Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers

Jacob Steinhardt, Moses Charikar, Gregory Valiant

ITCS 2018
January 14, 2018
Motivation: Robust Learning

Question

What concepts can be learned robustly, even if some data is arbitrarily corrupted?
Example: Mean Estimation

Problem

Given data $x_1, \ldots, x_n \in \mathbb{R}^d$, of which $(1 - \epsilon)n$ come from p^* (and remaining ϵn are arbitrary outliers), estimate mean μ of p^*.
Example: Mean Estimation

Problem

Given data $x_1, \ldots, x_n \in \mathbb{R}^d$, of which $(1 - \epsilon)n$ come from p^* (and remaining ϵn are arbitrary outliers), estimate mean μ of p^*.
Example: Mean Estimation

Problem

Given data $x_1, \ldots, x_n \in \mathbb{R}^d$, of which $(1 - \epsilon)n$ come from p^* (and remaining ϵn are arbitrary outliers), estimate mean μ of p^*.
Example: Mean Estimation

Problem

Given data $x_1, \ldots, x_n \in \mathbb{R}^d$, of which $(1 - \epsilon)n$ come from p^* (and remaining ϵn are arbitrary outliers), estimate mean μ of p^*.

![Diagram showing data points with obvious outliers highlighted. Blue dots represent normal data points, red crosses represent outliers, and green circled points indicate estimated mean location.]
Example: Mean Estimation

Problem

Given data $x_1, \ldots, x_n \in \mathbb{R}^d$, of which $(1 - \epsilon)n$ come from p^* (and remaining ϵn are arbitrary outliers), estimate mean μ of p^*.

Issue: high dimensions
Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

\[x_i \sim \mathcal{N}(\mu, I) \]

Gaussian mean \(\mu \)

variance 1 each coord.
Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

\[x_i \sim \mathcal{N}(\mu, I) \]

Gaussian mean \(\mu \)

variance 1 each coord.

\[\|x_i - \mu\|_2 \approx \sqrt{1^2 + \cdots + 1^2} = \sqrt{d} \]
Suppose clean data is Gaussian:

\[x_i \sim \mathcal{N}(\mu, I) \]

Gaussian mean \(\mu \)

variance 1 each coord.

\[\|x_i - \mu\|_2 \approx \sqrt{1^2 + \cdots + 1^2} = \sqrt{d} \]
Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

\[x_i \sim \mathcal{N}(\mu, I) \]

Gaussian mean \(\mu \)

variance 1 each coord.

\[\sqrt{d} \]

\[\epsilon \sqrt{d} \]

\[\|x_i - \mu\|_2 \approx \sqrt{1^2 + \cdots + 1^2} = \sqrt{d} \]

Cannot filter independently even if know true density!
History

Progress in high dimensions only recently:

- Tukey median [1975]: robust but NP-hard
- Donoho estimator [1982]: high error
- [DKKLMS16, LRV16]: first dimension-independent error bounds
History

Progress in high dimensions only recently:

- Tukey median [1975]: robust but NP-hard
- Donoho estimator [1982]: high error
- [DKKLMS16, LRV16]: first dimension-independent error bounds
- large body of work since then [CSV17, DKKLMS17, L17, DBS17]
- many other problems including PCA [XCM10], regression [NTN11], classification [FHKP09], etc.
This Talk

Question

What general and simple properties enable robust estimation?
What general and simple properties enable robust estimation?

New information-theoretic criterion: *resilience*.
Resilience

Suppose \(\{x_i\}_{i \in S} \) is a set of points in \(\mathbb{R}^d \).

Definition (Resilience)

A set \(S \) is \((\sigma, \epsilon)\)-resilient in a norm \(\| \cdot \| \) around a point \(\mu \) if for all subsets \(T \subseteq S \) of size at least \((1 - \epsilon)|S|\),

\[
\left\| \frac{1}{|T|} \sum_{i \in T} (x_i - \mu) \right\| \leq \sigma.
\]

Intuition: all large subsets have similar mean.
Main Result

Let $S \subseteq \mathbb{R}^d$ be a set of $(1 - \epsilon)n$ “good” points.

Let S_{out} be a set of ϵn arbitrary outliers.

We observe $\tilde{S} = S \cup S_{\text{out}}$.

Theorem

If S is $(\sigma, \frac{\epsilon}{1 - \epsilon})$-resilient around μ, then it is possible to output $\hat{\mu}$ such that $\|\hat{\mu} - \mu\| \leq 2\sigma$.

In fact, outputting the center of any resilient subset of \tilde{S} will work!
Pigeonhole Argument

Claim: If S and S' are $(\sigma, \frac{\epsilon}{1-\epsilon})$-resilient around μ and μ' and have size $(1-\epsilon)n$, then $\|\mu - \mu'\| \leq 2\sigma$.
Pigeonhole Argument

Claim: If \(S \) and \(S' \) are \((\sigma, \frac{\epsilon}{1-\epsilon})\)-resilient around \(\mu \) and \(\mu' \) and have size \((1-\epsilon)n\), then \(\|\mu - \mu'\| \leq 2\sigma \).

Proof:
Pigeonhole Argument

Claim: If S and S' are $(\sigma, \frac{\epsilon}{1-\epsilon})$-resilient around μ and μ' and have size $(1-\epsilon)n$, then $\|\mu - \mu'\| \leq 2\sigma$.

Proof:
Pigeonhole Argument

Claim: If S and S' are $(\sigma, \frac{\epsilon}{1-\epsilon})$-resilient around μ and μ' and have size $(1-\epsilon)n$, then $\|\mu - \mu'\| \leq 2\sigma$.

Proof:

- Let $\mu_{S \cap S'}$ be the mean of $S \cap S'$.
- By Pigeonhole, $|S \cap S'| \geq \frac{\epsilon}{1-\epsilon} |S'|$.
Pigeonhole Argument

Claim: If \(S \) and \(S' \) are \((\sigma, \frac{\epsilon}{1-\epsilon})\)-resilient around \(\mu \) and \(\mu' \) and have size \((1 - \epsilon)n\), then \(\| \mu - \mu' \| \leq 2\sigma \).

Proof:

- Let \(\mu_{S \cap S'} \) be the mean of \(S \cap S' \).
- By Pigeonhole, \(|S \cap S'| \geq \frac{\epsilon}{1-\epsilon} |S'| \).
- Then \(\| \mu' - \mu_{S \cap S'} \| \leq \sigma \) by resilience.
- Similarly, \(\| \mu - \mu_{S \cap S'} \| \leq \sigma \).
- Result follows by triangle inequality.
Implication: Mean Estimation

Lemma

If a dataset has bounded covariance, it is \((\epsilon, O(\sqrt{\epsilon}))\)-resilient (in the \(\ell_2\)-norm).
Lemma

If a dataset has bounded covariance, it is \((\epsilon, O(\sqrt{\epsilon}))\)-resilient (in the \(\ell_2\)-norm).

Proof: If \(\epsilon n\) points \(\gg 1/\sqrt{\epsilon}\) from mean, would make variance \(\gg 1\). Therefore, deleting \(\epsilon n\) points changes mean by at most \(\approx \epsilon \cdot 1/\sqrt{\epsilon} = \sqrt{\epsilon}\).
Implication: Mean Estimation

Lemma

If a dataset has bounded covariance, it is $(\epsilon, O(\sqrt{\epsilon}))$-resilient (in the ℓ_2-norm).

Proof: If ϵn points $\gg 1/\sqrt{\epsilon}$ from mean, would make variance $\gg 1$.

Therefore, deleting ϵn points changes mean by at most $\approx \epsilon \cdot 1/\sqrt{\epsilon} = \sqrt{\epsilon}$.

Corollary

If the **clean data** has bounded covariance, its mean can be estimated to ℓ_2-error $O(\sqrt{\epsilon})$ in the presence of ϵn outliers.
Implication: Mean Estimation

Lemma

If a dataset has bounded covariance, it is \((\epsilon, O(\sqrt{\epsilon}))\)-resilient (in the \(\ell_2\)-norm).

Proof: If \(\epsilon n\) points \(\gg 1/\sqrt{\epsilon}\) from mean, would make variance \(\gg 1\).

Therefore, deleting \(\epsilon n\) points changes mean by at most \(\approx \epsilon \cdot 1/\sqrt{\epsilon} = \sqrt{\epsilon}\).

Corollary

If the clean data has bounded \(k\)th moments, its mean can be estimated to \(\ell_2\)-error \(O(\epsilon^{1-1/k})\) in the presence of \(\epsilon n\) outliers.
Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution π on $\{1, \ldots, m\}$.

Samples come in r-tuples, which are either all good or all outliers.
Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution \(\pi \) on \(\{1, \ldots, m\} \).

Samples come in \(r \)-tuples, which are either all good or all outliers.

Corollary

The distribution \(\pi \) can be estimated (in TV distance) to error \(O(\epsilon \sqrt{\log(1/\epsilon)/r}) \) in the presence of \(\epsilon n \) outliers.
Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution π on $\{1, \ldots, m\}$.

Samples come in r-tuples, which are either all good or all outliers.

Corollary

The distribution π can be estimated (in TV distance) to error $O(\epsilon \sqrt{\log(1/\epsilon)/r})$ in the presence of ϵn outliers.

- follows from resilience in ℓ_1-norm
- see also [Qiao & Valiant, 2018] later in this session!
A Majority of Outliers

Can also handle the case where clean set has size only αn ($\alpha < \frac{1}{2}$):
A Majority of Outliers

Can also handle the case where clean set has size only αn ($\alpha < \frac{1}{2}$):

- cover \tilde{S} by resilient sets

\tilde{S}

S

• cover \tilde{S} by resilient sets
Can also handle the case where clean set has size only αn ($\alpha < \frac{1}{2}$):

- cover \tilde{S} by resilient sets
- at least one set S' must have high overlap with S...
A Majority of Outliers

Can also handle the case where clean set has size only αn ($\alpha < \frac{1}{2}$):

- cover \tilde{S} by resilient sets
- at least one set S' must have high overlap with S...
- ...and hence $\|\mu' - \mu\| \leq 2\sigma$ as before.
A Majority of Outliers

Can also handle the case where clean set has size only αn ($\alpha < \frac{1}{2}$):

- cover \tilde{S} by resilient sets
- at least one set S' must have high overlap with S...
- ...and hence $\|\mu' - \mu\| \leq 2\sigma$ as before.
- Recovery in list-decodable model [BBV08].
Implication: Stochastic Block Models

Set of αn good and $(1 - \alpha)n$ bad vertices.
Set of αn good and $(1 - \alpha)n$ bad vertices.

- good \leftrightarrow good: dense (avg. deg. = a)
- good \leftrightarrow bad: sparse (avg. deg. = b)
Implication: Stochastic Block Models

Set of αn good and $(1 - \alpha)n$ bad vertices.

- good \leftrightarrow good: dense (avg. deg. = a)
- good \leftrightarrow bad: sparse (avg. deg. = b)
- bad \leftrightarrow bad: arbitrary

Set of αn good and $(1 - \alpha)n$ bad vertices.

- good \leftrightarrow good: dense (avg. deg. = a)
- good \leftrightarrow bad: sparse (avg. deg. = b)
- bad \leftrightarrow bad: arbitrary
Implication: Stochastic Block Models

Set of αn good and $(1 - \alpha)n$ bad vertices.

- good \leftrightarrow good: dense (avg. deg. = a)
- good \leftrightarrow bad: sparse (avg. deg. = b)
- bad \leftrightarrow bad: arbitrary

Question: when can good set be recovered (in terms of α, a, b)?
Using resilience in “truncated ℓ_1-norm”, can show:

Corollary

The set of good vertices can be approximately recovered whenever

\[
\frac{(a-b)^2}{a} \gg \frac{\log(2/\alpha)}{\alpha^2}.
\]
Implication: Stochastic Block Models

Using resilience in “truncated ℓ_1-norm”, can show:

Corollary

The set of good vertices can be approximately recovered whenever

$$\frac{(a-b)^2}{a} \gg \frac{\log(2/\alpha)}{\alpha^2}.$$

Matches **Kesten-Stigum threshold** up to log factors!
Implication: Stochastic Block Models

Using resilience in “truncated \(\ell_1\)-norm”, can show:

Corollary

The set of good vertices can be approximately recovered whenever
\[
\frac{(a-b)^2}{a} \gg \frac{\log(2/\alpha)}{\alpha^2}.
\]

Matches **Kesten-Stigum threshold** up to log factors!

For planted clique \((a = n, b = n/2)\), recover cliques of size \(\Omega(\sqrt{n \log n})\).
- this is tight [S’17]
Algorithmic Results

Can (sometimes) turn info-theoretic into algorithmic results.
Algorithmic Results

Can (sometimes) turn info-theoretic into algorithmic results.

Most existing algorithmic results rely on bounded covariance.
Algorithmic Results

Can (sometimes) turn info-theoretic into algorithmic results.

Most existing algorithmic results rely on bounded covariance.

We show:

- for strongly convex norms, resilient sets can be “pruned” to have bounded covariance
- if injective norm is approximable, bounded covariance \rightarrow efficient algorithm with $\sqrt{\varepsilon}$ error
- both true for ℓ_p-norms! ($p \in [2, \infty]$)
Algorithmic Results

Can (sometimes) turn info-theoretic into algorithmic results.

Most existing algorithmic results rely on bounded covariance.

We show:

- for strongly convex norms, resilient sets can be “pruned” to have bounded covariance
- if injective norm is approximable, bounded covariance \rightarrow efficient algorithm with $\sqrt{\epsilon}$ error
- both true for ℓ_p-norms! ($p \in [2, \infty]$)

See [Li, 2017] and [Du, Balakrishnan, & Singh, 2017] for a non-ℓ_p-norm.
Other Results

Finite-sample bounds

Extension to SVD
Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.
 • based on simple pigeonhole arguments
Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.
 • based on simple pigeonhole arguments

Benefit: from \textit{statistical} problem to \textit{algorithmic} problem.
Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.
 • based on simple pigeonhole arguments

Benefit: from statistical problem to algorithmic problem.

Open questions:
 • resilience for other problems (e.g. regression)
 • efficient algos under other assumptions
 • matching lower bounds?