
Software-like Compilation for Data Center FPGA Accelerators
James Thomas

jjthomas@cs.stanford.edu
Stanford University, CA, USA

Chris Lavin
chris.lavin@xilinx.com

Xilinx CTO, Longmont, CO, USA

Alireza Kaviani
alireza.kaviani@xilinx.com

Xilinx CTO, San Jose, CA, USA

ABSTRACT
Compilation times for large Xilinx devices, such as the Amazon F1
instance, are on the order of several hours. However, today’s data
center designs often have many identical processing units (PUs),
meaning that conventional design flows waste time placing and
routing the same problem many times. Furthermore, the connectiv-
ity infrastructure of a design tends to be finalized before the PUs,
resulting in unnecessary recompilation of a large fraction of the
design.

We present an open source flow where the connectivity infras-
tructure logic is implemented ahead of time and routed to many
interface blocks that border available slots for PUs. As architects
iterate on their PU designs, they only need to perform a single set
of parallel, independent compile runs to implement and route the
PU alongside each distinct interface block. Our RapidWright-based
system stitches the implemented PU into the available slots in the
connectivity logic, requiring no additional routing to finalize the
design. Our system is able to generate working designs for Amazon
F1, and reduces compilation time over the standard monolithic com-
pilation flow by an order of magnitude for designs with up to 180
PUs. Our experiments also show that there is future potential for
an additional 4X runtime improvement when relying on emerging
open source place and route tools.

ACM Reference Format:
James Thomas, Chris Lavin, and Alireza Kaviani. 2021. Software-like Com-
pilation for Data Center FPGA Accelerators. In International Symposium
on Highly Efficient Accelerators and Reconfigurable Technologies (HEART
’21), June 21–23, 2021, Online, Germany. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3468044.3468047

1 INTRODUCTION
FPGAs are making their way into data centers as network and com-
pute accelerators to improve their overall power efficiency [2][4].
This growth has increased demand for more productive FPGA de-
sign development tools that create a more software-like experience
similar to that of traditional compute engines such as CPUs. In-
novation on the front-end of the hardware development flow has
helped raise the abstraction of design entry to software languages.
However, the back-end implementation tools have largely been
limited to FPGA vendor compilers with long compilation times.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HEART ’21, June 21–23, 2021, Online, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8549-7/21/06. . . $15.00
https://doi.org/10.1145/3468044.3468047

Memory

Controller

Host

Interface
PU

Inter-

connect

PU PU PU PU

PU PU PU PU PU

PU PU PU PU PU

PU PU PU PU PU

Domain Connectivity

Figure 1:High-level pattern for domain-specific accelerators

This continues to stymie designers looking to prototype their de-
signs on real hardware or software developers with traditional CPU
experience.

In order to approach software-like compilation times, back-end
FPGA implementation will need a different strategy than what is
currently employed in conventional FPGA flows. One of the signif-
icant challenges in the new domain-specific age of computer archi-
tecture [6] is that FPGA tooling development has largely targeted
broad support of customer design scenarios. As FPGA implementa-
tion tooling requires heavy investment, vendors—out of necessity—
must optimize for generalized solutions that maximize availability
across a wide gamut of customer design scenarios. However, as
emerging applications such as data center workloads become more
prevalent, it becomes clear that a customized approach for back-
end implementation is needed to achieve the highest efficiency and
performance.

There are two specific attributes of data center FPGA applications
that make them amenable to compilation acceleration: 1) replication
and 2) reuse. First, designs typically consist of many identical copies
of a single processing unit (PU) connected through connectivity in-
frastructure that handles communication among PUs and retrieval
of data from external memory. Conventional FPGA compilation
is a flat process; synthesis, placement and routing are performed
separately for these identical PUs, increasing compile time. The sec-
ond commonality for designs is that the connectivity infrastructure
does not change when designers are iterating and often remains
a constant for a given domain of applications. If the connectivity
logic can be reused from a similar application in the same domain,
we can avoid recompilation of this static shell. Figure 1 depicts these
two high-level design patterns for domain-specific accelerators.

In this paper we present a flow that aims to reuse back-end com-
pilation work as much as possible. We identify a domain with a
compute model similar to the one presented in [12] and conduct
an experimental evaluation using a group of designs within that

https://doi.org/10.1145/3468044.3468047
https://doi.org/10.1145/3468044.3468047

HEART ’21, June 21–23, 2021, Online, Germany James Thomas, Chris Lavin, and Alireza Kaviani

domain. We pre-implement the corresponding domain connectivity
grid and replicate the PUs using an open source back-end cus-
tomization tool, called RapidWright [8]. Each PU implementation
is replicated anywhere from 10 to 30 times, resulting in a final
design with close to 200 PUs. RapidWright enables PU replication
throughout the Fleet connectivity grid in roughly a minute. The PU
implementations can be compiled in parallel within about 10 min-
utes. This is in contrast to a conventional flow where each design
change can take hours to complete as all PU instances and connec-
tivity grid are recompiled in their entirety. We target the Amazon
F1 device to demonstrate working designs that run in the cloud
and will make our flow and experiments available in open-source.
Specific contributions of this work include:

(1) An open source flow leveraging an existing FPGA data center
platform to compile and run spatial compute accelerators.

(2) Experimental validation and implementation of the proposed
flow for an example compute domain, called Fleet, showing
an order of magnitude compile time improvement.

The next section summarizes relevant background. Section III
describes the details of the customized back-end flow, followed by
section IV that validates the flow showing experimental results.
Sections V and VI summarize related literature, conclude the paper
and point to future work.

2 BACKGROUND
2.1 Front-end Compiler: Fleet
Fleet [12] is a framework that allows designers to specify a single
stream processing unit (PU) in a streaming-oriented HDL. The Fleet
front-end compiler generates a hardware design with many copies
of the PU connected to a connectivity grid that feeds each PU with
its own stream of data from external memory. Fleet designs running
on Amazon F1 are able to outperform top-of-the-line CPUs and
GPUs in performance per watt for several streaming applications,
including JSON parsing and integer compression. Fleet-style appli-
cations represent a computing domain that lends itself to the generic
paradigm explained in the introduction. The PU is replicated hun-
dreds of times, presenting a large opportunity for implementation
reuse, and the connectivity infrastructure is identical for all Fleet
applications with the same number of PUs. Figure 2 summarizes the
connectivity and data movement infrastructure for the Fleet com-
puting domain. Emerging applications such as machine learning
or image processing often have a similar conceptual architecture
with many identical computational kernels and a domain-specific
connectivity infrastructure that feeds those kernels from external
memory.

2.2 Back-end Implementation: RapidWright
RapidWright [8] is an open source framework that enables cus-
tomization of FPGA back-end implementation. It provides a bridge
into Xilinx FPGA implementation tools (Vivado) and provides de-
vice models that enable customized place and route algorithms to
be built. By providing an open framework, it endows developers
with the flexibility needed to enable customized solutions that can
be tuned for unique domain requirements such as compile time,
performance and/or timing predictability.

In addition to enabling customized tooling solutions for com-
mercial FPGAs (such as the Amazon F1 instance), RapidWright also
provides unique implementation capabilities such as composability,
replication and relocation of previously placed and routed logic. In
order to accelerate FPGA compilation, reuse of previously compiled
results is a key strategy of this work.

3 CUSTOMIZED BACKEND FLOW
The back-end flow comprises three main steps: building a con-
nectivity shell (off-line), creating a template for fast "on-line" PU
compilation, and combining PUs with the pre-implemented shell
to build the complete design. In this section we summarize these
three steps.

3.1 Domain-specific Connectivity Shell
A connectivity shell is the pre-implemented, domain-specific infras-
tructure designed such that PUs can be inserted into empty slots
later on without the need for routing. The RTL for the shell must
have ports for external IO (often an AXI bus) to external memory
and a set of internal ports for communication to each PU (PU IO
interface). The designer must specify locations and types of PU
slots. A PU type that is to be replicated into multiple slots is called

PU 1

Output

Input

Stream

Ctrl

PU 2

Output

PU …

Output

PU 1

Input

PU 2

Input

PU …

Input
DDR

Programmable

Logic

PU 1

PU 2

PU ...

Output

Stream

Ctrl

Figure 2: Fleet stream-oriented processing model

Connectivity

Shell

Template

A

Template

B

Template

C

PU Slots

Register Block

Figure 3: Physical view of PU slots next to the connectivity
shell in the fabric. The BRAM column (purple) is located in
a different relative position in each slot column, requiring a
different implementation template for each column.

Software-like Compilation for Data Center FPGA Accelerators HEART ’21, June 21–23, 2021, Online, Germany

SWITCH
BOX …………

SWITCH
BOX …………

SWITCH
BOX …………

SWITCH
BOX …………

SWITCH
BOX …………

SWITCH
BOX …………

Shell Side PU SideRegister
Column

Register
Column

Register Block

Figure 4: The register block for a particular PU template.

an “implementation template.” The PU slots are described using
rectangular Xilinx placement constraints (“pblocks”), which con-
strain logic, DSP, and BRAM resources. Figure 3 shows a physical
view of the shell with multiple PU templates. The overall goal is
to pre-implement shell routing such that the online compilation
runtime for PUs is minimal. To accomplish this, register blocks are
inserted across the border of PU slots in the connectivity shell to
provide a common physical routing interface. The register blocks
consist of two columns of horizontally connected registers, with
one connected register pair per bit in the PU IO interface. Figure 4
shows a register block, where the connectivity shell routes to the
left column of the register block, and the PU routes to the right
column. The same routed register block is used for every PU slot
that will be filled by the PU implementation template. Inserting
and pre-routing registers at the communication border of a PU and
the shell allows PU replication without any rerouting or placement.
These register blocks at the PU IO interface completely isolate the
timing of the connectivity shell and PUs, enabling higher perfor-
mance for both components. Of course, this requires the PU IO
interface to be latency-insensitive, which is generally a reasonable
requirement in throughput-oriented datacenter applications. The
pblock used for the connectivity shell consists of the entire avail-
able FPGA fabric, excluding the PU slots. Figure 5 summarizes our
flow using both Vivado and RapidWright to build the connectivity
shell. This flow is performed offline, once per domain. It is possible
to create multiple connectivity shells for various size of templates
and/or based on external memory needs.

3.2 Processing Units (PUs)
A PU implementation must be compiled for each distinct PU tem-
plate. Unlike the implementation of the connectivity shell, this step
is performed “online” after each design change, and we want to
ensure that the compilation is fast. For each implementation tem-
plate, the PU is connected to the right column of the corresponding
register block as shown in Figure 4. The area of a PU template
is constrained to a compatible pblock used in shell creation and
includes the right column of the register block. All templates are
implemented in parallel using Xilinx Vivado. The result is a set
of implemented templates contained within PU slot-sized regions
that are ready to be inserted into the connectivity shell. This step

(Synthesis, P&R)

CL w/

Slots
(.dcp)

pblocks

(.xdc)

Register

block
(.dcp)*

Register

block
(.dcp)*

Register

block
(.dcp)*

Register

block
(.dcp)*

Conn.

Shell RTL

(.v)

*Register block added by RapidWright post Synthesis

Figure 5: Offline connectivity shell implementation flow

compiles on the order of ten minutes, with exact runtime depending
on the size of the PU.

3.3 Inserting PUs into the Connectivity Shell
In the final step we populate each PU slot in the connectivity shell
with an instance of its matching PU implementation template. As
this step happens online, RapidWright is used to ensure it is fast.
We use RapidWright to load the connectivity shell implementation
and remove all register blocks while preserving the routed nets
connecting to the left sides of the blocks. We then use the Rapid-
Wright Module API to replicate each PU implementation template
into all target PU slots, reconnecting the dangling nets from the
connectivity shell to the left sides of the PUs’ register blocks. This
step takes approximately one minute and results in a completed
design.

Figure 6 shows the overall flow for compiling a PU into a full
implementation. The implementation of our flow for Amazon F1 is
available open source 1. Our flow includes some automation for con-
venient description of PU slot patterns. The designer specifies “slot
columns” that each have their own PU implementation template
replicated vertically multiple times.

4 EXPERIMENTAL RESULTS
In this section we describe our evaluation on the Amazon F1 plat-
form followed by a set of experimental results. At the end we sum-
marize some of our challenges and lessons learned.

1https://github.com/jjthomas/Fleet-Floorplanning

(Synthesis, P&R)PU

Verilog
(.v)

PU

P&R
(.dcp)(Synthesis, P&R)

(Synthesis, P&R)
(Synthesis, P&R)*

PU

P&R
(.dcp)

PU

P&R
(.dcp)

PU

P&R
(.dcp)

Copy & Paste

pblock
(.xdc)

pblock
(.xdc)

pblock
(.xdc)

pblock
(.xdc)

CL w/

Slots
(.dcp)

CL

Filled
(.dcp)

~8-10 minutes ~40-130 seconds

Register

block
(.dcp)*

*Register block added by RapidWright post Synthesis

Register

block
(.dcp)*

Register

block
(.dcp)*

Register

block
(.dcp)*

Figure 6: High-level online flow for compiling a PU.

https://github.com/jjthomas/Fleet-Floorplanning

HEART ’21, June 21–23, 2021, Online, Germany James Thomas, Chris Lavin, and Alireza Kaviani

PU Interface
Size (bits) # Logic Cells

PU Template
Implementation

Runtime

RapidWright PU
Replication
Runtime

Our Flow
Total Runtime

Standard Flow
Runtime Speedup

Dot 46 71 (incl. DSP) 9m4s 1m1s 10m5s 82m50s 8.2×
Counter 22 109 (incl. BRAM) 10m37s 0m37s 11m14s 87m25s 7.9×
Summer 46 138 8m24s 0m41s 9m5s 82m51s 9.1×
JSON 22 352 (incl. BRAM) 10m57s 0m53s 11m50s 94m30s 8.0×
Time Series Pred. 22 512 8m31s 0m51s 9m22s 95m38s 10.2×
KNN 46 800 (incl. distr. RAM & DSP) 8m25s 1m41s 10m6s 111m15s 11.0×
Integer Coder 46 1119 (incl. distr. RAM) 9m35s 2m7s 11m42s 117m19s 10.0×

Table 1: Runtime results for our 180-PU designs in our flow and the standard Vivado flow

4.1 Target Hardware: Amazon F1 Platform
The target hardware for this work is a Xilinx UltraScale+ VU9P de-
vice fabricated using a 16nm process. This device became one of the
first FPGA devices commercially deployed for FPGA-as-a-Service
(FaaS) in the Amazon F1 instance [2]. The Amazon F1 platform
provides 4 banks of 16 GB DDR4 memories and a PCIe x16 genera-
tion 3 connection to the host. The existing AWS infrastructure and
tools readily facilitate deployment of FPGA designs targeting the
platform without the need to purchase development boards. The
availability of the F1 as a compute acceleration resource makes it
appealing for the purposes of this work aimed at improving the
productivity of design development.

The F1 has its own shell built using Xilinx Partial Reconfiguration
technology. This shell, which must be present in all F1 designs,
includes PCIe, one (out of four) DDR channels, and a few other
basic functions. The region outside of the AWS shell is available
for user logic and is called the Customer Logic (CL) region. The
connectivity shell in our flow connects its external IO ports to the
F1 AWS shell. Since the F1 shell is encrypted, the combined shell
cannot be read into RapidWright. We had to detach the CL region
from the F1 shell (using write_checkpoint -cell), load that into
RapidWright and fill the PU slots, and then reattach the result to the
F1 shell (read_checkpoint -cell). This reattachment process was
particularly slow, taking around 10 minutes. We do not consider
this a fundamental obstacle as it can be addressed by creating shells
from open source IP or the time can be reduced in future versions
of the Xilinx software.

4.2 Evaluation Results
We choose to use the Fleet [12] compute model to demonstrate a
proof of concept. Fleet was designed to use all 4 DDRs in the F1
platform, with applications relying on this combined DDR band-
width to achieve high performance. However, the provided DDR
IPs in F1 CL region are encrypted preventing us from creating the
connectivity shell as described previously. Therefore, we decided
to modify the Fleet model slightly to send the same stream of data
to all PUs and use just a single DDR in the F1 shell. Each PU also
receives unique configuration data before the start of the shared
data stream.

We implemented two realistic applications in this model. The
first, “KNN,” computes the k-nearest vectors (with k=3 in our tests)
in the input stream to the configuration vector. Thus, the k-nearest

neighbors in a source dataset for each point in a new dataset can
be computed by repeatedly executing this design with the source
dataset as the input stream and each PU having a different vector
from the new dataset as its configuration, until the new dataset
vectors are exhausted. The second, “Time Series Prediction,” predicts
the sign of the next element in the stream based on comparisons of
the previous k elements (k=7 in our tests) with k coefficients from
the configuration. The comparison results are passed through a
k-input lookup table (also part of the configuration) to get the final
result. The PU produces the number of correctly predicted points
as its output, allowing many different configurations to be tried
across the different PUs to see which one gets the best accuracy.

We implemented five additional synthetic PUs in this model, one
(“Summer”) which simply sums all data it receives (including the
configuration), another (“Dot”) which computes the dot product of
the input data (assuming the vectors to be dotted are interleaved),
another (“Counter”) which computes a count for each distinct input
word it receives, and two others (“JSON” and “Integer Coder”) that
are taken from the JSON parsing and integer compression examples
in [12]. Our example PUs consist of varying amounts of logic as
well as distributed RAM, BRAM, and DSP resources.

KNN, Summer, Dot, and Integer Coder applications consume
32-bit input tokens and produce 8-bit output tokens, so they use
a connectivity shell with a 46-bit PU interface. (There are 5 ready-
valid and other control bits, and one reset bit.) The Time Series
Prediction, Counter, and JSON applications consume 8-bit input
tokens and produce 8-bit output tokens, so their connectivity shell
has a 22-bit PU interface. Implementing each of these connectivity
shells takes approximately 1.5 to 2 hours. The motivation behind
this approach is that the implementation effort for each shell is
amortized over many different PUs that can slot into it.

Table 1 summarizes our runtime results, with experiments run-
ning on a 20-core 2.2 GHz Intel server. We break down the runtime
of our flow into the implementation of the PU templates (design op-
timization, attachment to the register block, placement, and routing)
and the replication of the templates into the connectivity shell with
RapidWright. The PU templates are assumed to be implemented in
parallel. Since we did not have access to a cluster with a job sub-
mission system, we simply ran all of the template implementations
serially and reported the longest time as the runtime for the step.

Our designs include 180 PU slots arranged in 10 slot columns.
Going from left to right across the fabric, the first 4 slot columns

Software-like Compilation for Data Center FPGA Accelerators HEART ’21, June 21–23, 2021, Online, Germany

contain 30 PU slots apiece, and extend from the top to the bottom of
the fabric. The next 6 slot columns only contain 10 PU slots apiece,
starting at the top of the fabric and extending to the bottom of the
top SLR (the bottom two SLRs in this region are reserved for the F1
shell). Each PU slot is half a clock region (30 logic slices) tall and 4
logic columns wide, and includes one BRAM column and one DSP
column.

We compare our flow’s runtime to that of the standard end-to-
end Vivado flow for the full design, including 180 PUs and the con-
nectivity shell, implemented in the context of the F1 shell. The stan-
dard Vivado flow produces only the CL region as output to be on par
with our proposed flow. The standard flow is based on the timing-
focused implementation flow provided in the F1 development kit,
including the opt_design, place_design, phys_opt_design, and
route_design steps. All designs, in both the standard flow and
our flow, were implemented at a clock frequency of 125 MHz as in
[12]. This frequency can be increased in our flow by adding more
registers into the paths from the connectivity shell to the PU regis-
ter blocks. We verified that designs produced by our flow worked
correctly on the F1 hardware.

The runtime of the proposed flow can be reduced if the PU
template implementation step is sped up. As can be seen in Table 1,
most of the runtime of this step is Vivado startup overhead. There
is fairly little variation in the runtimes for the 7 different PUs,
even though they have very different sizes. RapidWright overhead
is less, but it lacks a quality placement or routing engine. If PU
implementation could be done entirely in RapidWright, our flow
could have taken less than three minutes.

4.3 Engineering Guidance and Lessons
In this subsection we describe a number of challenges we encoun-
tered and our approach to remedy them. We expect some of these
issues will be addressed more efficiently as the RapidWright ecosys-
tem evolves as part of future work.

4.3.1 Routing Global Signals. Our proposal reduces runtime by
leveraging PU replication. However, the global signals such as clock,
power and ground are not uniformly replicated. Moreover, the PU
implementation templates are implemented with the Vivado out-
of-context flow, which does not normally perform clock routing.
To address this, we instantiate a clock buffer similar to that of the
connectivity shell to force clock routing of the PU implementa-
tion templates. The clock routing is then saved in a text file and a
clock-free design checkpoint is created for the implementation tem-
plate. When replicating the PU implementation template into the
connectivity shell with RapidWright, we read this text file and re-
instantiate the clock routing into each copy. A similar procedure is
followed for other global signals such as power and ground routing.
In the future, this routing will be performed inside RapidWright.

4.3.2 Reduced Utilization. The UltraScale+ architecture is colum-
nar with a heterogeneous column pattern. In order to provide suf-
ficient quantities of contiguous resource types (logic, BRAM, and
DSP), our PU slot columns spacing led to reduced utilization be-
cause the columns did not contain the right mix. This combined
with the area loss due to the hierarchical design flow led to low
device utilization. For example, the Integer Coder application with

PU Yosys+nextpnr
Runtime

Logic Cells
(Yosys synth.)

Our Flow
Runtime

Dot 79s 232 544s (4.3×)
Counter 78s 231 637s (5.9×)
Summer 87s 230 504s (4.3×)
JSON 97s 560 657s (4.7×)
Time Series Pred. 100s 1248 511s (3.7×)
KNN 96s 1199 505s (3.1×)
Integer Coder 108s 2803 575s (3.0×)

Table 2: Runtime improvement potential

80% logic utilization in the PU slot, has an overall 16% utilization of
the CL region in the final F1 design with 180 PUs. In contrast, we
were able to implement an Integer Coder design with 800 PUs using
the standard Vivado flow. We believe that there are many memory-
bound applications that do not need full fabric utilization to achieve
peak performance, as is the case with some of the applications in
[12]. Furthermore, applications that do not need all resource types
may be able to achieve a PU slot packing with higher utilization;
we leave exploration of this design space to future work. Finally,
even for applications that need high utilization, this flow may offer
a fast means of prototyping and verifying functionality on device
before initiating a high-performance implementation run.

4.3.3 Scaling PU Interface Size. Our seven applications use PU
interfaces sized from 20 to 50 bits. Larger PU interfaces require
additional SLR crossing wires (a scarce architectural resource) caus-
ing routing congestion. The top SLR has the most available area
for PU slots, but there are a limited number of SLR crossing wires
available to route nets from the top SLR to the bottom two SLRs
with connectivity shell. We believe that applications can easily be
adapted to use smaller PU interfaces (e.g. by using the same bus
for addresses and data). Another option is to implement a more
efficient data movement across SLRs in the connectivity shell.

4.4 Opportunities for Improving Runtime
There has been significant work in the community on building fast,
fully open-source implementation flows for FPGAs, such as Yosys
for synthesis and nextpnr for place and route [1]. To assess the
potential runtime gains achievable with this flow, we applied it to
our seven PU benchmarks. These preliminary results are shown in
Table 2 and provide a tentative proof point for an additional 4X run-
time improvement. These tools do not support routing pblocks or
routing around pre-existing routing (required for interface blocks in
our proposed flow). We simply implemented the PU verilog without
an interface block or pblock with the intention of understanding
the future potential for our proposed flow.

The results show that Yosys clearly has worse QoR than Vivado
and nextpnr is unable to resolve all the timing issues. However,
the potential runtime gains if these issues are fixed is substantial,
specially for domain-specific back-end flows. As these open source
flows evolve, this seems like a promising route for another order
of magnitude gain, approaching software-like compilation times.
This exercise also shows that adding open source place and route
capability to RapidWright in the future will significantly improve
the advantage of our proposed flow.

HEART ’21, June 21–23, 2021, Online, Germany James Thomas, Chris Lavin, and Alireza Kaviani

5 RELATEDWORK
Partial reconfiguration (PR) shares similarities to the way designs
are constructed in this work. In modular PR, the design and recon-
figurable fabric are partitioned into a static (unchanging) region
and one or more dynamic (reconfigurable) regions. Early work in
this effort, however, focused on minimizing the size of dynamic
regions and maximizing the static regions [5] to reduce overall
reconfiguration time. In contrast, this work builds monolithic bit-
streams, and minimizing the static region would allow for a greater
number of PU slots, increasing parallelism of the workload at hand.

One of the overlapping commonalities of this work with partial
reconfiguration is the need to implement a physical negotiation
interface between static and dynamic regions of a design. Past
research has used routing antennas to form gaskets [7] or bus
macros [11]. These implementation constructs establish a physical
interface to allow general purpose CAD algorithms (place and route)
to implement circuits inside restricted rectangles and still connect
in a deterministic way to static regions.

This work builds on the techniques described in [9] and [3] that
allow for relocatability of implemented modules but includes a de-
coupling physical interface and implementation tool techniques
needed to construct valid circuits. These related works aim to create
partial bitstreams whereas this work improves productivity, the
time to generate a valid bitstream from a change in design input.
Another differentiating factor is scalability of this work, which goes
beyond that of [3] and [10] where the number of reconfigurable
slots available is less than 10. Our flow targets scale of over 100
slots, achieving the greater scale by leveraging improvements in
fabrication technology. Also our flow involves identifying a number
of fabric footprint candidates and building out-of-context imple-
mentations in parallel to fit each footprint type (or column).

Recently, Xiao and Park et. al. [13] have demonstrated productiv-
ity enhancements by having a pre-implemented packet-switched
shell with partial reconfiguration regions that decouple compila-
tion of modules so that implementation of each can proceed in
parallel. The proposed methodology, which is called PRflow, di-
vides the design into multiple partitions and uses Vivado Partial
Reconfiguration (PR) for the back-end; in contrast, our proposed
flow uses RapidWright for the back-end dividing process, leading
to a number of key advantages. PRflow relies on today’s Vivado
PR flow requiring place and route to take place within the static
context. This will lead to a runtime increase in the PR back-end
portion as the design size increases. Our flow differs by relying on
out-of-context place and route partitions, providing better results
for larger designs and devices where compile time actually matters.

Another key difference for our flow is reducing place and route
compute time by replicating PUs. Our approach requires only 10
separate PU implementation runs for the 180-PU designs. In com-
parison, PRflow requires a separate compile for each leaf block,
even if the PR regions and logic are identical. PRflow partitions
are confined to the reconfiguration boundaries (necessary for PR).
Our RapidWright flow, however, provides a granularity of control
for partitions (or PUs) that is 50-60X finer than PR regions. This
will provide more opportunities to scale and adapt our flow in the
future work. Finally, the best results reported by PRflow heavily
rely on open source flows such as nextpnr [1]. As we described in

the previous section, while these tools present a promising direc-
tion for the future, they are not yet able to provide the timing and
performance guarantee that realistic applications require.

6 CONCLUDING REMARKS
We have presented a fast, open source implementation flow for data
center FPGA applications where infrequently changing connectiv-
ity logic is implemented ahead of time and routed to unoccupied
processing unit (PU) slots. This approach allows for a faster devel-
opment cycle that is up to an order of magnitude faster than con-
ventional flows as only the PU must be re-implemented. We have
demonstrated this benefit by leveraging domain-specific attributes
and the replication and relocation technology in RapidWright.

We are excited about the possibility that future FPGA archi-
tectures with more homogeneous patterns of resource columns
will lend themselves to our proposed flow. A more homogeneous
columnar pattern implies fewer PU implementation templates and
a denser packing of PUs. We expect compile times will improve
as the RapidWright ecosystem grows in its capacity to allow more
of the placement and routing to be done outside Vivado. In that
case, not only will the proposed flow be simpler, but PUs would
be compiled solely by RapidWright, further reducing the compile
time. We believe the caliber of productivity our flow offers is neces-
sary to expand the use of FPGAs to the wider market of software
developers and support acceleration in the post-Moore’s Law era.

Author’s Note: The opinions expressed by the authors are theirs alone and do
not represent future Xilinx policies. To download code from this paper, please visit
https://github.com/jjthomas/Fleet-Floorplanning.

REFERENCES
[1] [n. d.]. nextpnr. https://github.com/daveshah1/nextpnr-xilinx.
[2] AWS. [n. d.]. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-

types/f1/
[3] C. Beckhoff, D. Koch, and J. Torresen. 2012. Go Ahead: A Partial Reconfiguration

Framework. In FCCM’2012. 37–44. https://doi.org/10.1109/FCCM.2012.17
[4] Alibaba Cloud. [n. d.]. Deep Dive into Alibaba Cloud F3 FPGA as a Service

Instances. https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-
f3-fpga-as-a-service-instances_594057

[5] J. D. Hadley and Brad L. Hutchings. 1995. Designing a partially reconfigured
system. In Field Programmable Gate Arrays (FPGAs) for Fast Board Development
and Reconfigurable Computing, John Schewel (Ed.), Vol. 2607. International Society
for Optics and Photonics, SPIE, 210 – 220. https://doi.org/10.1117/12.221341

[6] John L. Hennessy and David A. Patterson. 2019. A New Golden Age for Computer
Architecture. Commun. ACM 62, 2 (Jan. 2019), 48–60. https://doi.org/10.1145/
3282307

[7] Edson L. Horta, John W. Lockwood, David E. Taylor, and David Parlour. 2002.
Dynamic Hardware Plugins in an FPGA with Partial Run-Time Reconfiguration.
In DAC ’02. Association for Computing Machinery, New York, NY, USA, 343–348.
https://doi.org/10.1145/513918.514007

[8] C. Lavin and A. Kaviani. 2018. RapidWright: Enabling Custom Crafted Imple-
mentations for FPGAs. In FCCM’2018. 133–140. https://doi.org/10.1109/FCCM.
2018.00030

[9] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings.
2011. HMFlow: Accelerating FPGA Compilation with Hard Macros for Rapid
Prototyping. In FCCM’2011. 117–124. https://doi.org/10.1109/FCCM.2011.17

[10] D. P. Montminy, R. O. Baldwin, P. D. Williams, and B. E. Mullins. 2007. Using
Relocatable Bitstreams for Fault Tolerance. In AHS’2007. 701–708. https://doi.
org/10.1109/AHS.2007.108

[11] Pete Sedcole, Brandon Blodget, Tobias Becker, James Anderson, and Patrick
Lysaght. 2006. Modular dynamic reconfiguration in Virtex FPGAs. IEE
Proceedings-Computers and Digital Techniques 153, 3 (2006), 157–164.

[12] J. Thomas, P. Hanrahan, and M. Zaharia. 2020. Fleet: A Framework for Massively
Parallel Streaming on FPGAs. In ASPLOS’2020. ACM, New York, NY, USA.

[13] Y. Xiao, D. Park, A. Butt, H. Giesen, Z. Han, R. Ding, N. Magnezi, R. Rubin, and A.
DeHon. 2019. Reducing FPGACompile Timewith Separate Compilation for FPGA
Building Blocks. In ICFPT’2019. 153–161. https://doi.org/10.1109/ICFPT47387.
2019.00026

https://github.com/jjthomas/Fleet-Floorplanning
https://github.com/daveshah1/nextpnr-xilinx
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1109/FCCM.2012.17
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://doi.org/10.1117/12.221341
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1145/513918.514007
https://doi.org/10.1109/FCCM.2018.00030
https://doi.org/10.1109/FCCM.2018.00030
https://doi.org/10.1109/FCCM.2011.17
https://doi.org/10.1109/AHS.2007.108
https://doi.org/10.1109/AHS.2007.108
https://doi.org/10.1109/ICFPT47387.2019.00026
https://doi.org/10.1109/ICFPT47387.2019.00026

	Abstract
	1 Introduction
	2 Background
	2.1 Front-end Compiler: Fleet
	2.2 Back-end Implementation: RapidWright

	3 Customized Backend Flow
	3.1 Domain-specific Connectivity Shell
	3.2 Processing Units (PUs)
	3.3 Inserting PUs into the Connectivity Shell

	4 Experimental Results
	4.1 Target Hardware: Amazon F1 Platform
	4.2 Evaluation Results
	4.3 Engineering Guidance and Lessons
	4.4 Opportunities for Improving Runtime

	5 Related Work
	6 Concluding Remarks
	References

