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Overview

▪ Introducing a classifier based on one- and two-feature 
decision rules as an interpretable approach for supervised 
anomaly detection
▪ Practical due to fast implementation

▪ Pandas API and demo



Supervised Anomaly Detection Problems

▪ Binary classification with large class imbalance
▪ Normal ML methods can struggle

▪ Want interpretability because humans often involved in 
addressing anomaly
▪ Why was this classified as an anomaly?



Decision Rules for Categorical Tabular Data

OS Version Manufacturer Device Age Region Has error (class)

4.1 Samsung 1 US 1

4.1 Nokia 1 Europe 0

4.2 HTC 3 US 0

4.1 HTC 2 Asia 0

4.1 Nokia 1 Europe 1

4.3 HTC 1 Asia 0

Cellphone telemetry data:



Decision Rules for Categorical Tabular Data

OS Version Manufacturer Device Age Region Has error (class)

4.1 Samsung 1 US 1

4.1 Nokia 1 Europe 0

4.2 HTC 3 US 0

4.1 HTC 2 Asia 0

4.1 Nokia 1 Europe 1

4.3 HTC 1 Asia 0

Potential one-feature rule to select anomaly class:

OS Version = 4.1 (Precision 50%, 4 examples)

Cellphone telemetry data:



Decision Rules for Categorical Tabular Data

OS Version Manufacturer Device Age Region Has error (class)

4.1 Samsung 1 US 1

4.1 Nokia 1 Europe 0

4.2 HTC 3 US 0

4.1 HTC 2 Asia 0

4.1 Nokia 1 Europe 1

4.3 HTC 1 Asia 0

Potential one-feature rule to select anomaly class:

Manufacturer = Samsung (Precision 100%, 1 example)

Cellphone telemetry data:



Decision Rules for Categorical Tabular Data

OS Version Manufacturer Device Age Region Has error (class)

4.1 Samsung 1 US 1

4.1 Nokia 1 Europe 0

4.2 HTC 3 US 0

4.1 HTC 2 Asia 0

4.1 Nokia 1 Europe 1

4.3 HTC 1 Asia 0

Potential two-feature rule to select anomaly class:

OS Version = 4.1 && Device Age = 1 (Precision 66%, 3 examples)

Cellphone telemetry data:



Decision Rules Are Interpretable

▪ When limited to one or two features
▪ Even decision trees (especially deep ones or random

forests) and linear models are hard to fully understand



Extending Decision Rules to Continuous Features

▪ Find min and max of continuous feature and discretize 
into equally sized buckets (15 buckets in our system)

▪ Other discretization schemes possible



Combining Decision Rules

▪ Single decision rule unlikely to be enough to classify well
▪ Create a classifier with many good decision rules; if any of 

them fires, anomaly is detected (logical OR of rules)
▪ Still interpretable – human can see which rule(s) fired for

particular example



Evaluating Decision Rules: Counts

▪ Maintain count of anomalies and total examples for all 
one-feature and two-feature decision rules

Feature #1 Feature #1 
Value

Feature #2 Feature # 2 
Value

# Anomalies # Total 
Examples

Precision

OS Version = 4.1 -- -- 2 4 0.5

OS Version = 4.1 Region = Asia 0 1 0.0

OS Version = 4.1 Region = Europe 1 2 0.5

.

.

.



Computing Two-Feature Counts

▪ Gets expensive with large number of features (all pairs)
▪ We have a fast C++ implementation with experimental 

GPU/FPGA acceleration available
▪ Can scale to the ~1000 feature range for large datasets



Selecting Decision Rules: Filter on Precision/Count

▪ Create a classifier with all decision rules having precision 
>= p_thresh and total examples >= c_thresh



Pruning Decision Rules from Classifier

▪ Overall classifier will likely have lower than p_thresh
precision because there will be more overlap in the rules’ 
anomalies than in false positives

▪ Need way to prune redundant rules
▪ Fewer rules also easier for human to process



Pruning Decision Rules from Classifier

▪ One heuristic: sort selected rules descending by total 
examples

▪ Iterate through rules and compute incremental precision 
(new anomalies / new examples) over previous rules

▪ Discard rules with incremental precision < p_thresh’ and
incremental examples < c_thresh’



Pruning Decision Rules from Classifier

▪ With p_thresh’ very small and c_thresh’ = 1, eliminates 
only rules that have no correct incremental classifications

▪ Strictly improves classifier precision on training set with 
no change to recall

▪ Other heuristics possible…



Pandas API Summary

▪ s = compute_sums(train_set, class_name)
▪ Compute all one-feature and two-feature counts

▪ r = s.get_rules(p_thresh, c_thresh)
▪ Return dataframe of all rules with precision >= p_thresh and total training 

examples >= c_thresh



Pandas API Summary

▪ r = s.prune(r, examples, p_thresh’, c_thresh’)
▪ Prune rules based on incremental performance; examples can just be the 

training set
▪ s.display_rules(r)

▪ Display all rules in human-readable format
▪ s.evaluate_summary(r, test_set)

▪ Return precision and recall of classifier consisting of all rules in r



Demo

▪ https://github.com/jjthomas/rule_engine
▪ jamesjoethomas@gmail.com

https://github.com/jjthomas/rule_engine
mailto:jamesjoethomas@gmail.com

