Game between adversary and learner:

- **Goal 1**: Generate strong attacks in order to stress-test systems.
- **Goal 2**: Upper-bound the damage from the worst-case attack.

Our Contribution

- We show how to approximate the worst-case attack by a convex saddle-point problem, and design a scalable primal-dual algorithm to solve it.
- We provide a certificate of robustness bounding the worst-case attack point problem, and design a scalable primal-dual algorithm to solve it.

Formal Setting

Loss on single point: \(\ell(\theta; x, y) \); overall loss: \(L(\theta; D) = \sum_{(x,y) \in D} \ell(\theta; x, y) \).

Our Attack Algorithm

Input: clean data \(D_c \) of size \(n \), feasible set \(F \), poisoned fraction \(\epsilon \).

Initialize \(\theta \leftarrow 0 \), \(U^* \leftarrow -\infty \).

for \(t = 1, \ldots, \epsilon n \) **do**

- Compute attack point \(\{ x^{(t)}, y^{(t)} \} = \arg \max \ell(\theta; x, y) \).
- Compute loss \(\ell^{(t)} = \frac{1}{n} L(\theta; D_c) + \epsilon \ell(\theta; x^{(t)}, y^{(t)}) \).
- Compute gradient \(g^{(t)} = \frac{1}{n} \nabla L(\theta; D_c) + \epsilon \nabla \ell(\theta; x^{(t)}, y^{(t)}) \).
- Update: \(\theta \leftarrow \theta - \eta g^{(t)} \), \(U^* \leftarrow \min(U^*, \ell^{(t)}) \).
- **Output**: attack \(D_p = \{(x^{(t)}, y^{(t)})\}_{t=1}^{\epsilon n} \); upper bound \(U^* \).

Algorithm: Intuition

Perform stochastic gradient descent, but at each iteration simulate adding the “worst fit point” \(\{x^{(t)}, y^{(t)}\} \) that can evade outlier removal.

Attack intuition: collection of all of the worst-fit points.

Upper bound intuition: if we can fit all possible points that evade outlier removal, no attack can perturb us by much.

Algorithm: Theory

Duality. As \(n \to \infty \), the training loss on \(D_c \cup D_p \) converges to \(U^* \).

Certificate. As long as \(F \) is not too small (e.g. outlier removal is not too aggressive) and the test loss is uniformly close to the clean train loss, \(U^* \) is an approximate upper bound on the worst-case attack.