## Introduction to Graph Neural Networks

Jiaxuan You, Stanford University
Adapted from Stanford CS 224 W \& CS 246

## Many Types of Data are Graphs



Image credit: Maximilian Nickel et al
Knowledge Graphs


Image credit: math.hws.edu
Scene Graphs


Image credit: ResearchGate
Code Graphs


Image credit: MDPI
Molecules


Image credit: Wikipedia
3D Shapes

## Many Types of Data are Graphs



Image credit: ResearchGate
Code Graphs

Molecules

Image credit: Wikipedia
3D Shapes

## Why is it Hard?

## Networks are complex.

- Arbitrary size and complex topological structure (i.e., no spatial locality like grids)


Networks


Images


Text

## Learning From Graphs

Graph-level prediction
"Is this molecular graph toxic?"


Node-level prediction "What is the area of this research paper?"

Edge-level prediction "Is this transaction fraudulent?"

## Deep Learning Pipeline for Graphs



Forward

Backward
-•••••

## Key Concept: Node Embeddings

- Intuition: Map nodes to $d$-dimensional embeddings such that similar nodes in the graph are embedded close together

original network
embedding space
- How to learn the encoder function $E N C(\cdot)$ ?


## Deep Graph Encoders



## Recap: Graph Neural Networks

## Idea: Node's neighborhood defines a

 computation graph

Learn how to propagate information across the graph to compute node features

## Recap: Aggregate from Neighbors

- Intuition: Nodes aggregate information from their neighbors using neural networks



## Recap: Aggregate Neighbors

- Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!


INPUT GRAPH


## A General Perspective on Graph Neural Networks

Jiaxuan You, Stanford University
Adapted from Stanford CS 224 W \& CS 246

## A General GNN Framework (1)



INPUT GRAPH

## GNN Layer = Message + Aggregation

- Different instantiations under this perspective - GCN, GraphSAGE, GAT, ...



## A General GNN Framework (2)



INPUT GRAPH
(3) Layer connectivity

Connect GNN layers into a GNN

- Stack layers sequentially
- Ways of adding skip connections



## A General GNN Framework (3)



INPUT GRAPH

Idea: Raw input graph $\neq$ computational graph

- Graph feature augmentation
- Graph structure augmentation

(4) Graph augmentation


## A General GNN Framework (4)



INPUT GRAPH

## (5) Learning objective

How do we train a GNN

- Supervised/Unsupervised objectives
- Node/Edge/Graph level objectives



## A General GNN Framework (5)



INPUT GRAPH
(3) Layer connectivity

GNN Layer 2

## (5) Learning objective

(2) Aggregation
(1) Message
(4) Graph augmentation

## A Single Layer of a GNN

Jiaxuan You, Stanford University
Adapted from Stanford CS 224 W \& CS 246

## A GNN Layer



INPUT GRAPH

## GNN Layer = Message + Aggregation

- Different instantiations under this perspective - GCN, GraphSAGE, GAT, ...



## A Single GNN Layer

- Idea of a GNN Layer:
- Compress a set of vectors into a single vector
- Two step process:
- (1) Message
- (2) Aggregation

Output node embedding $\mathbf{h}_{v}^{(l)}$


## Message Computation

- (1) Message computation
- Message function:

$$
\mathbf{m}_{u}^{(l)}=\operatorname{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right)
$$

- Intuition: Each node will create a message, which will be sent to other nodes later
- Example: A Linear layer $\mathbf{m}_{u}^{(l)}=\mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$
- Multiply node features with weight matrix $\mathbf{W}^{(l)}$



## Message Aggregation

- (2) Aggregation
- Intuition: Each node will aggregate the messages from node $v$ 's neighbors

$$
\mathbf{h}_{v}^{(l)}=\mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)
$$

- Example: Sum $(\cdot)$, Mean $(\cdot)$ or $\operatorname{Max}(\cdot)$ aggregator

$$
\mathbf{h}_{v}^{(l)}=\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)
$$



INPUT GRAPH

Node $v$

(2) Aggregation
(1) Message

## Message Aggregation: Issue

- Issue: Information from node $v$ itself could get lost
- Computation of $\mathbf{h}_{v}^{(l)}$ does not directly depend on $\mathbf{h}_{v}^{(l-1)}$
- Solution: Include $\mathbf{h}_{v}^{(l-1)}$ when computing $\mathbf{h}_{v}^{(l)}$
- (1) Message: compute message from node $v$ itself
- Usually, a different message computation will be performed

$$
\mathbf{m}_{u}^{(l)}=\mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)} \quad \mathbf{m}_{v}^{(l)}=\mathbf{B}^{(l)} \mathbf{h}_{v}^{(l-1)}
$$

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node $v$ itself
- Via concatenation or summation

Then aggregate from node itself

$$
\mathbf{h}_{v}^{(l)}=\operatorname{CONCAT}\left(\operatorname{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right) \mathbf{m}_{v}^{(l)}\right)
$$

## A Single GNN Layer

- Putting things together:
- (1) Message: each node computes a message

$$
\mathbf{m}_{u}^{(l)}=\mathrm{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right), u \in\{N(v) \cup v\}
$$

- (2) Aggregation: aggregate messages from neighbors

$$
\mathbf{h}_{v}^{(l)}=\mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)
$$

- Nonlinearity (activation): Adds expressiveness
- Often written as $\sigma(\cdot)$ : $\operatorname{ReLU}(\cdot)$, $\operatorname{Sigmoid}(\cdot)$, ...
- Can be added to message or aggregation



## Classical GNN Layers: GCN (1)

- (1) Graph Convolutional Networks (GCN)

$$
\mathbf{h}_{v}^{(l)}=\sigma\left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)
$$

- How to write this as Message + Aggregation?

$$
\begin{aligned}
& \text { Message } \\
& \mathbf{h}_{v}^{(l)}=\sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right) \\
& \text { (2) Aggregation } \\
& \text { (1) Message }
\end{aligned}
$$

Aggregation

## Classical GNN Layers: GCN (2)

- (1) Graph Convolutional Networks (GCN)

$$
\mathbf{h}_{v}^{(l)}=\sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)
$$

(2) Aggregation
(1) Message

- Message:
- Each Neighbor: $\mathbf{m}_{u}^{(l)}=\frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)} \quad \begin{aligned} & \text { Normalized by node degree } \\ & \text { (In the GCN paper they use a slightly } \\ & \text { different normalization) }\end{aligned}$
- Aggregation:
- Sum over messages from neighbors, then apply activation
- $\mathbf{h}_{v}^{(l)}=\sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$


## GNN Layer in Practice

- In practice, these classic GNN layers are a great starting point

A suggested GNN Layer

- We can often get better performance by considering a general GNN layer design
- Concretely, we can include modern deep learning modules that proved to be useful in many domains



## GNN Layer in Practice

- Many modern deep learning modules can be incorporated into a GNN layer
- Batch Normalization:
- Stabilize neural network training
- Dropout:
- Prevent overfitting
- Attention/Gating:

A suggested GNN Layer

- Control the importance of a message
- More:
- Any other useful deep learning modules



## Batch Normalization

- Goal: Stabilize neural networks training
- Idea: Given a batch of inputs (node embeddings)
- Re-center the node embeddings into zero mean
- Re-scale the variance into unit variance

Input: $\mathbf{X} \in \mathbb{R}^{N \times D}$
$N$ node embeddings
Trainable Parameters: $\boldsymbol{\gamma}, \boldsymbol{\beta} \in \mathbb{R}^{D}$

Output: $\mathrm{Y} \in \mathbb{R}^{N \times D}$ Normalized node embeddings

Step 1:
Compute the mean and variance over $N$ embeddings

$$
\begin{aligned}
\boldsymbol{\mu}_{j} & =\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i, j} \\
\boldsymbol{\sigma}_{j}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i, j}-\boldsymbol{\mu}_{j}\right)^{2}
\end{aligned}
$$

Step 2:
Normalize the feature using computed mean and variance

$$
\begin{aligned}
& \widehat{\mathbf{X}}_{i, j}=\frac{\mathbf{X}_{i, j}-\boldsymbol{\mu}_{j}}{\sqrt{\boldsymbol{\sigma}_{j}^{2}+\epsilon}} \\
& \mathbf{Y}_{i, j}=\boldsymbol{\gamma}_{j} \widehat{\mathbf{X}}_{i, j}+\boldsymbol{\beta}_{j}
\end{aligned}
$$

## Dropout

- Goal: Regularize a neural net to prevent overfitting.
- Idea:
- During training: with some probability $p$, randomly set neurons to zero (turn off)
- During testing: Use all the neurons for computation


Dropout


Removed neurons

## Dropout for GNNs

- In GNN, Dropout is applied to the linear layer in the message function
(2) Aggregation
- A simple message function with linear
layer: $\mathbf{m}_{u}^{(l)}=\mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$



## Dropout

$\longrightarrow$


Visualization of a linear layer

## Activation (Non-linearity)

## Apply activation to $i$-th dimension of

 embedding $\mathbf{x}$- Rectified linear unit (ReLU)

$$
\operatorname{ReLU}\left(\mathbf{x}_{i}\right)=\max \left(\mathbf{x}_{i}, 0\right)
$$

- Most commonly used
- Sigmoid
$\sigma\left(\mathbf{x}_{i}\right)=\frac{1}{1+e^{-\mathbf{x}_{i}}}$
- Used only when you want to restrict the range of your embeddings
- Parametric ReLU
$\operatorname{PReLU}\left(\mathbf{x}_{i}\right)=\max \left(\mathbf{x}_{i}, 0\right)+a_{i} \min \left(\mathbf{x}_{i}, 0\right)$ $a_{i}$ is a trainable parameter
- Empirically performs better than ReLU





## GNN Layer in Practice

- Summary: Modern deep learning modules can be included into a GNN layer for better performance
- Designing novel GNN layers is still an active research frontier!
- Suggested resources: You can explore diverse GNN designs or try out your own ideas in GraphGym

A GNN Layer


## Stacking Layers of a GNN

Jiaxuan You, Stanford University

Adapted from Stanford CS 224 W \& CS 246

## Stacking GNN Layers



INPUT GRAPH
(3) Layer connectivity

## How to connect GNN layers into a GNN?

- Stack layers sequentially
- Ways of adding skip connections



## Stacking GNN Layers

- How to construct a Graph Neural Network?
- The standard way: Stack GNN layers sequentially
- Input: Initial raw node feature $\mathbf{x}_{v}$
- Output: Node embeddings $\mathbf{h}_{v}^{(L)}$ after $L$ GNN layers



## The Over-smoothing Problem

- The Issue of stacking many GNN layers
- GNN suffers from the over-smoothing problem
- The over-smoothing problem: all the node embeddings converge to the same value
- This is bad because we want to use node embeddings to differentiate nodes
- Why does the over-smoothing problem happen?


## Receptive Field of a GNN

- Receptive field: the set of nodes that determine the embedding of a node of interest
" In a $K$-layer GNN, each node has a receptive field of $K$-hop neighborhood



## Receptive Field of a GNN

- Receptive field overlap for two nodes
- The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap Only 1 node


2-hop neighbor overlap About 20 nodes


3-hop neighbor overlap Almost all the nodes!


## Receptive Field \& Over-smoothing

- We can explain over-smoothing via the notion of receptive field
- We knew the embedding of a node is determined by its receptive field
- If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
- Stack many GNN layers $\rightarrow$ nodes will have highlyoverlapped receptive fields $\rightarrow$ node embeddings will be highly similar $\rightarrow$ suffer from the oversmoothing problem
- Next: how do we overcome over-smoothing problem?


## Design GNN Layer Connectivity

- What do we learn from the over-smoothing problem?
- Lesson 1: Be cautious when adding GNN layers
- Unlike neural networks in other domains (CNN for image classification), adding more GNN layers do not always help
- Step 1: Analyze the necessary receptive field to solve your problem. E.g., by computing the diameter of the graph
- Step 2: Set number of GNN layers $L$ to be a bit more than the receptive field we like. Do not set $L$ to be unnecessarily large!
- Question: How to enhance the expressive power of a GNN, if the number of GNN layers is small?


## Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 1: Increase the expressive power within each GNN layer
- In our previous examples, each transformation or aggregation function only include one linear layer
- We can make aggregation / transformation become a deep neural network!

If needed, each box could include a 3-layer MLP

(2) Aggregation
(1) Transformation

## Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 2: Add layers that do not pass messages
- A GNN does not necessarily only contain GNN layers
- E.g., we can add MLP layers (applied to each node) before and after GNN layers, as pre-process layers and post-process layers


Pre-processing layers: Important when encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

## Design GNN Layer Connectivity

- What if my problem still requires many GNN layers?
- Lesson 2: Add skip connections in GNNs
- Observation from over-smoothing: Node embeddings in earlier GNN layers can sometimes better differentiate nodes
- Solution: We can increase the impact of earlier layers on the final node embeddings, by adding shortcuts in GNN


Idea of skip connections: Before adding shortcuts:

$$
\boldsymbol{F}(\mathbf{x})
$$

After adding shortcuts:

$$
\boldsymbol{F}(\mathbf{x})+\mathbf{x}
$$

## Idea of Skip Connections

- Why do skip connections work?
- Intuition: Skip connections create a mixture of models
- $N$ skip connections $\rightarrow 2^{N}$ possible paths
- Each path could have up to $N$ modules
- We automatically get a mixture of shallow GNNs and deep GNNs

All the possible paths:

$$
2 * 2 * 2=2^{3}=8
$$

Path 2: skip this module


Path 1: include this module
(a) Conventional 3-block residual network

(b) Unraveled view of (a)

## Example: GCN with Skip Connections

- A standard GCN layer
- $\mathbf{h}_{v}^{(l)}=\sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)$

This is our $F(\mathbf{x})$

- A GCN layer with skip connection

$$
\begin{aligned}
\mathbf{h}_{v}^{(l)}=\sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right. & \left.+\mathbf{h}_{v}^{(l-1)}\right) \\
F(\mathbf{x}) & +\mathbf{x}
\end{aligned}
$$



## Other Options of Skip Connections

- Other options: Directly skip to the last layer
- The final layer directly aggregates from the all the node embeddings in the previous layers



## Graph Manipulation in GNNs

Jiaxuan You, Stanford University

Adapted from Stanford CS 224 W \& CS 246

## General GNN Framework



INPUT GRAPH

Idea: Raw input graph $\neq$ computational graph

- Graph feature augmentation
- Graph structure manipulation

(4) Graph manipulation


## Why Manipulate Graphs

Our assumption so far has been

- Raw input graph = computational graph

Reasons for breaking this assumption

- Feature level:
- The input graph lacks features $\rightarrow$ feature augmentation
- Structure level:
- The graph is too sparse $\rightarrow$ inefficient message passing
- The graph is too dense $\rightarrow$ message passing is too costly
- The graph is too large $\rightarrow$ cannot fit the computational graph into a GPU
- It's just unlikely that the input graph happens to be the optimal computation graph for embeddings


## Graph Manipulation Approaches

- Graph Feature manipulation
- The input graph lacks features $\rightarrow$ feature augmentation
- Graph Structure manipulation
- The graph is too sparse $\rightarrow$ Add virtual nodes / edges
- The graph is too dense $\rightarrow$ Sample neighbors when doing message passing
- The graph is too large $\rightarrow$ Sample subgraphs to compute embeddings
- Will cover later in lecture: Scaling up GNNs


## Feature Augmentation on Graphs

Why do we need feature augmentation?

- (1) Input graph does not have node features
- This is common when we only have the adj. matrix
- Standard approaches:
- a) Assign constant values to nodes


INPUT GRAPH

## Feature Augmentation on Graphs

Why do we need feature augmentation?

- (1) Input graph does not have node features
- This is common when we only have the adj. matrix
- Standard approaches:
- b) Assign unique IDs to nodes
- These IDs are converted into one-hot vectors


INPUT GRAPH

One-hot vector for node with ID=5


## Feature Augmentation on Graphs

- Feature augmentation: constant vs. one-hot

|  | Constant node feature |  |
| :--- | :--- | :--- |

## Feature Augmentation on Graphs

Why do we need feature augmentation?

- (2) Certain features can help GNN learning
- Other commonly used augmented features:
- Node degree
- PageRank
- Clustering coefficient
- Any useful graph statistics can be used!


## Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
- (1) Add virtual edges
- Common approach: Connect 2-hop neighbors via virtual edges
- Intuition: Instead of using adj. matrix $A$ for GNN computation, use $A+A^{2}$

Authors Papers

- Use cases: Bipartite graphs
- Author-to-papers (they authored)
- 2-hop virtual edges make an author-author collaboration graph



## Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
- (2) Add virtual nodes
- The virtual node will connect to all the nodes in the graph
- Suppose in a sparse graph, two nodes have shortest path distance of 10
- After adding the virtual node, all the nodes will have a distance of 2
- Node A - Virtual node - Node B
- Benefits: Greatly improves message passing in sparse graphs


INPUT GRAPH

## Node Neighborhood Sampling

- Previously:
- All the nodes are used for message passing


INPUT GRAPH


- New idea: (Randomly) sample a node's neighborhood for message passing


## Neighborhood Sampling Example

- For example, we can randomly choose 2 neighbors to pass messages
- Only nodes $B$ and $D$ will pass message to $A$



## Neighborhood Sampling Example

Next time when we compute the embeddings, we can sample different neighbors

- Only nodes $C$ and $D$ will pass message to $A$


INPUT GRAPH


## Neighborhood Sampling Example

- In expectation, we can get embeddings similar to the case where all the neighbors are used
- Benefits: greatly reduce computational cost
- And in practice it works great!



## Summary of the Talk

- Recap: A general perspective for GNNs
- GNN Layer:
- Transformation + Aggregation
- Classic GNN layers: GCN, GraphSAGE, GAT
- Layer connectivity:
- Deciding number of layers
- Skip connections
- Graph Manipulation:
- Feature augmentation
- Structure manipulation
- Resources: PyTorch Geometric + GraphGym


## GraphGym: Code Platform for GNN Design

- Highly modularized pipeline for GNN research:
- Data loading, splitting
- GNN implementation
- Tasks: node/edge/graph
- Evaluation: accuracy, ROC AUC, ..

GNN layers

Learning Configuration: 4 dims
Batch size
Learning rate
Optimizer
Training epochs


Intra-layer Design: 4 dims

Inter-layer Design: 4 dims


Layer connectivity

```
```

stage_dict = {

```
```

stage_dict = {
'stack': GNNStackStage,
'stack': GNNStackStage,
'skipsum': GNNSkipStage,
'skipsum': GNNSkipStage,
'skipconcat': GNNSkipStage,

```
    'skipconcat': GNNSkipStage,
```

```
1}
```

```
1}
```

Prediction head for different tasks

```
layer_dict
```

    'linear': Linear,
    'mlp': MLP,
    'gcnconv': GCNConv,
    'sageconv': SAGEConv,
    'gatconv': GATConv,
    'splineconv': SplineConv,
    'ginconv': GINConv,
    'generalconv': GeneralConv,
    'generaledgeconv': GeneralE
    'generalsampleedgeconv': Ge
    
## GraphGym: Reproducible experiment management

```
        results
        format: PyG
    name: Cora
task_type: classification
    los-
    lugment_feature: _] [10]
        osition
        augment_label: '।
        transform: none
    bat
    odel:
eage-decoding: dot
    layers_pre_mp: 1
    layers_mp: 2
    ayer_type: generalconv
        gener
    tage-type: stack
    act: prelu
    dropout: 0.0
    de_adj: False
    optimizer: adam
    0.01
```

    \(\longrightarrow\) Dataset
        \(\longrightarrow\) Optimizer
    - One experiment: fully described by a configuration file
- Running an experiment is as simple as
$\longrightarrow$ Model

```
python main.py --cfg design_v2.yaml --repeat 3
```


## GraphGym: Scalable experiment management

## A Grid of experimental settings

```
# generate configs
python configs_gen.py --config design_v2ogb.yaml --grid round2ogb.txt --out_dir configs
# run batch of configs
# Args: config_dir, num of repeats, max jobs running, sleep time
bash run_batch.sh configs/design_v2ogb_grid_round2ogb 3 8 1
```

Repeat each experiment for 3 random seeds

```
# dataset: TU, task: graph
4 dataset.format format ['PyG']
5 dataset.name dataset ['TU_BZR','TU_COX2','TU_DD','TU_IMDB'
6 dataset.task task ['graph ']
7 dataset.transductive trans [False]
8 dataset.augment_feature feature [[]]
9 dataset.augment_label label ['']
10 gnn.layers_pre_mp l_pre [1,2]
11 gnn.layers_mp \_mp [2,4,6,8]
12 gnn.layers_post_mp l_post [2,3]
13 gnn.stage_type stage ['skipsum','skipconcat']
Run different datasets
\(\longrightarrow\) ...
\(\longrightarrow\) dataset. task task \(\left[\right.\) 'graph \({ }^{\prime}\) ] dataset.transductive trans [False]
taset.augment_feature feature [[]] gnn. layers_pre_mp l_pre [1,2] gnn. layers_mp \(\overline{1}\) _mp \([2,4,6,8]\) gnn. layers_post_mp l_post \([2,3]\)
Run different models
```


## -

14 gnn.agg agg ['add','mean', 'max']

- Launching thousands of GNNs in parallel allel


## GraphGym: Scalable experiment management

- Automatically generate experiment reports and figures

| I_pre | I_mp | I_post | stage | agg | epoch | loss | loss_std | params | time_iter | time_iter_st | accuracy | accuracy_std |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 2 | skipconcat | add | 399 | 0.5678 | 0.0248 | 217256 | 0.1098 | 0.0075 | 0.886 | 0.0017 |
| 1 | 2 | 2 | skipconcat | max | 399 | 0.3754 | 0.0236 | 217256 | 0.0896 | 0.0026 | 0.9164 | 0.0017 |
| 1 | 2 | 2 | skipconcat | mean | 399 | 0.4885 | 0.0122 | 217256 | 0.0859 | 0.0046 | 0.9083 | 0.0011 |
| 1 | 2 | 2 | skipsum | add | 399 | 0.5624 | 0.022 | 295119 | 0.1121 | 0.0155 | 0.8853 | 0.0039 |
| 1 | 2 | 2 | skipsum | max | 399 | 0.3966 | 0.0054 | 295119 | 0.1049 | 0.003 | 0.9151 | 0.0025 |
| 1 | 2 | 2 | skipsum | mean | 399 | 0.4701 | 0.0118 | 295119 | 0.1027 | 0.0038 | 0.909 | 0.0028 |
| 1 | 2 | 3 | skipconcat | add | 399 | 0.5944 | 0.0231 | 199611 | 0.1138 | 0.0376 | 0.8844 | 0.0082 |
|  | $\cdots$ |  | . |  | ~~n | . ....an | ~.an | - - - - | ~..... | ~...0~ | - ..... | ~ man |













8/24/21 Jiaxuan You, Introduction to Graph Neural Networks

## Stanford Graph Learning Workshop

Stanford
engineering Stanford Computer Forum

- https://snap.stanford.edu/graphlearning-workshop/
- Sept 16, 8am-5pm Pacific Time
- Speakers: leaders from academia + industry
- Will be live-streamed, free registration!
- New graph learning platform: Kumo
- Pytorch Geometric + GraphGym + more!

