
Method Acc.(%) F1 (%) Acc.(%) F1(%) Acc.(%) F1(%)
VEc-CONCAT 86.216 86.462 62.618 59.255 72.466 72.089
VEC-Sum 88.148 87.741 64.950 60.600 78.294 77.236
VEC-DI1FF 87.783 87.005 66.469 63.379 77.787 75.716
VEc-ProOD 87.121 85.953 68.374 65.670 80.152 78.017

Table 3: Accuracy (Acc.) and F1-score (F1) in percentage of
hypernym detectors on binary classification of child-parent
pairs. Threshold set to 0.5. For both metrics, 100.0 is best.

We also measure the recall at 15 (Recall@15) of the predicted
parents, which is the fraction of test queries for which any of the
true test parents lie in the top 15 predicted parents. This metric
ignores the actual position of the parent in the predicted parent list.

Finally, we measure the undirected shortest-path distance (SPDist)
in the taxonomy between the top-ranked predicted parent and the
true test-parent, averaged over all test queries. If the top-ranked
predicted parent and the true test-parent lie in disconnected com-
ponents of the taxonomy, their distance is set to the maximum
distance between any two nodes in the taxonomy. This metric
quantifies how easily a taxonomic expert can verify and fix incor-
rectly attached nodes by probing a small neighborhood around
their predicted parents.

5.2 Evaluating Hypernym Detectors for
Taxonomy Expansion

A straightforward approach to expand taxonomies is via state-of-
the-art hypernym detectors [8, 51, 56, 70]. Hypernym detectors are
binary classifiers that predict whether a node-pair is taxonomically-
related. They operate on features derived from the feature-vectors
of the node-pair via simple algebraic operations. We evaluate hy-
pernym detectors based on vector concatenation (VEC-CONCAT),
addition (VEC-SUM), subtraction (VEC-DIFF) and elementwise-
product (VEC-PROD). For each hypernym detector, we train a bi-
nary Random Forest classifier with 100 trees' on a balanced training
set, constructed by randomly sampling an unconnected node-pair
for each connected node-pair in the training data.

We verify that the trained hypernym detectors perform well in
classifying taxonomically-related node-pairs, achieving F1 scores
between 54-88% (Table 3). Notice that all hypernym detectors per-
form relatively better on PINTEREST than on SEMEvAL and MAMMAL;
a trend we will observe throughout our evaluation. This may be
attributed to the feature-vectors for PINTEREST being fine-tuned on
Pinterest content, in contrast with the feature-vectors for SEMEvVAL
and MAMMAL trained on an unrelated web corpus.

Also notice that no single hypernym detector outperforms all the
others across datasets. This suggests that taxonomic relationships
are difficult to represent universally with simple algebraic oper-
ations. Further, the best performing hypernym detector for each
dataset achieves the lowest mean shortest-path distance (SPDist)
between the predicted and true parents. This empirically motivates
the utility of our theoretical guarantee (§4.3) for taxonomy expan-
sion performance.

! All other options were set to the scikit-learn-0.21.3 defaults.
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PINTEREST SEMEvAL MAMMAL

MRR (%) Recall@15 (%) SPDist | MRR (%) Recall@15 (%) SPDist | MRR (%) Recall@15(%) SPDist
VECc-CONCAT 41.831 64.671 3.816 20.992 33.155 3.474 14.995 30.726 4.274
VEC-Sum 33.891 62.548 4.124 17.803 27.607 4.047 19.611 38.175 4.186
VEC-DIFF 41.185 67.699 3.494 18.514 30.949 4.163 31.386 46.182 3.674
VEC-PrOD 42.233 68.743 3.144 17.483 31.083 4178 32.177 48.976 3.665
CRIM 53.223 79.325 2.393 41.691 62.064 2.743 21.345 52.700 4.080
ARBORIST 59.044 83.606 2.220 43.373 67.694 2.864 29.354 61.639 3.225

Table 4: Mean reciprocal rank (MRR) and recall at 15 in percentage, and the mean shortest-path distance (SPDist) between the
true parents and the highest-ranked predicted parents. For MRR and recall at 15, 100.0 is best. For SPDist, 0.0 is best. The best
performing method for each dataset and metric combination is emphasized in bold.

Query Predicted Parents
Accurate Predictions (true parents in the top 4 predicted parents)
luxor africa travel, european travel, asia travel, greece
2nd month baby baby stage, baby, baby names, preparing for baby
depression mental illness, stress, mental wellbeing, disease
ramadan hosting occasions, holiday, sukkot, middle east and african cuisine

minion humor

humor, people humor, character humor, funny

Inaccurate Predictions (true parents not in the top 4 predicted parents)

artificial flowers
thor
smartwatch
disney makeup
holocaust

planting, dried flowers, DIY flowers, edible seeds

adventure movie, action movie, science movie, adventure games
wearable devices, phone accessories, electronics, computer
halloween makeup, makeup, costume makeup, character makeup
history, german history, american history, world war

Predictions for Non-Taxonomic Pinterest Search Queries

what causes blackheads
meatloaf cupcakes
benefits of raw carrots
kids alarm clock
humorus texts

skin concern, mental illness, feelings, disease

cupcakes, desserts, no bake meals, steak

food and drinks, vegetables, diet, healthy recipes

toddlers and preschoolers, child care, baby sleep issues, baby
poems, quotes, authors, religious studies

Table 5: Top 4 predicted parents by ARBORIST on PINTEREST for a sample of test queries (top, middle) and search queries not
present in the taxonomy (bottom). The true parent for each query is emphasized in bold.

We now evaluate hypernym detectors on the taxonomy expan-
sion task. We use the predicted probability of a node-pair being
taxonomically related to rank the taxonomy nodes for each test
query node. The results are in Table 4. The results demonstrate that
hypernym detectors can serve as strong baselines for taxonomy
expansion. This is especially true for high-quality feature-vectors
like PinText, which may capture hierarchical relationships between
taxonomy nodes by virtue of being fine-tuned on relevant corpora.

Intriguingly, hypernym detectors outperform all other methods
on MaMMAL (in terms of the MRR). The nodes in the MaMMAL
taxonomy are dominated by scientific terms, which are rare in the
crawled web corpora used to train the input FastText embeddings.
Hence, the embeddings may not contain enough information to
infer hierarchical relationships. With such information-poor em-
beddings (with respect to the given taxonomy), simpler models such
as hypernym detectors may be preferable. Hypernym detectors are
worse off on other metrics, but not by a significant margin.

5.3 Comparing ARBORIST with
k-Projection Learning (CRIM)

We now compare ARBORIST with CRIM [9], a variant of projection-
learning [20] that outperformed competing methods by a significant
margin on the SemEval 2018 hypernym discovery shared task [12].
CRIM learns a global weighted combination M of k linear-maps to
represent all taxonomic relationships. The taxonomic relatedness
of a node-pair u, v is measured as s(u,v) = (e, M) - e,, where e,
and e, are the node-pair feature vectors. M is trained to minimize
a binary cross-entropy loss similar to that of word2vec [39].

We reimplement the supervised (corpus-free) variant of CRIM
with the initialization, fine-tuning and negative-sampling heuristics
described in [12]. We discard the positive-subsampling and multi-
task learning heuristics that were found to be detrimental. We
optimize both ArBORIST and CRIM using Adam [29] and tune their
hyperparameters on a validation subset of the training data. Since
ARBORIST and CRIM converge at different rates, we train both
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methods for 150 epochs (for PINTEREST and SEMEVAL) or 500 epochs
(for MaMMAL) and select the trained model at the epoch with the
highest validation MRR (see appendix for details).

Taxonomy expansion results are reported in Table 4. Overall,
ARrBORIST and CRIM improve over the hypernym detectors on all
datasets and evaluation metrics, by over 200% in some cases. This
justifies explicitly optimizing for the taxonomy expansion ranking
task, and representing taxonomic relationships with more complex
functions of the node-pair feature-vectors. ARBORIST outperforms
CRIM on all datasets and evaluation metrics. Notably, ARBORIST
gracefully degrades to similar performance as CRIM on the SEMEvAaL
taxonomy with homogeneous edge semantics.

Table 5 reports the top-ranked predicted parents by ARBORIST
on PINTEREST for both accurately and inaccurately-predicted test
queries (true parents are emphasized in bold). The results showcase
predictions on a variety of node-types present in the PINTEREST
taxonomy, from concrete entities such as locations (Luxor) and
fictional characters (Thor) to abstract concepts such as depression.
We observe that even inaccurately-predicted parents conform to
some notion of relatedness and immediate hierarchy, suggesting
potentially missing edges in the taxonomy.

We also showcase ARBORIST s predictions for search queries made
on Pinterest that are not present in the taxonomy (Table 5, bottom).
Qualitatively, ARBORIST is able to accurately associate unseen natu-
ral language queries to potentially related nodes in the PINTEREST
taxonomy. Of note is the search query what causes blackheads,
which is not just associated with its obvious parent skin concern,
but also to the very relevant parent feelings.

5.4 Ablation Study

The performance of ARBORIST may be attributed to two key model-
ing choices: (i) learning node-specific embeddings w, to capture
heterogeneous edge semantics, and (ii) optimizing a large-margin
ranking loss with dynamic margins. We now evaluate the impact
of each of these modeling choices on taxonomy expansion perfor-
mance with a suite of ablation experiments conducted on PINTEREST.
We use CRIM as a baseline. The results are summarized in Fig. 2.

We first restrict ARBORIST to a single embedding for all nodes
(termed single-role). With this restriction, ARBORIST can no longer
capture heterogeneous edge semantics. Performance gains over
CRIM can only attributed to the large-margin loss. Fig. 2(a) shows
that ARBORIST still improves over CRIM by 2 percentage points,
demonstrating the utility of the large-margin loss.

Next, we allow ARBORIST to capture heterogeneous edge seman-
tics, but modify it to minimize the BCE loss used by CRIM. In this
configuration, performance gains over CRIM can be attributed to
capturing heterogeneous edge semantics. From Fig. 2(a), we find
that this configuration improves over CRIM by 4 percentage points.
Thus, capturing heterogeneous edge semantics has a greater mar-
ginal impact on performance than the choice of loss function. Given
the technical difficulty of optimizing large-margin losses (which
converge slowly and require long training times), ARBORIST with
the BCE loss is a pragmatic short-term alternative.

Finally, we modify ARBORIST to use constant margins and evalu-
ate its performance with different margin values. The performance
at the best margin value is reported in Fig. 2(a). We find that the
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(c) Uniform vs. distance-weighted negative-sampling

Figure 2: Ablation study of ARBORIST on PINTEREST: (a) sum-
mary of results, (b) effect of dynamic margins vs. constant
margins, (c) effect of uniform negative sampling vs. distance-
weighted negative sampling.

restriction to constant margins affects performance severely, in
addition to introducing another hyperparameter to tune. For no
constant margin-value did performance exceed that of ARBORIST
with dynamic margins (Fig. 2(b)).

The negative-sampling distribution plays a critical role in the
convergence of the loss function. To understand its effect on tax-
onomy expansion performance, Fig. 2(c) (left) shows the training
loss of ARBORIST at each training epoch with uniform negative
sampling and distance-weighted negative sampling. With uniform
negative-sampling, the training loss quickly drops to near-zero,
leading to extremely slow convergence. This is due to the lack
of active negative-samples that contribute non-zero values to the
training-loss. This is evident from Fig. 2(c) (right), which shows
the number of active negative-samples at each training epoch for
uniform and distance-weighted negative sampling. With distance-
weighted negative sampling, the number of active samples drops
at a slower rate. This prevents the training loss from dropping to
near-zero too quickly and facilitates faster convergence.



WWW °20, April 20-24, 2020, Taipei, Taiwan

. 60 ’ “/‘\/. ‘ ‘
g\c: 50 ‘/ /'—‘——l
o
40 o/ 5
30 T T T T T
8 16 324864 1 2 5 10 15
k m
60 ‘ )
3 50 o o
3\, 40 ‘/ u
x 304 / g
o / @
= 20/
10 #
20 40 60 80 0O 50 100 150

Train Epoch

Train Fraction (%)

Figure 3: Effect of the number of linear maps k (top-left),
the number of negative samples m (top-right) and the train-
ing data fraction (bottom-left) on the MRR of ARBORIST on
PINTEREST. Also shown (bottom-right) is the average undi-
rected shortest-path distance between predicted and true
test parents (SPDist) with training epoch.

5.5 Effect of Hyperparameters

Fig. 3 shows the MRR of ARBORIST on PINTEREST for different val-
ues of the number of linear maps k (top-left) and the number of
negative samples m (top-right). We find that increasing k improves
taxonomy expansion performance monotonically, due to the in-
creased model flexibility. Increasing m improves performance to a
certain limit, after which there is no significant improvement. A
larger m promotes a larger number of active negative samples that
contribute to the gradient of the loss, leading to faster convergence.

The obtained MRR for different k and m in Fig. 3 also indicates
that the performance of ARBORIST is not sensitive to small variations
in k and m. Thus, tuning k and m by cross-validating over a coarse
grid of values suffices in practice. Our recommendation is to set k
to be as large as possible, within the constraints of the available
compute time and memory.

We also evaluate the robustness of ARBORIST as the fraction of
training data available decreases in Fig. 3 (bottom-left). We find that
ARBORIST remains performant until more than half the training
data is discarded, at which point it performs on par with hypernym
detectors trained on 85% of the taxonomy. This robustness may be
attributed to the sharing of information between different nodes via
the global linear maps; nodes that lack sufficient incoming edges to
learn from may benefit from similar nodes that have sufficient data.

In Fig. 3 (bottom-right), we also demonstrate that ARBORIST
reduces the mean undirected shortest-path distance between the
predicted and true test parent nodes (SPDist) in each training epoch.
While our proposition in §4.3 guarantees the same for the training
data, Fig. 3 suggests that the same result may also hold for unseen
test data. We delegate formal treatment of this generalization ability
to future work.
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Figure 4: Taxonomic roles inferred by ARBORIST on the Mam-
MAL taxonomy. One-dimensional PCA projection (on the y-
axis) of the node-embeddings w,, for all internal nodes v.
Nodes colored by their assigned roles. Nodes assigned to the
substance holonym role omitted due to rarity.

5.6 Inferred Taxonomic Roles

We now qualitatively explore the embeddings of each node w,
learned by ARBORIST. We are interested in whether these embed-
dings serve as a good proxy for the nodes’ taxonomic roles, without
being explicitly trained for taxonomic role classification. We ex-
ploit the availability of ground-truth edge-semantics available in the
MaMMAL taxonomy to assign one of three taxonomic roles to each
internal node: hypernym (1s-A), part-holonym (1s-PART-OF-WHOLE)
or substance-holonym (I1S-PART-OF-SUBSTANCE). We construct the
assignment based on each nodes’ most frequent incoming edge
type. Statistics of the assignment are reported in Table 6. Due to
the rarity of the substance-holonym role, we omit it from future
consideration in this section.

To understand the variation in node-embeddings with their
ground-truth taxonomic roles, we visualize in Fig. 4 the 1-dimensional
PCA projections (on the y-axis) of wy, for all the internal nodes of
the MAMMAL taxonomy. Nodes are colored based on their assigned
taxonomic role, and a random sample of nodes are labelled by
their associated text. While we do not observe any distinct cluster-
ing (even with two-dimensional PCA or t-SNE projections), we do
observe a systematic variation in the taxonomic-role with the node-
embedding. Fig. 4 reveals a continuous transition of taxonomic
roles along the PCA dimension (the y-axis) from the hypernym role
(at the bottom) to the part-holonym role (at the top).
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Node Role Number of nodes
Hypernym (1s-a) 1164
Part-Holonym (1S-PART-OF-WHOLE) 260
Substance-Holonym (IS-PART-OF-SUBSTANCE) 13

Table 6: Number of internal nodes in MAMMAL assigned to
each role, based on their most frequent incoming edge-type.

Role-Classifier ROC-AUC (%) F1-Score (%) Accuracy (%)

Majority Class 50.000
Random Forest 76.001

32.000 80.946
44.536 81.641

Table 7: Performance of node-role classification using the
embeddings w, learned by ARBORIST. Nodes restricted to
internal nodes with hypernym or part-holonym roles, split
into 50% train and test subsets. Thresholds for F1-score and
accuracy tuned on the test subset.

This suggests that, while simple clustering may not be able to
recover taxonomic roles from node-embeddings, more complex
models may succeed. To quantify if any signal exists in the node-
embedding that predicts its taxonomic role, we train a Random For-
est classifier with 100 trees on the node-embeddings and report the
taxonomic-role classification performance in Table 7. The classifier
performs significantly better than simply predicting the majority
class (hypernym). This confirms the existence of some predictive
signal in the node-embedding for taxonomic-role classification. We
delegate further study on the recovery of taxonomic-roles from
node embeddings to future work.

6 CONCLUSION

We have proposed ARBORIST, an approach to automatically expand
textual taxonomies with heterogeneous edge semantics that are un-
observed. ARBORIST learns latent representations of the edge seman-
tics, along with node embeddings capturing their taxonomic roles,
to measure taxonomic relatedness between node-pairs. ARBORIST is
trained by optimizing a large-margin ranking loss with a dynamic
margin function, which is theoretically guaranteed to minimize an
upper-bound on the shortest-path distance between the predicted
parents and actual parents in the taxonomy. The shared linear maps
representing the edge semantics and large-margin ranking loss im-
prove robustness and generalization. Via extensive evaluation on a
large-scale taxonomy at Pinterest and several public datasets, we
have demonstrated that ARBORIST outperforms the state-of-the-art.
The inferred taxonomic roles further induce a useful categorization
of the taxonomy nodes that merits further exploration. In future
work, we plan to develop an online update mechanism to train
ARBORIST in a streaming fashion. We also plan to derive confidence
scores for the predicted parents, providing an additional knob for
human experts to filter out irrelevant predictions.
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APPENDIX: IMPLEMENTATION DETAILS

We describe in this appendix several implementation details that
we found were crucial for performance.

6.1 Dichotomous node feature-vectors

For each node v, we create two versions of its feature-vector, e%,
to use when the node appears in eq. (2) as a child and €2, to use
when it appears as a parent. We fix e, but allow €2, to be optimized
during training. This is analogous to the pivot and context vectors
in word2vec [39].

6.2 Parameter initialization

We adopt the following initialization strategy for both ARBORIST
and CRIM. Node feature-vectors are normalized to have unit Lj
norm before training (but are allowed to have unrestricted norms
henceforth). The linear maps Py, . . ., P are initialized to the iden-
tity matrix plus zero-mean Gaussian noise with standard-deviation
0.01 (as in [9]). For ARBORIST, we only construct M, for internal
nodes in the training taxonomy, since leaf nodes have no incom-
ing edges to learn from. This significantly reduces the number of
parameters (in a complete binary tree, leaf nodes account for over
half the nodes in the tree).

6.3 Margin pre-computation

We pre-compute and store the margins y(u,v,v’) = d(v,v’) by
computing the the undirected shortest-path distance between all
pairs of nodes in the training taxonomy using breadth-first search
in O(V2 + VE) time. We set the distance between disconnected
nodes to the maximum shortest-path distance between any two
nodes in the training taxonomy dmax.

6.4 Score and margin scaling

Scores s(u, v) are unbounded, while margins y(u, v, v’) = d(v, v’)
are typically small non-negative integers. Hence, we scale the score
to lie in [0, 1] by applying a sigmoid transformation. We also scale
the margin to lie in [0, 1] by normalizing it by dmax, the maximum
distance between any two nodes. This causes the margin-violations
(eq. 6) to become extremely small floating-point values and lead to
numerical instabilities. To alleviate this issue, both the score and
margin are further log-transformed.

6.5 Cross-validation

We found the validation loss to be a poor proxy for taxonomy
expansion performance (exemplified by the loss curves in Fig. 5).
Hence, we use the validation MRR for model selection instead.

6.6 Hyperparameters

Both ArRBORIST and CRIM benefit from large batch-sizes (limited by
available memory), low learning rates (limited by available time),
and a large number of linear-maps (limited by the available mem-
ory). CRIM is sensitive to the number of negative samples, while
ARBORIST is robust (due to the margin loss). Both ARBORIST and
CRIM and are insensitive to dropout and L, regularization.
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Figure 5: Train/validation loss curves (left) and validation
MRR with epoch (right) of CRIM and ARBORIST on MAMMAL.

To ensure fair comparison, we use the same number of projec-
tions for both ARBoRIST and CRIM in each dataset. Hyperparameter
values are reported in Table 8.

6.7 Input Embeddings

300-dimensional FastText embeddings were constructed using the
pre-trained crawl-300d-2M-subword model. 300-dimensional Pin-
Text embeddings were constructed in-house based on the training
procedure described in [80]. Embeddings for out-of-vocabulary
words were inferred using subword information. Embeddings for
multi-word phrases were constructed by averaging the embeddings
of the words in the phrase.

6.8 Hardware

Experiments were run on an Intel Xeon E5-2670 machine at 2.30GHz
with 48 cores and 256GB of main memory. Implementations were
in PyTorch 1.2.0 / Python 2. Training was performed only on CPUs.
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