Deanonymizing Web Browsing Data With Social Networks

7cef2fe99fbf
Stanford University

98549815bd
Stanford University

86f08df318
Stanford University

9f514851f6
Princeton University
Deanonymizing Web Browsing Data With Social Networks

Jessica Su
Stanford University

Ansh Shukla
Stanford University

Sharad Goel
Stanford University

Arvind Narayanan
Princeton University
Introduction
Introduction

Privacy is legally and fundamentally important.
Introduction

Privacy is legally and fundamentally important.

Many groups collect private web browsing data.
Privacy is legally and fundamentally important.
Introduction

Privacy is legally and fundamentally important.

Many groups collect private web browsing data.
Introduction

Privacy is legally and fundamentally important.

Many groups collect private web browsing data.

Data collection is justified by scrubbing PII.

Ansh Shukla
Introduction

Privacy is legally and fundamentally important.

Many groups collect private web browsing data.

Data collection is justified by scrubbing PII.
Introduction

Do “anonymized” web browsing histories protect privacy?
Verify Your History

The following 16 links will be sent to our server and analyzed. Please confirm that you want to test this history by clicking the button below. If you do not want to test your history, click the "Don't send" button to uninstall the extension.

<table>
<thead>
<tr>
<th>Link</th>
<th>Expanded</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://t.co/WBm8XdyVIY</td>
<td>on.wsj.com/2c8O1ea</td>
</tr>
<tr>
<td>https://t.co/iQbyXrFVen</td>
<td>www.quora.com/What-are-the-economics-of-all-you-can-eat-buff...</td>
</tr>
<tr>
<td>https://t.co/wDsnH2OxsD</td>
<td>thecooperreview.com/6-tips-how-to-be-thought-leader/</td>
</tr>
<tr>
<td>https://t.co/0EYHupFTrt</td>
<td>dld.bz/eJm9B</td>
</tr>
<tr>
<td>https://t.co/jNqFhFyVlc</td>
<td>www.quora.com/Did-ancient-people-perceive-less-colours-than...</td>
</tr>
<tr>
<td>https://t.co/0Qj9lKTVxL</td>
<td>waitbutwhy.com/2016/09/marriage-decision.html</td>
</tr>
<tr>
<td>https://t.co/C0TSq7ET1F</td>
<td>www.washingtonexaminer.com/army-slide-lists-clinton-as-insid</td>
</tr>
</tbody>
</table>

I confirm, let's continue.

Don't send these links.
Introduction

Test Results

These are the 15 Twitter users most likely to be you based on your digital footprint. Let us know if the test succeeded by clicking on one of the buttons below.

Jessica Su

I am @jessicatysu.
Introduction

72% of people we tried to deanonymize were correctly matched to their Twitter profile.
How does it work?
People tend to click on links that appear in their Twitter feed.

Check if the browsing history contains a lot of obscure links from someone's feed.
The set of people you follow on Twitter is very distinctive, and many links posted on Twitter are shown to a small set of people.

The Twitter links in your browsing history are often enough to uniquely identify you!

Observe that your privacy can be violated, even if you don't post anything.
Problem definition

Given an anonymous browsing history, match it to the closest possible Twitter feed.
What is the "best feed?"
Naive approach

Choose the Twitter feed that contains the most links from the browsing history.

Intersection size: 1
Naive approach

Choose the Twitter feed that contains the most links from the browsing history.

Problem: Doesn’t account for feed size.
Our approach

Step 1: Create a model of web navigation

Given a Twitter feed, use a probabilistic model to assign a probability to any sequence of web visits.

The Twitter feed is a parameter of the model.

Potential browsing histories, generated based on the Twitter feed.
Our approach

Step 2: Maximize the likelihood

Given an anonymous browsing history, find the model parameters that maximize the likelihood of the history.

The model parameters correspond to the set of links in a person's Twitter feed, which tells you the identity of the user.
Web navigation model

Probability of visiting a URL is proportional to

\[rp \]

if the URL is in your Twitter feed

\[p \]

otherwise

r is a parameter that depends on the user
p is the baseline popularity of the specific URL
Maximum likelihood estimation

Roughly equivalent to choosing the user whose feed maximizes

\[\text{intersection_size} \cdot \log \left(\frac{\text{intersection_size}}{\text{feed_size}} \right) \]
Maximum likelihood estimation

Roughly equivalent to choosing the user whose feed maximizes

\[\text{intersection_size} \cdot \log \left(\frac{\text{intersection_size}}{\text{feed_size}} \right) \]

This balances finding Twitter feeds that contain a lot of the links from the browsing history with finding Twitter feeds that don't contain too many links in general.
How do we run this in real-time?
Implementation

Need `feed_size` and `intersection_size` to calculate MLE score.

Need MLE score for all users in order to rank.

Given three actions:

```plaintext
    get_network(user)
    get_posts(user)
    find_posters(link)
```
Implementation: Naive

Links

History

Friends

Others

Twitter Users
Implementation: Naive
Implementation: Naive

intersection_size: 1
feed_size: 3
Implementation: Naive

Extremely inefficient because ~500m Twitter users
Most users have no intersection, MLE $\rightarrow -\infty$
Implementation: Efficient

- History
 - find_posters(user)
 - get_network(user)

- Links
- Friends
- Twitter Users
Implementation: Efficient
Implementation: Efficient
Implementation: Efficient

Lossless: only non-intersecting users are ignored.
Simplifications: get_network

Expensive call if link seen by large network.
Simplifications: get_network

Expensive call if link seen by large network.

Ignore non-informative links.
Simplifications: get_network

Still expensive for network size bigger than ~10,000.
Simplifications: get_network

Still expensive for network size bigger than ~10,000.
Background crawl for users with 10,000 - 500,000 followers.

briankrebs
@briankrebs

Independent investigative journalist. Writes about cybercrime. Author of 'Spam Nation', a NYT bestseller. Wrote for The Washington Post '95-'09

The Underweb ·

1,055 FOLLOWING 177,477 FOLLOWERS
Final Implementation

Ignores expensive, non-informative links.
Final Implementation

Ignores expensive, non-informative links and estimates feed size.

Uses offline crawl database of over 470,000 users.
Final Implementation

Ignores expensive, non-informative links and estimates feed size.

Uses offline crawl database of over 470,000 users.

Runs deanonymization operation in under 30 seconds.
How well does it work?
72% of the 374 users we tried to deanonymize were matched to the correct Twitter account.

81% were in the Top 15.
Main result

Accuracy increases when there are more URLs in the history

Our approach performs substantially better than baseline
How companies would use this

We had complete browsing history, but companies do not

Companies only see URLs in your browsing history if they have trackers on that page

Retry the attack using only the part of the browsing history that a company has access to
Deanonymization accuracy for 3rd party trackers

Note that companies can collect this data even if you are logged out
Takeaways

Propose and test a successful model to deanonymize browsing data.

Mitigations are limited; attack exploits nature of the network.

Browsing data is sensitive regardless of anonymization.
Thanks for listening

We thank Twitter for access to the Gnip search API, and Henri Stern for his help building the online experiment.
Full form of the MLE equation

The maximum likelihood estimator primarily depends on the size of the feed, and the number of URLs the feed and the browsing history have in common

\[
\hat{R} = \arg \max_{R \in C} \left[q_R \log \left(\frac{q_R}{p_R} \right) + (1 - q_R) \log \left(\frac{1 - q_R}{1 - p_R} \right) \right]
\]

\(p_R \): feed size
- \(\text{sum}(p_i) \) for all URLs \(i \) in the feed

\(q_R \): intersection size
- (fraction of history links that are in the feed)

C: set of candidates
R: the feed ("recommendation set")
FAQ: How well does this study generalize to other populations of Twitter users?

Effectiveness depends on the number of links.

Our main result (shown here) should generalize to the broader Twitter population.

The exact fraction of people who can be deanonymized depends on the history size distribution of the people in the sample. Our sample had a large number of active users.
FAQ: How accurate is the model?

Doesn't Twitter sort tweets by relevance, so that some tweets in your feed get higher priority than others?

Answer: The model doesn't have to be completely true to life, because most of the time, the obscure links give so much signal that crude modeling techniques are enough to reliably capture it.

We expect that a wide range of modeling decisions would have produced similar results.

(e.g. sorting by intersection size / log (number of friends))
FAQ: How did we decide who to reject from our study?

We required users to have visited at least 4 informative links

84% of users passed this filter

92% of users with at least 10 links in their browsing history passed this filter

97% of users with at least 20 links in their browsing history passed this filter

Link informativeness was based on how many people tweeted the link and how many people saw the link in their feed