
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

IMPLEMENTING AN INCREMENTAL SOLVER FOR

DIFFERENCE LOGIC

Christopher David Lösbrock

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Joost-Pieter Katooen
Additional Advisors:
Gereon Kremer
Matthias Volk Aachen, 23.08.2018

Abstract

Satisfiability modulo theories (SMT) describes the problem of finding a satis-
fiable assignment for a formula from a theory over a first-order logic. The theory
of quantifier-free difference logic is a subset of linear arithmetic containing only
constraints of the form x − y ≤ c. Difference logic is especially interesting for
timed systems and scheduling problems because it allows an easy declaration of
orders over its variables.

This thesis aims to expand the existing SMT-RAT framework by two dis-
tinguished theory solvers for the theory of quantifier-free difference logic using
a graph-based approach. The implemented solvers are based on the Bellman-
Ford algorithm and the Floyd-Warshall algorithm for finding shortest paths in
a graph, which are already used in a number of state-of-the-art SMT-solvers.

Both implemented solvers were compared against SMT-RAT’s existing sim-
plex solver resulting in a better runtime in most cases.

iv

Contents

1 Introduction 7

2 Preliminaries 9
2.1 The Satisfiability Problem . 9
2.2 Satisfiability Modulo Theories . 10
2.3 SMT-RAT . 11
2.4 Difference Logic . 13
2.5 The Graph-based Approach . 14

3 Bellman-Ford-based Solver 17
3.1 Incremental Negative Cycle Detection 21
3.2 Conflict Resolution and Backtracking 23

4 Floyd-Warshall-based Solver 25
4.1 Incremental Floyd-Warshall . 28
4.2 Backtracking . 32

5 Preprocessing 35

6 Experimental Results 37

7 Conclusion 45
7.1 Summary . 45
7.2 Discussion and Future Work . 45

Bibliography 47

Appendix 49

A Runtimes 49
A.1 QF_RDL . 50
A.2 QF_IDL . 52
A.3 DFT . 55
A.4 DFT Incremental . 57

vi Contents

Chapter 1

Introduction

The satisfiability modulo theories problem (SMT) describes the problem of deciding
whether a formula of first-order-logic over some theory is satisfiable by finding a sat-
isfiable assignment for its variables or determining its unsatisfiability. SMT-solving is
a heavily researched topic as shown by the annual held SMT-COMP1, where different
SMT-solvers compete against one another on various theories.

This thesis aims to expand SMT-RAT [CKJ+15] by two distinguished theory
solvers for solving quantifier-free difference logic formulas. Difference logic describes
the first-order logic comprised solely of constraints of the form x− y ≤ c and Boolean
variables and operators. Compared to other first-order logics like linear arithmetic,
of which difference logic is a fragment, it is relatively simple. An important prop-
erty of difference logic is that orders over variables can be naturally expressed by
differences, making it useful for scheduling problems or timed systems. Two con-
crete examples would be the verification of timed automata [NMA+02] or dynamic
fault trees (DFTs) [VJK18]. DFTs are used to determine, whether a system will fail,
depending on the prior failure of a number of its basic elements. In addition to a
number of standard benchmarks, the newly implemented solvers will also be tested
on a set of DFT problems. Another advantage of difference logic is the fact that a set
of constraints can be represented as a directed graph. The problem of deciding the
satisfiability for conjunctions of difference constraints then amounts to searching for
negative cycles in a graph. This is a well-known problem in graph theory, solvable by
Bellman-Ford, Floyd-Warshall or Dijkstra’s algorithm, to name a few. Variations of
the first two algorithms are implemented in the state-of-the-art solver Z3 [dMB08],
that performed well in prior competitions. Inspired by that, we will implement both
algorithms as separate solvers. For the Bellman-Ford algorithm, we will implement
an incremental algorithm proposed in [WIGG05]. The Floyd-Warshall solver will be
based on a combination of [RHK15] and [HRK17].

The thesis is structured as follows: In the next chapter, we describe the general
problem and the definition of difference logic, as well as, the basics of the graph-based
approach. In Chapters 3 and 4, we first describe the shortest-paths algorithms and
their application to SMT-solving, followed by their implemented incremental versions.
After that, we describe the implemented preprocessing method and two of SMT-RAT’s
already existing preprocessing techniques, that are applicable to difference logic. In

1Website of SMT-COMP: http://smtcomp.sourceforge.net

http://smtcomp.sourceforge.net

8 Chapter 1. Introduction

Chapter 6 we present our experimental results, comparing the newly implemented
solvers against SMT-RAT’s prior existing simplex solver and Z3. Furthermore we
will analyse the composition of the running times of the newly implemented solvers.
Finally, we draw a conclusion and discuss possible further improvements in Chapter
7.

Chapter 2

Preliminaries

2.1 The Satisfiability Problem

The satisfiability problem for propositional logic or SAT problem for short, describes
the problem of finding an assignment for the variables of a Boolean formula such that
the formula evaluates to true. Even though the task seems simple, this problem is
NP-hard according to Cook’s theorem1 [Coo71].

Definition 2.1.1. A Boolean formula ϕ, comprised of Boolean variables x1, . . . , xn
with Boolean operators (∧,∨,¬) is called satisfiable if there exists an assignment α
for its variables such that the formula evaluates to true. Such an assignment is called
a model of the formula. If no satisfying assignment exists, the formula ϕ is called
unsatisfiable.

An obvious way to decide whether a formula ϕ is satisfiable is to calculate all pos-
sible assignments for all variables in ϕ in a truth table. This brute-force method is not
practical for more complex formulas as the number of possible assignments that have
to be checked is 2n in the worst case, with n being the number of variables in a given
formula. SAT-solvers nowadays use an algorithm called the Davis-Putnam-Loveland-
Logemann algorithm or short DPLL algorithm [DLL62] or rather its improvement
conflict driven clause learning (CDCL). While the algorithm still has to check all 2n

possible assignments in a worst case, it performs very well in practice. The algorithm
requires its input formula to be in conjunctive normal form or CNF, which means
that the formula may only consist of a conjunction of disjunctions.

Definition 2.1.2. A formula ϕ is in conjunctive normal form or CNF if

ϕ has the form ϕ =

i∧
(

j∨
lij) (2.1)

where lij is the j-th literal in the i-th clause (a disjunction of literals).

Every Boolean formula can be transformed into an equivalent formula in CNF
by applying basic Boolean transformation laws. This may result in an exponential
increase of the size of the formula and may take exponential time. An alternative

1also known as the Cook-Levin theorem

10 Chapter 2. Preliminaries

procedure is called Tseitin transformation [Tse68], in which a formula ϕ is trans-
formed into an equisatisfiable formula ψ in CNF. This means that the new formula
ψ is satisfiable if, and only if, the original formula ϕ is satisfiable. This is done by
introducing new variables and can be done in polynomial time. Also, for any satisfi-
able assignment for ψ, the respective assignment for ϕ can be easily derived.
The CDCL algorithm can be divided into three main operations which are combined
in a certain way until, either a satisfying assignment for the formula was computed
or the formula is found to be unsatisfiable:

Decision: The algorithm guesses the truth value for an unassigned literal li according
to some heuristic. Every decision marks a decision level dl.

Boolean constraint propagation (BCP): The algorithm checks if the latest de-
cision entails any other assignments of variables in the formula. This is done by
checking the clauses where all literals evaluate to false, except for one literal lj ,
which is unassigned. These clauses are called unit clauses and force the assign-
ment of the literal lj . This is because, for a formula in CNF to be satisfied by
an assignment, all its clauses must evaluate to true. Therefore, as clauses are
disjunctions of literals, at least one literal of each clause must evaluate to true.
This is continued for all literals assigned in this phase. Should the algorithm
at one point detect a conflict, it continues with conflict analysis and otherwise
makes the next decision.

Conflict analysis: If the algorithm detected a conflicting assignment during BCP, it
determines the cause of the conflict by backtracking to the last relevant decision.
It then adds a new conflict clause, which fixes the variable assignment that
caused the conflict to the opposite assignment. The newly added conflict clause
reduces the search space by creating more restrictions on the assignments of
the literals. Should the algorithm at one point determine that the conflicting
assignment was made on decision level zero, then the formula is unsatisfiable,
because the algorithm found a conflict without any literals freely assigned by
itself.

2.2 Satisfiability Modulo Theories
The Satisfiability Modulo Theories Problem (SMT) expands the satisfiability prob-
lem from propositional formulas to formulas over some theory T . To that end, we
define some basic notations used throughout the thesis. Notice though, that we are
only interested in the quantifier-free fragment of first-order logic, which means that
there are no quantifier-symbols and all variables are implicitly existential-quantified.
Therefore any definitions regarding quantifiers will be omitted.

In the context of SMT, a theory T consists of a domain D and interpretations for
the used function and predicate symbols, mapping all function symbols to functions
f : Dn → D and all predicate symbols to functions P : Dn → {0,1}. As constant
symbols can be viewed as 0-ary functions, they are also mapped to the used domain.

• term: A variable or a constant is a term. Furthermore if t1, . . . ,tn are terms,
then f(t1, . . . ,tn) are terms, with f being a n-ary function symbol.

• constraint : If t1, . . . ,tn are terms, then P (t1, . . . ,tn) is a constraint, with P ∈ Σ
being a n-ary predicate symbol.

2.3. SMT-RAT 11

• formula: A formula consists of constraints with Boolean connectives (∧,∨,¬).
The syntax of the terms, constraints and formulas is defined by some abstract gram-
mar. A more detailed definition of theories in the context of SMT can be found in
[BHvMW09]. Given a first-order logic formula ϕ, the goal is to find an assignment
α(x) ∈ D for every variable x in ϕ, such that α |=T ϕ (ϕ is T -satisfiable).

An SMT-solver normally consists of two separate solvers, a SAT-solver and a
theory solver or T -solver. There are two main approaches to the interaction between
SAT-solver and theory solver. In the first approach, called eager SMT-solving, the
formula is transformed into an equisatisfiable formula in propositional logic and then
solved for satisfiability by a SAT-solver.

The second approach, called lazy SMT-solving switches the order of the operations.
This time the SAT-solver works on an abstraction of the original formula called the
Boolean skeleton. The Boolean skeleton is constructed by encoding every distinct
constraint in the formula into a unique propositional variable. The SAT-solver tries
to compute a satisfying assignment for the Boolean skeleton and, if successful, passes
it to the T -solver. The theory solver receives the set C of constraints which were
represented by the Boolean variables assigned to true and returns whether C poses
a conflict under the theory T . Should the theory solver detect a conflict, it returns
an infeasible subset of the given set of constraints. The infeasible subset is the set of
constraints that caused the conflict and serves as an explanation to the SAT-solver
for making changes to the current conflicting assignment. Lazy SMT-solvers can be
divided into two subclasses, depending on when the theory solver is called. In a full-
lazy SMT-solver, the SAT-solver tries to compute a satisfying full assignment for the
Boolean skeleton before calling the theory solver. In a less-lazy SMT-solver (Figure
2.1) on the other hand, the theory solver is called upon after every BCP operation.
Either way, the theory solver has to fulfill a number of conditions to work alongside
the SAT-solver effectively:

incrementality: The theory solver may be called upon by the SAT-solver to check
for conflicts under the theory for several assignments for one problem. These
assignments may differ only slightly from one another and therefore the T -solver
should be able to use its prior computations, instead of starting from scratch
every time it is invoked. This is especially important for less-lazy SMT-solving,
where the theory solver is called upon for partial assignments.

backtracking: After the theory solver returns that it found a conflict, the SAT-
solver will backtrack to change the conflicting assignments. The theory solver
should be able to backtrack alongside the SAT-solver, only reverting changes
when necessary.

theory propagation: The theory solver should pass all information it can extract
from the given set of constraints back to the SAT-solver. This includes, but is
not limited to, the infeasible subset.

2.3 SMT-RAT
The framework expanded in this thesis is the SMT Real Arithmetic Toolbox (SMT-
RAT) [CKJ+15]. SMT-RAT does not consist of a single solver for SMT, but rather

12 Chapter 2. Preliminaries

ϕ

SAT-solver sat/unsat

constraint set explanation

theory solver

Boolean abstraction
(partial)
assignment

Figure 2.1: Diagram of a less-lazy SMT-solver

a collection of different preprocessors, T -solvers and a SAT-solver. It uses the C++
library CArL [KCJ+], which consists of data structures and functions allowing to
work directly on, for example, constraints and formulas. This allows for a high level
of abstraction when implementing new solvers for SMT-RAT. Its architecture can be
divided into the three following parts:

module: A module mi consists of a single preprocessing or solving method encap-
sulated in a common interface. This interface allows for adding formulas to the
considered set of formulas F and removing formulas from it. The main function
of the interface calls for the module to check F for satisfiability and to return
the appropriate answer. Furthermore, the module returns an infeasible subset
of the set of formulas if it was unsatisfiable. The module may invoke another
module mj as its backend. The module mi passes a formula F to the backend
mj and gets either a model, if F is satisfiable, or otherwise an infeasible subset
back. Lastly, a module may define additional lemmas, valid formulas, which
allow it to pass additional information to other modules.

strategy: A strategy is a user-defined composition of modules. It allows a user
to define which modules are invoked and under which conditions. Figure 2.2
shows a simple strategy consisting of a module m1, which runs module m2 as
its backend, if condition c1 is met and m3, if condition c2 is met.

manager: The manager coordinates the overall solving of an input formula F . Should
a module mi, currently solving a formula Fi ⊆ F , call another module mj as its
backend on a subformula F ′, the manager passes F ′ to the called module. After
mj reached a result, the manager passes this result back to mi, which uses this
information for solving the formula F .

2.4. Difference Logic 13

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

s m1

m2

m3

c1

c2

Figure 2.2: Graphic representation of a simple strategy

2.4 Difference Logic

This thesis aims to implement theory solvers for the quantifier-free fragment of dif-
ference logic over reals DL(R) and integers DL(Z). The syntax of difference logic can
be defined as follows:

term : variable− variable
constraint : term ≤ constant
formula : ¬formula | formula ∧ formula | constraint

The SMT-LIB standard [BFT16] allows for a larger set of predicates, thus we have
to consider a more general form of constraints x− y ./ c with ./∈ {< , > , ≤ , ≥ , =
, 6=}. Furthermore, the SMT-LIB standard allows for terms containing only a single
variable. Nonetheless, we can focus on constraints of the form x − y ≤ c, because
all other constraints allowed by the SMT-LIB standard can be transformed into that
form. The transformations are as follows:

x− y = c⇐⇒ x− y ≤ c ∧ x− y ≥ c (2.2)
x− y 6= c⇐⇒ ((x− y < c ∨ x− y > c) ∧ ¬(x− y < c ∧ x− y > c)) (2.3)
x− y > c⇐⇒ y − x < −c (2.4)
x− y < c⇐⇒ x− y ≤ c− ε, ε = 1, if D = Z; ε sufficiently small, if D = R (2.5)

x ≤ c =⇒ x− z ≤ c, z !
= 0 (2.6)

In the case of DL(Z), strict inequalities are transformed directly by SMT-RAT’s
SAT-solver by applying ε = 1. For DL(R) the theory solvers keep an adjust value
a(x) ∈ Z for every variable x. This allows the solvers to use ε symbolically during its
computations. This is described in Section 3.1.

Constraints of the form x ≤ c are transformed into x − z ≤ c by introducing a
fresh variable z that is not part of the considered set of constraints. Any satisfying
assignment is then shifted by −z to ensure z = 0.

14 Chapter 2. Preliminaries

Theorem 2.4.1. Shifting the variable assignments of a model α of a set of difference
constraints C by a constant factor also yields a satisfying assignment.

Proof. Assume a set of difference constraints C of the form xi−xj ≤ bij . Furthermore
let α be a model of C, with variable assignments α(xi) for all variables in C.

Then

α(xi)− α(xj) ≤ bij (2.7)

has to hold for all constraints.

(2.8)

Now assume a variable assignment β with β(xi) = α(xi) + d, where d is a value from
the domain. Then

(α(xi) + d)− (α(xj) + d) ≤ bij
≡α(xi) + d− α(xj)− d ≤ bij
≡α(xi)− α(xj) ≤ bij︸ ︷︷ ︸

true, because of Eq. 2.7

Thus, β is a satisfying assignment for C.

2.5 The Graph-based Approach
The following basic graph notations and proofs are taken from [CLRS09].

We will use a graph-based approach to check systems of difference constraints in
both theory solvers. To that end, we construct a graph that will represent the system
of difference constraints by creating a vertex for every variable occurring in the given
set of constraints and connect them with directed edges from the vertex representing
the subtrahend to the minuend vertex for every constraint. For an edge (u,v), we will
call u the source and v the target of the edge. Furthermore, an additional vertex is
added, that does not represent a variable from the set of constraints and has outgoing
edges to all other vertices with weight zero. This vertex serves two purposes: First, it
poses as a distinct start node for the Bellman-Ford algorithm and second, it is used
to determine a satisfying assignment, if there exists one.

Definition 2.5.1. Given a set C of difference constraints of the form xi − xj ≤ bk
over variables x0, . . . ,xn, the corresponding constraint graph is a weighted, directed
graph G = (V,E) with a weight function w : E → D, where

V = {s,v0,v1, . . . ,vn}

and

E = {(vi,vj) : xj − xi ≤ bk is a constraint in C} ∪ {(s,v0),(s,v1), . . . ,(s,vn)}

with w(vi,vj) = bk and w(s,vi) = 0.

2.5. The Graph-based Approach 15

x2 − x1 ≤ 2

x3 − x1 ≤ −1

x4 − x3 ≤ 0

x1 − x4 ≤ 4

x4 ≤ 3

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

s

x1 x2

x3 x4

z

0 0

0 02

−1
0

4

3

0

Figure 2.3: Example of a constraint graph

Figure 2.3 shows an example of a simple set of difference constraints represented in
a constraint graph. Notice that the vertices are directly labeled with the names of the
variables, as every vertex represents exactly one variable from the system of difference
constraints. Therefore we may refer to vertices with the names of the variables and
the other way around if the meaning is clear.

To check for the satisfiability of a system of difference constraints with a graph-
based approach, we need a condition that the constraint graph has to fulfill to deter-
mine the satisfiability of said system. This condition is the absence of negative cycles
in the graph.

Definition 2.5.2. A negative cycle v0
c0→ v1

c1→ v2
c2→ · · · cn−1→ vn

cn→ v0 is a path from
a vertex to itself with a negative path weight

n∑
i=0

w(ci) < 0 (2.9)

Theorem 2.5.1. A set of difference constraints C is unsatisfiable if the corresponding
constraint graph has a negative cycle.

Proof. Assume C is a set of difference constraints and G = (V,E) its constraint graph.
Furthermore let c = 〈v0, . . . , vk〉 be a negative cycle in G. The edges (vi−1,vi), i =
1,2, . . . ,k with weight w(vi−1,vi) = bi,i−1 represent the set of constraints xi − xi−1 ≤
bi,i−1. The cycle has negative weight, thus

k∑
i=1

w(vi−1,vi) < 0 and therefore
k∑

i=1

bi,i−1 < 0 (2.10)

hold. Since every constraint represented by an edge in the graph must be satisfied,
the sum of the constraints in the negative cycle has to be satisfiable. This leads to

k∑
i=1

xi −
k∑

i=1

xi−1 ≤
k∑

i=1

bi,i−1 (2.11)

The two sums on the left-hand side are equal because v0 = vk and therefore x0 = xk

16 Chapter 2. Preliminaries

(every vertex represents exactly one variable).

0 ≤
k∑

i=1

bi,i−1︸ ︷︷ ︸
<0, because of Eq. 2.10

(2.12)

This is false no matter the chosen values for xi, i = 1,2, . . . , k and therefore unsatis-
fiable overall.

To check for negative cycles we use shortest-paths algorithms. A shortest-paths
algorithm is given a weighted, directed graph G and determines the shortest paths
in accordance with the considered subproblem. The Bellman-Ford algorithm finds
shortest paths for a prior determined source vertex to all other vertices and the Floyd-
Warshall algorithm finds shortest paths for all pairs of vertices in the graph. There
are other variations of the problem, but they are of no interest to the implemented
solvers.

Definition 2.5.3. The shortest path weight from u to v is defined as

δ(u,v) =

{
min(w(p) : u

p
; v), if there exists a path from u to v

∞, otherwise

with w(p) =
∑

e∈p w(e).

We exploit the fact that shortest-paths algorithms abort if they encounter a neg-
ative cycle. This is because a shortest path from a vertex v to another vertex u that
contains a negative cycle could always be improved by traversing the negative cycle
one more time, thus leading to a path with a weight tending towards negative infinity.

Lemma 2.5.2. Given a weighted, directed graph G, let p = 〈v0, v1, . . . , vk〉 be a
shortest path from vertex v0 to vertex vk and, for any i and j such that 0 ≤ i ≤ j ≤ k,
let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from vertex vi to vertex vj. Then pij is
a shortest path from vi to vj.

Proof. The proof is by contradiction. If any subpath pij of a shortest path p could
be improved then the path p could be improved. Therefore p would not have been a
shortest path, which poses a contradiction to the initial statement.

If the theory solver is passed a satisfiable set of difference constraints, SMT-RAT
requires it to return a satisfying assignment. Theorem 2.5.3 shows that this directly
relates to the computed shortest path weights from the start node s to the vertices
of the constraint graph representing the variables.

Theorem 2.5.3. If a constraint graph contains no negative cycle, then the represented
set of difference constraints is satisfiable and the computed shortest path weights form
a satisfiable assignment.

Proof. Assume C is a set of difference constraints and G = (V,E) its constraint graph.
G contains no negative cycle and thus has shortest paths s p

; v for all v ∈ V with
weight δ(s,v). For any edge (vi,vj) ∈ E with weight w(vi,vj) = bij representing a
constraint xj − xi ≤ bij the triangle inequality δ(s,vj) ≤ δ(s,vi) + w(vi,vj) holds.
Transformation leads to δ(s,vj)− δ(s,vi) ≤ w(vi,vj). If we replace each part with the
component from the constraint it represents, we get xj − xi ≤ bij . Since this is true
for all edges in G all constraints have a satisfying assignment.

Chapter 3

Bellman-Ford-based Solver

The aforementioned Bellman-Ford algorithm is a single-source shortest-paths algo-
rithm that uses the principle of dynamic programming. This means, that the algo-
rithm recursively solves subproblems of the examined problem, and uses the gained
information to find a solution to the original problem. The Bellman-Ford algorithm
does this by finding shortest paths of increasing lengths in each iteration. This is
possible because, as Lemma 2.5.2 states, all subpaths of a shortest path are again
shortest paths.

Definition 3.0.1. For every vertex v in the constraint graph G = (V,E), we define
a predecessor π[v]. The predecessor is either another vertex or NULL.

To construct the infeasible subset, the solver has to be able to construct a negative
cycle, if one was found. Therefore, we store the direct predecessor on the path for
every vertex. This allows us to construct the path by going from one vertex to its
predecessor until we reach the source node s because, as Lemma 2.5.2 states, all
subpaths of a shortest path are in turn shortest paths. Thus, it is enough to store
a single predecessor for every vertex, as a changed predecessor indicates a better
estimate for the shortest path p, and therefore all other paths with p as a subpath
will be adapted correctly.

Definition 3.0.2. For every vertex v, we keep a shortest-path estimate d(v), which
serves as an upper bound on the weight of the shortest path s

p
; v, where s is the

start node of the Bellman-Ford algorithm.

The shortest-path estimates are initialized with d(v) = ∞ for all vertices in the
constraint graph. The Bellman-Ford algorithm iteratively lowers that bound until
d(v) = δ(s,v),∀v ∈ V holds or a negative cycle was found. To that end the process
of relaxing edges is used. The relax-function (Algorithm 1) gets an edge (u,v) ∈ E
as its input and checks if the current distance approximation d(v) of the target is
larger than the sum of the edge weight and the distance approximation of the source
w(u,v) + d(u). If that is the case, a path through (u,v) would be an improvement
of the shortest path from s to v. The distance approximation of v is then changed
to d(v) = w(u,v) + d(u) and u is set as the predecessor of v. This means the new
shortest path for v is the same as for u with addition of the relaxed edge (u,v). If an
edge cannot be relaxed any more, it is called stable.

18 Chapter 3. Bellman-Ford-based Solver

Should a received formula be satisfiable, a model can be constructed by using the
distance approximation of every vertex as the assignment for its represented variable
(see Theorem 2.5.3).

function relax(u,v)
if d(u) + w(u,v) < d(v) then

d(v)← d(u) + w(u,v)
π(v)← u

end if
end function

Algorithm 1: Edge relaxation

The Bellman-Ford algorithm repeats the relaxation ((|V |−1) · |E|)-times to ensure
that the shortest paths are found. The algorithm starts with paths of length one in
the first iteration and checks longer paths in each iteration. This is sufficient because
the shortest paths have to be simple. This means that no vertex can be visited more
than once for each path and thus there cannot be a cycle in a shortest path. It follows
that such a path contains maximal |V | − 1 edges, else there would be a cycle. If the
sum of the weights in that cycle were positive, relax would not have chosen it as part
of the path. A negative-weight cycle, on the other hand, would have been included
in the path by relax. In Section 2.5 we chose shortest-paths algorithms especially
for their property to abort upon finding a negative cycle. Bellman-Ford does that by
iterating over all edges one last time and checking if relax would find a better path.
If that is the case, Bellman-Ford returns false, because it found a negative cycle.

function Bellman-Ford(G,s)
for all v in V do

d(v)←∞
π[v]← NULL

end for
n← |V |
d(s)← 0
for i← 0 to n− 1 do

for all (u,v) in E do
relax(u,v)

end for
end for
for all (u,v) in E do

if d(u) + w(u,v) < d(v) then
return False

end if
end for
return True

end function

Algorithm 2: Bellman-Ford

The most serious drawback of using Bellman-Ford to find negative cycles is that it
only checks for negative cycles in the end. Furthermore, it keeps trying to relax edges,

19

even when all edges are stable. It therefore always has a complexity of O(|V | · |E|) as
the initialization takes Θ(|V |), the |V | − 1 iterations over all edges take O(|E|) each
and the last check for negative cycles takes O(|E|) as well. As the SAT-solver might
only apply minor changes to the passed system of difference constraints, compared
to the last invocation of the theory-solver, an incremental algorithm could reduce the
running time significantly. The first step to achieve that is to ensure that Bellman-
Ford is still sound and complete with an arbitrary set of initial node values, because
the incremental version will use the existing constraint graph and also make use of
the prior computed distance approximations of the vertices, to reduce the number of
relaxations needed to achieve a stable graph if possible. The following two theorems
are taken from [WIGG05].

Theorem 3.0.1. For a constraint graph representing a set of difference logic con-
straints, Bellman-Ford with arbitrary initial node values assigns suitable distance ap-
proximations, such that every edge satisfies its representing constraint if possible.

Proof. Let G = (V,E) be a constraint graph and (u,v) ∈ E an arbitrary edge with
weight w(u,v) = c representing the constraint x − y ≤ c. There are a two different
cases to acknowledge:

Case: relax(u,v) does not change d(v)
If the relaxation operation does not change the distance approximation of v, the
inequality d(u) + c < d(v) does not hold and therefore d(u) + c ≥ d(v) holds.

d(u) + c ≥ d(v)

≡ c ≥ d(v)− d(u)

This exactly matches the represented constraint x− y ≤ c, as v represents x and
u represents y.

Case: relax(u,v) changes d(v)
The proof is done by induction over the number of consecutive relaxed edges k.

Base case k = 1:
After the relaxation operation, d(v) = d(u) + c holds. If we input the distance
approximations into the constraint as values for their respective variables, we
get

d(u) + c− d(u) ≤ c
≡ c ≤ c

Induction hypothesis:
Suppose the Bellman-Ford algorithm computed correct distance approximations
in n consecutive relaxation operations.

Induction step k = n+ 1:
For every relaxed edge (vi,vi+1), the predecessor π(vi+1) is set to vi. Therefore
a path p = 〈v1, v2, . . . , vn〉 exists in the graph before the (k + 1)-th relaxation.
As every edge (vi−1,vi) in p was relaxed

20 Chapter 3. Bellman-Ford-based Solver

d(vi) = d(vi−1) + w(vi−1,vi), ∀(vi−1,vi) ∈ p (3.1)

holds. Substituting the equalities along the path yields

d(vn) = d(v1) +

n∑
i=2

w(vi−1,vi) (3.2)

Next, the edge (vn,vn+1) is relaxed, thus

d(vn+1) = d(vn) + w(vn,vn+1)

Substituting d(vn)

d(vn+1) = d(v1) +

(
n∑

i=2

w(vi−1,vi)

)
+ w(vn,vn+1) (3.3)

Inserting into the represented constraint

d(vn+1)− d(vn) ≤ w(vn,vn+1)

Substituting d(vn+1) by Eq. 3.3 and d(vn) by Eq. 3.2

d(v1) +

(
n∑

i=2

w(vi−1,vi)

)
+ w(vn,vn+1)− d(v1) +

n∑
i=2

w(vi−1,vi) ≤ w(vn,vn+1)

≡ w(vn,vn+1) ≤ w(vn,vn+1)

≡ 0 ≤ 0

Therefore the distance approximations assigned by Bellman-Ford form a satisfying
model for the set of difference constraints if there is one.

Theorem 3.0.2. For the purpose of detecting negative weight cycles, Bellman-Ford
is sound and complete by starting with an arbitrary set of initial node values (instead
of initializing d(v) to ∞).

Proof. LetG = (V,E) be a constraint graph and the final node value d(v) ∈ D,∀v ∈ V .
Furthermore let c = 〈v0,v1, . . . ,vk〉, v0 = vk be a negative cycle. For the sake of
contradiction, let us assume, that Bellman-Ford returned true, despite G containing a
negative cycle c. Therefore, all edges have to be stable, meaning d(u)+w(u,v) ≥ d(v),
∀(u,v) ∈ E holds. Otherwise, the algorithm would have returned false. Furthermore,
because c is a negative cycle

k∑
i=1

w(vi−1,vi) < 0 (3.4)

For all edges in c, the aforementioned inequality d(vi−1) + w(vi−1,vi) ≥ d(vi),
i = 1, . . . ,k holds. We can add up these inequalities along the negative cycle c,
leading to the following inequality:

3.1. Incremental Negative Cycle Detection 21

k∑
i=1

d(vi−1) +

k∑
i=1

w(vi−1,vi) ≥
k∑

i=1

d(vi) (3.5)

The two sums over the distances are in fact equal, as both contain the shortest-
path estimates of all vertices in c. The first sum adds d(v0) + · · · + d(vk−1) and the
second d(v1) + · · · + d(vk), with v0 = vk. Thus, they can be eliminated from the
inequality leaving

k∑
i=1

w(vi−1,vi)︸ ︷︷ ︸
<0, because of Eq. 3.4

≥ 0 (3.6)

which poses a contradiction.

3.1 Incremental Negative Cycle Detection
As we have just proven, the Bellman-Ford algorithm is sound and complete for find-
ing negative cycles and gives a satisfying model, if there is one, when initialized with
arbitrary initial node values. The next step is to introduce the incremental algorithm.
We have implemented the incremental negative cycle detection algorithm presented in
[WIGG05] (see Algorithm 3). Assume that the Bellman-Ford algorithm does not find
a negative cycle. Therefore, all edges in the current constraint graph G = (V,E) have
to be stable, and the theory solver returns satisfiable to the SAT-solver. The SAT-
solver either returns that the system of difference constraints is satisfiable overall and
finishes or gives additional constraints to the theory solver to check. Should Bellman-
Ford now detect a negative cycle in the expanded constraint graph G′ = (V ′,E′), at
least one edge, representing a newly added constraint, has to be part of the cycle. If
no new edge were part of the negative cycle, it would have already been present in
the old graph G and therefore found by Bellman-Ford beforehand. This property is
the main invariant of the incremental algorithm.

Instead of one full call to the Bellman-Ford algorithm, the incremental algorithm
is invoked to check for negative cycles after each newly added edge (vi,vj) and tries to
relax this edge. If the edge was relaxed, the node value for the target vj is changed.
This change is forwarded throughout the graph by relaxing all outgoing edges of the
target (vj ,vk) ∈ E. This process is repeated until all edges are stable again or the
newly added edge is reached again. If that happens, (vi,vj) has to be part of a negative
cycle. The proof is similar to Theorem 3.0.2. Figure 3.1 shows an invocation of the
algorithm on a simple graph. The relaxation operations are highlighted in red. After
the case (d) in Figure 3.1, the algorithm would have to relax the edge (x2,x3) again
and aborts, returning that a negative cycle was found. Notice, that the constraint
graph does not contain a start node s. This is because the algorithm is invoked for
every edge when it is added. Therefore, it uses the source of the newly added edge as
the start node for this invocation of the algorithm. Also, the graph does not have to
be connected, as the proof of Theorem 3.0.1 shows, that a correct model is computed
even for single edges. This reduces the size of the constraint graph by |V | edges,
reducing the running time of the theory solver.

22 Chapter 3. Bellman-Ford-based Solver

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x15 x2 −5

x30 x4 0

−10

2

0

(a) before adding the new edge

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x15 x2 −5

x3−4 x4 0

−10

2

0

1

(b) relax(x2,x3)

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x1−2 x2 −5

x3−4 x4 −4

−10

2

0

1

(c) relax(x3,x4), relax(x3,x1)

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x1−2 x2 −12

x3−4 x4 −4

−10

2

0

1

(d) relax(x1,x2)

Figure 3.1: Example of incremental negative cycle checking

1: function detectNegativeCycle(u,v,G)
2: if d(v) > d(u) + w(u,v) then
3: relax(u,v)
4: enqueue(v)
5: end if
6: while x = dequeue do
7: for all (x,y) ∈ E do . sequenced with priority queue
8: if d(y) > d(x) + w(x,y) then
9: if x == u AND y == v then

10: return True
11: else
12: relax(x,y)
13: enqueue(y)
14: end if
15: end if
16: end for
17: end while
18: return False
19: end function

Algorithm 3: The incremental negative cycle detection algorithm

In line [7] of Algorithm 3, the outgoing edges of the currently considered vertex
x are ordered in a priority queue. For every edge (x,y), the corresponding priority is
computed as p(x,y) = d(y) − (d(x) + w(x,y)). A higher priority represents a larger
negative change to the distance value of y when the edge (x,y) is relaxed. By relaxing
these edges first, the algorithm generally finds a negative cycle with fewer checks
compared to simply checking them in the order they are stored. The resulting running
time of the incremental negative cycle detection algorithm is in O(|V | log |V | + |E|)

3.2. Conflict Resolution and Backtracking 23

for every checked constraint.
We were able to improve the performance of the algorithm by adding an option

for the theory solver to enforce a directed simple graph, which is a graph G′ = (V ′,E′)
without parallel edges, by only adding the edge with the lowest weight eij for every
pair of vertices vi,vj . The other parallel edges are stored as a set of alternatives
for each edge. When an edge is removed, the best alternative replaces it. Theorem
3.1.1 shows the correctness of this method in the context of shortest-paths prob-
lems. This reduces the running time of the algorithm from O(|V | log |V | + |E|) to
O(|V | log |V | + |E′|). Depending on the structure of the examined problem, E′ may
be significantly smaller than E.

Theorem 3.1.1. When searching for shortest paths in a graph G = (V,E) with
parallel edges, it is enough to search through a simple graph G′ = (V ′,E′), V ′ =
V, E′ ⊂ E, with E′ only containing the edge with the smallest weight for every set of
parallel edges.

Proof. Let G = (V,E) be a graph with parallel edges and let Eij denote the set of
parallel edges between two vertices vi,vj ∈ V . Assume that the shortest path p from
vi to vj only contains a single edge eijk ∈ Eij . When p is a shortest path, then
w(eijk) = mineijl∈Eij

w(eijl) must hold and because of Lemma 2.5.2 it must hold for
paths of arbitrary length.

For DL(R) the solver has to be able to work with strict inequalities. This is done
by using an adjust value. For every vertex in the graph, and thus for every vari-
able in the set of constraints, an adjust value a(v) ∈ Z, v ∈ V is kept. Every time
an edge (u,v) ∈ E is relaxed, the adjust value is changed to a(v) = a(u) + a(u,v),
where a(u,v) = 1, if the constraint represented by the edge has the relation ">" and
a(u,v) = −1, if the relation is "<". For all other relations the adjust value of the edge
is a(u,v) = 0. When returning a model for the current system of difference constraints,
every variable xi represented by a vertex vi is assigned xi = d(vi)+ a(vi)

#strict constraints+1 .

3.2 Conflict Resolution and Backtracking
After finding a negative cycle in the graph, it is no longer stable after exiting the
algorithm. This violates the invariant mentioned at the beginning of the last section.
Thus, the algorithm records all changes made during its current invocation by storing
the distances of vertices before they are changed for the first time. Upon finding
a negative cycle, all changes are reverted. The theory solver then removes the last
added edge e from the graph, restoring it to a stable state, and schedules the edge
to be added again. The predecessors are not restored, as they are used afterwards to
determine the infeasible subset. This poses no problem because the predecessors are
only used to reconstruct a negative cycle in the graph. When the algorithm finds a
negative cycle, it traversed all its edges beforehand and therefore assigned appropriate
predecessors.

Should the preceding module not determine unsatisfiability for the complete for-
mula, the theory solver is tasked to remove a subset C ′ of its currently considered set
of constraints C. This is done by simply removing the corresponding edges from the

24 Chapter 3. Bellman-Ford-based Solver

graph or, if the constraints were not added to the graph, by removing the constraints
from the set of scheduled constraints. The distances of the vertices are not reverted
to the values before the constraints in C ′ were added. This is possible because every
constraint imposes bounds on the values of its variables, and by removing constraints,
these bounds are loosened. A satisfying assignment for C must therefore also satisfy
the set of constraints C \ C ′.

Chapter 4

Floyd-Warshall-based Solver

The incremental algorithm described in the previous chapter has a running time that
scales with both the number of edges and the number of vertices in the constraint
graph. This directly relates to the number of constraints and variables in the system
of difference constraints. Another well-known shortest-paths algorithm is the Floyd-
Warshall algorithm, which solves the all-pairs shortest-paths problem. Its running
time scales only with the number of vertices in the graph with a running time in
O(|V |3). Thus, for problems resulting in a highly dense constraint graph, it might
prove advantageous to use this algorithm instead. A simple graph G = (V,E) is
called dense when the number of its edges approaches the maximum number of possi-
ble edges. A simple graph contains the maximum number of edges when every vertex
is connected to every other vertex by an edge. Therefore it may only contain a max-
imum of |V | · (|V | − 1) edges. There is no similar definition for a graph with parallel
edges because a graph G = (V,E) with only two vertices u,v ∈ V may already contain
an infinite number of parallel edges (u,v) ∈ E.

The basic idea of the Floyd-Warshall algorithm is to check for every possible path
from a vertex i to another vertex j in the constraint graph if traversing a third vertex
k along the path leads to a better estimation of the shortest-path weight. The shortest
path i p

; j is then changed to the concatenation of the two shortest paths i pik
; k and

k
pkj
; j. This is repeated for every vertex k and every path i

pij
; j.

The algorithm uses a matrix with dimensions |V | × |V |, called the distance matrix
D, which is initialized with a distance of infinity for all pairs of vertices without an
edge in the graph and the edge weight for those connected by an edge. Furthermore,
the diagonal of the matrix contains the paths from any vertex i to itself. These are
initialized with a distance of zero.

d[i,j] =

w(i,j) , (i,j) ∈ E
∞ , (i,j) /∈ E
0 , i = j

d[i,j] is the entry in the i-th row and j-th column of D

Every time an improvement of a possible path is found, the distance value in the
matrix is updated. In the end, the matrix contains all shortest paths in the graph
with the entry in the i-th row and j-th column denoting the shortest-path weight

26 Chapter 4. Floyd-Warshall-based Solver

of the path i
p
; j. This allows us to construct a model for a satisfying formula by

using the shortest-path weights from s to all other vertices as the assignment for the
represented variables in accordance to Theorem 2.5.3. This is done by iterating over
the row for s in the distance matrix. A negative cycle is found if an entry on the di-
agonal of the matrix is set to a negative value, as this would indicate a shortest path
with negative weight from the vertex to itself. The algorithm is shown in Algorithm 4.

This would be enough to determine the satisfiability of a formula and, if satisfiable,
a model. As SMT-RAT implements a lazy SMT-solver, it also requires the theory
solver to return an infeasible subset if the passed formula was unsatisfiable. Therefore,
the solver has to be able to reconstruct the negative cycle. To achieve this, a second
matrix is implemented, called the path matrix P , which is initialized to

p[i,j] =

{
j , (i,j) ∈ E
⊥ , else

where p[i,j] is the entry in the i-th row and j-th column of P

If a path i p
; j is improved by traversing the vertex k, the entry in the path matrix

is updated to p[i,j] = k. This allows us to reconstruct the shortest-path tree for any
path by recursively going through the entries in the path matrix and decomposing
the path into its single edges in a similar fashion, as they were built. For example, if
for a vertex i, there was an entry in the path matrix p[i,i] = j, then the path from
i to itself could be decomposed into the path from i to j and the path from j to i.
This is repeated recursively until the paths are composed of only singular edges (see
Algorithm 5). An example for that is shown in Figure 4.1(d).

1: function Floyd-Warshall(D,P,G)
2: InitializeMatrix(D,P,G)
3: for k ← 1 to |V | do
4: for i← 1 to |V | do
5: for j ← 1 to |V | do
6: if d[i,j] > d[i,k] + d[k,j] then
7: d[i,j]← d[i,k] + d[k,j]
8: p[i,j]← k
9: end if

10: if d[i,i] < 0 then
11: return False
12: end if
13: end for
14: end for
15: end for
16: return True
17: end function

Algorithm 4: Floyd-Warshall

27

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

s

x1 x2

x3 x4

0 0

0 0−10

2

0

1

s x1 x2 x3 x4 r x1 x2 x3 x4

s 0 0 0 0 0 ⊥ x1 x2 x3 x4
x1 ∞ 0 −10 ∞ ∞ ⊥ ⊥ x2 ⊥ ⊥
x2 ∞ ∞ 0 1 ∞ ⊥ ⊥ ⊥ x3 ⊥
x3 ∞ 2 ∞ 0 0 ⊥ x1 ⊥ ⊥ x4
x4 ∞ ∞ ∞ ∞ 0 ⊥ ⊥ ⊥ ⊥ ⊥

(a) after initialization
s x1 x2 x3 x4 r x1 x2 x3 x4

s 0 0 −10 0 0 ⊥ x1 x1 x3 x4
x1 ∞ 0 −10 ∞ ∞ ⊥ ⊥ x2 ⊥ ⊥
x2 ∞ ∞ 0 1 ∞ ⊥ ⊥ ⊥ x3 ⊥
x3 ∞ 2 −8 0 0 ⊥ x1 x1 ⊥ x4
x4 ∞ ∞ ∞ ∞ 0 ⊥ ⊥ ⊥ ⊥ ⊥

(b) after check for k = 1

s x1 x2 x3 x4 r x1 x2 x3 x4

s 0 0 −10 −9 0 ⊥ x1 x1 x2 x4
x1 ∞ 0 −10 −9 ∞ ⊥ ⊥ x2 x2 ⊥
x2 ∞ ∞ 0 1 ∞ ⊥ ⊥ ⊥ x3 ⊥
x3 ∞ 2 −8 −7 0 ⊥ x1 x1 x2 x4
x4 ∞ ∞ ∞ ∞ 0 ⊥ ⊥ ⊥ ⊥ ⊥

(c) after check for k = 2, found negative cycle through x3

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x3,x3

x3,x2 x2,x3

x3,x1 x1,x2

(d) reconstruction of the negative cycle x3 → x1 → x2 → x3

Figure 4.1: Example of the Floyd-Warshall algorithm with path reconstruction

28 Chapter 4. Floyd-Warshall-based Solver

1: function reconstructPath(i,j, P)
2: if p[i,j] = j then
3: addToInfeasableSubset(i,j)
4: else
5: reconstructPath(i,p[i,j],P)
6: reconstructPath(p[i,j],j,P)
7: end if
8: end function

Algorithm 5: Reconstruction of a shortest path

4.1 Incremental Floyd-Warshall

Again an incremental version of the algorithm would be advantageous, as often only
minor changes are made to the constraint graph between theory calls. To achieve
this, we developed an incremental version of the Floyd-Warshall algorithm based on
[RHK15] and [HRK17]. The basic idea is that instead of checking for every vertex in
the graph if traversing it would lead to an improvement for any path, the incremental
algorithm checks if a newly added edge leads to an improvement of the shortest-path
estimate. Thus, the algorithm is called for every edge that is added to the graph,
instead of once at the end. The core comparison of the Floyd-Warshall algorithm to
decide whether traversing a vertex k would lead to an improvement for the path i p

; j
is d[i,j] > d[i,k] + d[k,j]. The incremental algorithm performs a similar comparison
d[i,j] > d[i,s] + w(s,t) + d[t,j]. It checks if using the shortest path from the vertex i
to the source of the new edge s, plus traversing the new edge (s,t) with weight w(s,t)
and going from the target of the edge t to j leads to a better estimate of the shortest-
path weight. This is repeated for all possible paths i p

; j, i,j ∈ V . This changes
the running time of the algorithm to O(|V |2) for every newly added edge because
the outermost loop is removed. The non-incremental Floyd-Warshall algorithm has a
time complexity of O(|V |3) for computing the shortest paths for the whole graph. In
practice often only a small subset of the set of constraints is changed and therefore, the
incremental algorithm performs better. Given that not all constraints are exchanged
for every call to the theory solver, the incremental algorithm should perform better.
The incremental Floyd-Warshall algorithm uses the same data structures as the non-
incremental version. A distance matrix is kept, recording the current distances of
the paths in the graph and a path matrix to reconstruct any negative cycles. The
initialization procedure has to be changed to accommodate for new edges after a
previous check. Instead of initializing the complete distance matrix at once, it is
initialized as a 1 × 1-matrix, only containing the start node s. The same goes for
the path matrix. Every time an edge is added, it is checked whether the source and
target vertex are already part of the graph. Should that not be the case, then a
row and a column are added for the missing vertices to both matrices and initialized
with infinity. Then the distance matrix is checked whether the weight of the new
edge is smaller than the current entry in the distance matrix. If that is the case,
the corresponding entry is updated, and the incremental Floyd-Warshall algorithm is
executed for that edge. Furthermore, the entry in the path matrix is set to the target
of the new edge. If the entry in the distance matrix is smaller than the weight of the
new edge, there already exists a path in the graph with a smaller weight. This means

4.1. Incremental Floyd-Warshall 29

that the new edge would not be part of the shortest path between the two vertices
it connects. Thus, it would not be part of any shortest path (Lemma 2.5.2) in the
graph, and the algorithm does not have to be executed, as no changes were made to
the matrices.

1: function addEdge(G,D,P,i,j)
2: if i /∈ V then
3: addToMatrix(D,i) . add row and column, initialize with infinity
4: d[i,i]← 0
5: addToMatrix(P,i)
6: end if
7: if j /∈ V then
8: addToMatrix(D,j)
9: d[j,j]← 0

10: addToMatrix(P,j)
11: end if
12: if d[i,j] > w(i,j) then
13: d[i,j]← w(i,j)
14: p[i,j]← j
15: incrementalFloydWarshall(D,P,i,j,w(i,j),G)
16: end if
17: end function

Algorithm 6: Add an edge to the graph

The satisfying model is obtained the same way as for the non-incremental Floyd-
Warshall algorithm, but reconstructing the negative cycle requires some extra care.
The non-incremental algorithm stops as soon as an entry on the diagonal of the dis-
tance matrix is set to a negative value. The negative cycle can then be reconstructed
from the path matrix. When the incremental algorithm detects a negative cycle, it
may have found it before the path matrix was changed appropriately, thus leading to
an incomplete reconstruction of the negative cycle. This problem does not arise with
the non-incremental algorithm, as all edges are present from the beginning. To avoid
this problem, the diagonal of the distance matrix is checked before any changes are
made to the matrix. If adding a new edge (vs,vt) would lead to the presence of a neg-
ative cycle, then all other edges of the negative cycle have to be present beforehand.
For any vertex, that is part of the negative cycle, the entry on the diagonal of the
distance matrix would be set to a negative value. Therefore it is enough to check the
entries on the diagonal at the beginning of the algorithm. If an entry d[vi,vi] would
be set to a negative value, the negative cycle can be obtained by reconstructing the
paths vi

pis
; vs and vt

pti
; vi in addition with the new edge (vs,vt). This is shown in

Figures 4.2 and 4.3.

30 Chapter 4. Floyd-Warshall-based Solver

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x1

x2x3

0

1

−2
x1 x2 x1 x2[]

x1 0 0 ⊥ x2
x2 ∞ 0 ⊥ ⊥

(a) after checking (x1,x2)

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x1

x2x3

0

1

−2

x1 x2 x3 x1 x2 x3[]x1 0 0 ∞ ⊥ x2 ⊥
x2 ∞ 0 ∞ ⊥ ⊥ ⊥
x3 −2 −2 0 x1 x1 ⊥

(b) after checking (x3,x1)

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x1

x2x3

0

1

−2

x1 x2 x3 x1 x2 x3[]x1 −1 0 ∞ x3 x2 ⊥
x2 ∞ 0 ∞ ⊥ ⊥ ⊥
x3 −2 −2 0 x1 x1 ⊥

(c) found negative cycle after checking (x2,x3)

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x1,x1

x1,x3 x3,x1

(d) edge x2 → x3 not yet in the path matrix

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x1,x1

x1,x2
x2,x3

x3,x1

(e) solution: split path reconstruction around new edge

Figure 4.2: Example for failing to reconstruct a negative cycle

4.1. Incremental Floyd-Warshall 31

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x1

x2x3

0

1

−2

x1 x2 x3 x1 x2 x3[]
x1 0 0 ∞ ⊥ x2 ⊥
x2 ∞ 0 1 ⊥ ⊥ x3
x3 −2 ∞ 0 x1 ⊥ ⊥

(a) after initialization

x1 x2 x3 x1 x2 x3[]
x1 0 0 ∞ ⊥ x2 ⊥
x2 ∞ 0 1 ⊥ ⊥ x3
x3 −2 −2 0 x1 x1 ⊥

(b) after check for k = 1

x1 x2 x3 x1 x2 x3[]x1 0 0 1 ⊥ x2 x2
x2 ∞ 0 1 ⊥ ⊥ x3
x3 −2 −2 −1 x1 x1 x2

(c) negative cycle found after check for k = 2

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

x3,x3

x3,x2 x2,x3

x3,x1 x1,x2

Figure 4.3: The non-incremental Floyd-Warshall can reconstruct the cycle

Theorem 4.1.1. Executing the incremental Floyd-Warshall algorithm for every newly
added edge is a sound and complete procedure for finding shortest paths in a graph.

Proof. Let Gk = (Vk,Ek) be the constraint graph present in the k-th invocation of the
algorithm. The incremental Floyd-Warshall algorithm is executed after each added
edge, thus |Ek| = k. Furthermore, let ek ∈ Ek be the last edge added before the k-th
execution of the algorithm. The proof of correctness is done by induction over the
number of edges in Gk.

Base case k = 1:
The constraint graph G1 = (V1,E1) contains only two vertices v1,v2 ∈ V1 and the
edge e1 = (v1,v2) connecting them. When e1 was added to the graph, d[v1,v2] was
set to w(v1,v2). This is already the correct shortest path.
Induction hypothesis:
Suppose the incremental Floyd-Warshall algorithm computed a correct distance ma-
trix for a graph Gn with |En| = n.

32 Chapter 4. Floyd-Warshall-based Solver

1: function incrementalFloyd-Warshall(D,P,s,t,w(s,t),G)
2: for i← 1 to |V | do
3: if d[i,i] > d[i,s] + w(s,t) + d[t,i] then
4: ReconstructPath(i,s,P)
5: ReconstructPath(t,i,P)
6: addToInfeasableSubset(s,t)
7: return False
8: end if
9: end for

10: for i← 1 to |V | do
11: for j ← 1 to |V | do
12: if d[i,j] > d[i,s] + w(s,t) + d[t,j] then
13: d[i,j]← d[i,s] + w(s,t) + d[t,j]
14: if j = t AND i 6= s then
15: p[i,j] = s
16: else
17: p[i,j] = t
18: end if
19: end if
20: end for
21: end for
22: return True
23: end function

Algorithm 7: Incremental Floyd-Warshall

Induction step k = n+ 1:
For every pair of vertices vi,vj , the shortest paths, that were computed in the prior
invocations of the algorithm, are a combination of edges from the set of edges En, or
there is no path vi

pij
; vj . A new edge en+1 ∈ En+1 is added afterwards. The algorithm

is then executed again, and for all pairs of vertices, it is checked, if traversing en+1

as an intermediate edge yields an improvement. If a change was made to a shortest
path pi,j , the new path can be decomposed into pik +(vk,vl)+plj , where (vk,vl) is the
new edge en+1. The paths pik and plj both consist of an arbitrary number of edges
from the set En. These subpaths were either computed during a prior invocation of
the algorithm or directly represent edges in the graph. Otherwise, their entries in the
distance matrix would still be set to the initial infinite value and no change would have
been made. If no change was made, the inequality d[i,j] > d[i,k]+w(k,l)+d[k,j] does
not hold, either because a path over the new edge en+1 would yield no improvement
or because there is no such path in the graph.

4.2 Backtracking

Suppose the theory solver is tasked with removing the constraint xi − xj ≤ c from
its system of considered constraints. In contrast to the incremental Bellman-Ford
algorithm, which could remove the respective edge from the graph directly, the in-
cremental Floyd-Warshall algorithm has to restore a previous state completely. The
reason is that the Floyd-Warshall algorithm uses the distance matrix not only to store

4.2. Backtracking 33

the computed shortest-path weights but also to determine if a path from a vertex to
another exists at all. Therefore setting the entry d[vi,vj] in the distance matrix to
infinity would not only indicate that there is no direct edge from vi to vj in the graph
but no path at all. The naive solution would be to reconstruct the distance matrix
from the graph after the edge has been removed. This would result in an enormous
overhead because all prior computations made by the algorithm would be lost and
therefore had to be done again. The result would be, that after every series of remov-
ing operations, the theory solver practically would have to run the non-incremental
Floyd-Warshall algorithm on the whole graph. In the worst case, only a single entry
was changed in the distance matrix, but all other entries would have to be recom-
puted nonetheless. This would result in a solver that is only incremental for adding
new constraints and non-incremental once after every call to remove a subset of its
constraints.
Instead, chronological backtracking can be achieved by keeping records on all changes
made to the matrix in combination with the responsible formulas. This allows the
solver to backtrack to the point before a certain formula was added, only reverting
the changes made afterwards. To that end, the solver keeps a history stack H of
history elements Hi. Every history element Hi is made up of a set of constraints Fi

and a stack of changes Ci. A change is of a tuple cij = (k,l,d[k,l]c,p[k,l]c) consisting
of the row and column of the entry that was changed, as well as the content of the
distance matrix and path matrix before the change. Instead, every history element
could store a copy of the whole matrix and simply copy it back when needed. In
practice, reapplying changes made to the matrix one after another has proven to be
faster, despite the overhead of keeping track of all made changes. In an extreme case,
the theory solver would have to store the whole matrix in the history stack for a single
additionally added constraint, that may not cause any changes to the matrix at all.
When the solver is tasked with removing a constraint ϕ, the corresponding edge is
removed from the graph, and the top element Ht of the history stack H is examined.
All constraints from the set Ft are removed from the graph, and all changes stored
in Ct are reverted. Ht is then removed from the stack. This is repeated until ϕ ∈ Ft

holds, in which case the solver stops after removing the currently checked history
element Ht. Instead of storing a set of constraints, we could have a history element
for every single constraint, which would allow the solver to avoid backtracking too far.
This poses a trade-off between storing fewer data structures in the history stack and
backtracking more exactly. In practice storing a set of constraints for every history
element has proven to be more efficient.

34 Chapter 4. Floyd-Warshall-based Solver

1: function restoreHistory(D,P,G,H,f)
2: found← False
3: while size(H) > 0 AND ¬found do
4: Ht = (Ft,Ct)← pop(H)
5: for all g in Ft do
6: removeEdge(g)
7: if g == f then
8: found← True
9: else

10: scheduleToAdd(g)
11: end if
12: end for
13: while size(Ct) > 0 do
14: c = (i,j,d[i,j]c,p[i,j]c)← pop(Ct)
15: d[i,j]← d[i,j]c

16: p[i,j]← p[i,j]c

17: end while
18: end while
19: end function

Algorithm 8: Restore the state before the formula was added

Chapter 5

Preprocessing

In the context of SMT-solving, preprocessing describes a series of methods and algo-
rithms that transform a formula ϕ into an equisatisfiable formula ϕ′. The goal is to
simplify the original formula, such that the following SAT-solver and T -solver may
find a solution faster. A simple preprocessing was implemented, that splits equalities
and disequalities as described in Section 2.4, by iterating over the input formula once.
Additionally, the preprocessing module has an option to record the number of unique
constraints and the number of non-Boolean variables to determine the expected den-
sity of the resulting constraint graph. The preprocessing module can then manually
select which of the two implemented theory solvers to use. This is useful because
SMT-RAT provides no equivalent condition for its strategies.

It was noticed, however, that in practice there are many cases were the theory
solver is only called on a small subset of constraints from the input formula. Given
that some of the problems, the solver was tested on, contain more than two million
constraints, iterating over the whole formula may introduce a significant overhead.
Therefore a second module was implemented, that splits the constraints after the
SAT-solver and thus avoids unnecessary splitting of constraints. The procedure is as
follows:

• Iterate over the received set of constraints and find all equalities and disequali-
ties.

• For every disequality x − y 6= c, that was not already checked, add the lemma
x− y 6= c =⇒ ((x− y < c ∨ x− y > c) ∧ ¬(x− y < c ∧ x− y > c)).

• If a new lemma was added or the set of constraints contains a disequality without
at least one constraint from its lemma, return the answer unknown.

• Split any equality x− y = c into two constraints x− y ≤ c and y − x ≤ −c.

Splitting constraints this way takes more time per constraint than splitting in the
preprocessor. This is because the module has to keep track of all already split dise-
qualities, and the SAT-solver has to process the passed lemmas. Depending on the
problem, the total number of splits is reduced enough to provide an improved running
time, nonetheless.

36 Chapter 5. Preprocessing

SMT-RAT already includes a number of preprocessing modules. Two of them
were selected to compare their influence on the performance of SMT-RAT on differ-
ence logic formulas. The other preprocessing modules were excluded because their
simplifications did not apply to difference logic or yielded no improvement for any
benchmark. The first preprocessing module uses the method of symmetry break-
ing in the spirit of [DFMWP11], which consists of excluding subformulas that are
only permutations of other subformulas. The second preprocessing module checks for
top-level equality constraints and substitutes the respective variables in the complete
formula.

Chapter 6

Experimental Results

The newly implemented solvers were tested against SMT-RAT’s existing simplex
solver for linear arithmetic, which is also able to solve difference logic problems.
Notice, that both implemented solvers split equalities and disequalities before the
SAT-solver if not explicitly stated otherwise. Furthermore, we compared the perfor-
mance of the simplex solver against Z3, a state-of-the-art solver that has performed
well in prior SMT-competitions, to provide a baseline on the current performance of
SMT-RAT. All solvers were tested on the following set of benchmarks:

• 255 problems from the QF_RDL set of benchmarks

• 1732 problems from the QF_IDL set of benchmarks

• 325 DFT problems

• 325 incremental DFT problems

The QF_RDL and QF_IDL set of benchmarks are provided by SMT-LIB [BFT16].
The asp benchmark suite from the QF_IDL set of benchmarks had to be excluded,
because of an issue with the SAT-solver that could not be solved in time. All bench-
marks were run on an AMD Opteron 6172 with a memory limit of 4GB and a timeout
of six minutes using SMT-RAT’s benchmax tool. All times are given in milliseconds,
if not stated otherwise.

The results show that Z3 performs better than the simplex solver on nearly all
benchmarks by a wide margin. Especially noticeable is the amount of problems that
Z3 solves in a trivial amount of time, that cause the simplex solver to time out after six
minutes. While the Bellman-Ford solver performs better than the simplex solver on
all tested sets of benchmarks, especially for longer runtimes, it is still outperformed by
Z3. The Floyd-Warshall solver performs worse than the Bellman-Ford solver on nearly
all benchmarks, with the exception of a few select benchmarks from QF_IDL and the
incremental DFT problems. On the one hand, this is caused by the fact, that Floyd-
Warshall performs bad on problems containing a lot of variables, being implemented
as a specialised solver for problems resulting in a dense constraint graph. On the
other hand, Floyd-Warshall currently only supports chronological backtracking, which
causes a significant overhead, depending on the problem. The Floyd-Warshall solver
performs worse than the simplex solver on the non-incremental DFT problems and
especially on QF_RDL, for the same reasons.

38 Chapter 6. Experimental Results

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

Z3

(a) Z3 vs. simplex

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

B
el

lm
an

-F
or

d

(b) Simplex vs. Bellman-Ford

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

F
lo

yd
-W

ar
sh

al
l

(c) Simplex vs. Floyd-Warshall

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Floyd-Warshall

B
el

lm
an

-F
or

d

(d) Floyd-Warshall vs. Bellman-Ford

Figure 6.1: Performance comparison of the used solvers. The performance compar-
isons for the individual benchmark sets can be found in the appendix.

39

Benchmark Set Solver Runtime SAT UNSAT Solved

QF_RDL

Bellman-Ford 96m14.809s 75 81 61.18%
Floyd-Warshall 75m58.211s 59 49 42.35%
Simplex 101m10.654s 71 55 49.41%
Z3 68m52.274s 100 108 81.57%

QF_IDL

Bellman-Ford 503m50.627s 439 487 54.53%
Floyd-Warshall 494m46.815s 410 453 50.82%
Simplex 428m45.952s 313 432 43.88%
Z3 321m37.227s 899 597 88.10%

DFT

Bellman-Ford 1m58.403s 10 315 100.00%
Floyd-Warshall 3m23.833s 10 315 100.00%
Simplex 3m1.476s 10 315 100.00%
Z3 0m27.128s 10 315 100.00%

incremental DFT

Bellman-Ford 60m27.955s 11 115 38.77%
Floyd-Warshall 67m19.48s 13 112 38.46%
Simplex 47m48.091s 6 91 29.85%
Z3 72m36.073s 0 169 52.00%

Table 6.1: Running times of the tested solvers. The complete tables can be found in
the appendix.

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

split before SAT

sp
lit

af
te

r
SA

T

(a) Splitting before the SAT-solver vs. split-
ting afterwards.

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

B
el

lm
an

-F
or

d
be

st
ti

m
es

(b) Simplex vs. the best times achieved by
both tactics of splitting constraints.

Figure 6.2: Performance comparison of the two strategies to either split constraints
before the SAT-solver or afterwards, as well as, a comparison of the simplex solver
against the best achieved times of both strategies.

40 Chapter 6. Experimental Results

Even though the implemented solvers generally improve the performance of SMT-
RAT on difference logic problems, there are a significant number of benchmarks from
QF_IDL where they perform worse than the simplex solver. Most of these bench-
marks stem from Averest, RTCL and post_office, which is part of the mathsat
suite. Figure 6.3(a) shows that for these sets of benchmarks a large percentage of the
running time is spent on splitting equalities and disequalities, up to 99% for RTCL.
Furthermore, it shows a correlation between the percentage of unique constraints in
the formula and the percentage of time spent splitting constraints (see also Table
6.2). This can be explained by the fact that the solver splits every occurrence of
every equality and disequality in the input formula. This may cause the solver to
split the same constraints multiple times, especially if only a small percentage of the
constraints in the input formula are unique. We can avoid this overhead by splitting
the constraints after the SAT-solver as described in the previous chapter. Figure
6.2(a) shows a comparison between splitting constraints before and after the SAT-
solver using the Bellman-Ford solver on QF_IDL. While splitting constraints before
the SAT-solver performs better overall, there are a significant number of benchmarks
where splitting afterwards provides an improved running time. The general increase
in running time for a lot of benchmarks, when splitting after the SAT-solver is caused
by a number of factors. First, the solver has to keep track of all disequalities that
were already passed in a prior call by the SAT-solver to determine whether a lemma
has to be passed back or not. Second, the SAT-solver has to process any lemmas and
adjust its passed set of constraints accordingly. This is shown in Figure 6.3(b), where
the amount of time spent in the SAT-solver increases drastically compared to the
time spent in the theory solver as was seen in Figure 6.3(a). Third, by splitting the
constraints beforehand, the SAT-solver may determine an answer faster, given that
the resulting constraints are already part of other subformulas.

Benchmark Suite Avg # Constr. % unique Constr. % Equalities % Disequalities

Averest 271,770 0.38% 0.60% 0.00%
cellar 12,280 12.68% 1.35% 0.00%

diamonds 390 43.56% 0.00% 0.00%
DTP 840 42.06% 0.00% 0.00%

job_shop 9,040 56.80% 0.00% 13.60%
fischer 7,530 3.59% 15.47% 12.15%

post_office 6,300 1.47% 22.89% 4.59%
parity 111,290 50.00% 0.00% 0.00%

planning 6,030 14.80% 26.36% 0.00%
qlock 19,630 12.06% 30.98% 0.11%

queens_bench 18,960 18.36% 0.00% 32.97%
RTCL 2,379,070 <0.01% 13.39% 13.74%

sal 990 17.98% 28.24% 0.00%
schedulingIDL 14,710 48.58% 0.00% 0.00%

sep 450 28.05% 13.21% 0.00%

Table 6.2: Average number of constraints and the percentages of unique constraints,
as well as, equalities and disequalities for QF_IDL

41

Another thing to note is that both graph-based solvers perform much better than
the simplex solver on the incremental DFT problems compared to the non-incremental
problems, even though the encoding and general structure of the problems stay the
same. Furthermore, notice that both implemented solvers, as well as the simplex
solver, return wrong answers for some of the incremental DFT problems (Table 6.1).
This is caused by the benchmax tool because when executed directly on the incre-
mental DFT problems, all solvers return the correct intermediate and final results.
Therefore, the achieved runtimes should still provide correct information on the per-
formance of the solvers.
As mentioned in the last chapter, SMT-RAT already comes with a number of imple-
mented preprocessing modules. Figure 6.4 shows a performance comparison of the
Bellman-Ford solver with additional preprocessing in the form of symmetry breaking
and equality substitution and without. While using additional preprocessing gener-
ally increases the running time on the QF_RDL and non-incremental DFT problems,
it proves to be beneficial for a large number of benchmarks from the other two sets.
Finally, Figure 6.5 shows that the percentage of the total running time spent with
solving SMT differs greatly between the benchmark suites from SMT-LIB, making up
less than one percent for post_office.

42 Chapter 6. Experimental Results

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

A
ve
re
st

ce
lla

r
di
am

on
ds

D
T
P

jo
b_

sh
op

fis
ch
er

po
st
_
offi

ce
pa

ri
ty

pl
an

ni
ng

ql
oc
k

qu
ee
ns
_
be

nc
h

R
T
C
L sa
l

sc
he
du

lin
gI
D
L

0%

20%

40%

60%

80%

100%

Split constraints
SAT solver

Theory solver
Other

Unique constr.

(a) Splitting before the SAT-solver

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

A
ve
re
st

ce
lla

r
di
am

on
ds

D
T
P

jo
b_

sh
op

fis
ch
er

po
st
_
offi

ce
pa

ri
ty

pl
an

ni
ng

ql
oc
k

qu
ee
ns
_
be

nc
h

R
T
C
L sa
l

sc
he
du

lin
gI
D
L

0%

20%

40%

60%

80%

100%

Split constraints
SAT solver

Theory solver
Other

Unique constr.

(b) Splitting after the SAT-solver

Figure 6.3: Percentage of time spent in the different phases of SMT-solving for
QF_IDL using the Bellman-Ford solver with different splitting tactics. Additionally
the percentage of unique constraints in the input formula is displayed.

43

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

with preprocessing

w
it

ho
ut

pr
ep

ro
ce

ss
in

g

(a) QF_RDL

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

with preprocessing

w
it

ho
ut

pr
ep

ro
ce

ss
in

g

(b) QF_IDL

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

with preprocessing

w
it

ho
ut

pr
ep

ro
ce

ss
in

g

(c) DFT

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

with preprocessing

w
it

ho
ut

pr
ep

ro
ce

ss
in

g

(d) incremental DFT

Figure 6.4: Performance comparison of the Bellman-Ford solver with additional pre-
processing and without

44 Chapter 6. Experimental Results

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

A
ve
re
st

ce
lla

r
di
am

on
ds

D
T
P

jo
b_

sh
op

fis
ch
er

po
st
_
offi

ce
pa

ri
ty

pl
an

ni
ng

ql
oc
k

qu
ee
ns
_
be

nc
h

R
T
C
L sa
l

sc
he

du
lin

gI
D
L

0%

20%

40%

60%

80%

100%

(a) QF_IDL

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

sa
l

sc
he

du
lin

g

sk
dm

xa

sk
dm

xa
2

T
em

po
ra

l-P
la

nn
in

g

0%

20%

40%

60%

80%

100%

(b) QF_RDL

Figure 6.5: Percentage of the total running time spent on SMT-solving. Only bench-
marks with a runtime over one second were considered

Chapter 7

Conclusion

The goal of this thesis was to expand the SMT-RAT framework with two distinguished
theory solvers for difference logic, thus improving SMT-RAT’s performance on these
problems.

7.1 Summary

We began by describing the general approach to SAT and its expansion SMT, followed
by a presentation of the theory of difference logic. We continued by describing how
a set of difference constraints can be represented as a graph, followed by some basic
definitions on shortest-paths problems.

In Chapter 3, we described the Bellman-Ford algorithm and its application in the
context of SMT-solving. We then introduced the implemented incremental algorithm
taken from [WIGG05] by detailing the changes made from the Bellman-Ford algo-
rithm as well as the needed conflict resolution and backtracking procedures. In the
next chapter, we introduced the Floyd-Warshall algorithm as a specialised shortest-
paths algorithm for problems resulting in dense constraint graphs, followed by its
incremental version based on [RHK15] and [HRK17].

Following the implementation of both theory solvers, we described two implemen-
tations of the necessary procedure of splitting the equalities and disequalities in the
input formula, detailing their respective advantages and disadvantages.

Finally, we compared the newly implemented solvers against the prior existing
simplex solver and the state-of-the-art Z3 solver. Based on the obtained results, we
examined the percentage of the total running time spent in the different modules
for the difference logic solver using the incremental Bellman-Ford algorithm, and
compared the influence of both implemented splitting procedures on the performance.

7.2 Discussion and Future Work

The experimental results show that the newly implemented solvers provide a substan-
tial improvement to SMT-RAT’s performance on difference logic formulas. However,
Z3 still vastly outperforms SMT-RAT, especially for the QF_IDL set of benchmarks.
The more detailed analysis of SMT-RAT’s running time on QF_IDL revealed that
for a large number of benchmarks only a small percentage of the total running time

46 Chapter 7. Conclusion

is spent in the theory solver. For these benchmarks, the majority of the running
time is spent in the SAT-solver and in the constraint-splitting module. Moving the
splitting operations behind the SAT-solver improved the performance on some of the
benchmarks, even though the overall running time increased. A solution for that,
would be to include the splitting of equalities and disequalities as an extra setting
into the SAT-solver, and therefore removing the need to perform a large number of
back-and-forth calls between the SAT-solver and the splitting module.

The amount of time spent in the SAT-solver can be reduced by providing additional
information through advanced theory propagation. Currently both implemented the-
ory solvers do not try to derive any additional information from their computations,
returning only a model or infeasible subset when called. The returned infeasible subset
is not necessarily minimal because the algorithms do not return the shortest negative
cycle but the cycle with the highest negative weight. The solvers could use the last
added edge as a starting point for a search for additional negative cycles, with the
length of the originally found cycle serving as an upper bound. A naive version of
this procedure using a breadth-first search was included temporarily in the Bellman-
Ford solver but it caused a large overhead in both time and space. However, with
further development, this procedure could improve the performance of SMT-RAT on
difference logic problems.

Furthermore, the experimental results show that SMT-RAT’s existing preprocess-
ing modules already improve the running time for a large number of benchmarks.
Specialized preprocessing procedures could provide further improvements to the per-
formance of SMT-RAT on difference logic formulas.

Finally, the results show that for a considerable number of benchmarks, a large
percentage of SMT-RAT’s running time is not spent with SMT-solving. While this
overhead is likely caused by SMT-RAT’s parser, further analysis is needed to deter-
mine the exact cause.

In any case, the newly implemented solvers should provide a solid basis for further
development.

Bibliography

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BHvMW09] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfia-
bility: Volume 185 Frontiers in Artificial Intelligence and Applications.
IOS Press, Amsterdam, The Netherlands, 2009.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp,
and Erika Ábrahám. SMT-RAT: An open source C++ toolbox for
strategic and parallel SMT solving. In Marijn Heule and Sean Weaver,
editors, Theory and Applications of Satisfiability Testing – SAT 2015,
pages 360–368, Cham, 2015. Springer International Publishing.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Third Edition. The MIT Press,
3rd edition, 2009.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, pages 151–158, New York, USA, 1971. ACM.

[DFMWP11] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlo-
gel Paleo. Exploiting symmetry in SMT problems. In Nikolaj Bjørner
and Viorica Sofronie-Stokkermans, editors, Automated Deduction –
CADE-23, pages 222–236, Berlin, Heidelberg, 2011. Springer.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer.

[HRK17] Jacob M. Howe, Ed Robbins, and Andy King. Theory learning with
symmetry breaking. In Proceedings of the 19th International Sympo-
sium on Principles and Practice of Declarative Programming, PPDP
’17, pages 85–96, New York, USA, 2017. ACM.

[KCJ+] Gereon Kremer, Florian Corzilius, Sebastian Junges, Stefan Schupp,
and Erika Ábrahám. Carl: Computer arithmetic and logic library.
www.smtrat.github.io/carl.

48 Bibliography

[NMA+02] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded
Maler, and Navendu Jain. Verification of timed automata via satisfiabil-
ity checking. In Werner Damm and Ernst Rüdiger Olderog, editors, For-
mal Techniques in Real-Time and Fault-Tolerant Systems, pages 225–
243, Berlin, Heidelberg, 2002. Springer.

[RHK15] Ed Robbins, Jacob M. Howe, and Andy King. Theory propagation and
reification. Science of Computer Programming, 111:3 – 22, 2015. Special
Issue on Principles and Practice of Declarative Programming (PPDP
2013).

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional cal-
culus. Studies in Constructive Mathematics and Mathematical Logic,
pages 115–125, 1968.

[VJK18] Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen. Fast dy-
namic fault tree analysis by model checking techniques. IEEE Trans-
actions on Industrial Informatics, 14(1):370–379, January 2018.

[WIGG05] Chao Wang, Franjo Ivančić, Malay Ganai, and Aarti Gupta. Decid-
ing separation logic formulae by SAT and incremental negative cycle
elimination. In Geoff Sutcliffe and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, pages 322–336,
Berlin, Heidelberg, 2005. Springer.

50 Appendix A. Runtimes

Appendix A

Runtimes

A.1 QF_RDL

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

Z3

(a) Z3 vs. simplex

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

B
el

lm
an

-F
or

d

(b) Simplex vs. Bellman-Ford

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

F
lo

yd
-W

ar
sh

al
l

(c) Simplex vs. Floyd-Warshall

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Floyd-Warshall

B
el

lm
an

-F
or

d

(d) Floyd-Warshall vs. Bellman-Ford

Figure A.1: Runtime comparison for QF_RDL

A.1. QF_RDL 51

Solver Benchmarks Runtime SAT UNSAT Solved

Bellman-Ford

SMT-Temporal-Planning 5m41.616s 43 0 84.31%
check 0m0.054s 1 1 100.00%
sal 33m53.224s 0 50 83.33%
scheduling 46m59.025s 31 26 53.77%
skdmxa 0m24.934s 0 1 25.00%
skdmxa2 9m15.956s 0 3 9.38%
total 96m14.809s 75 81 61.18%

Floyd-Warshall

SMT-Temporal-Planning 5m50.199s 42 0 82.35%
check 0m0.056s 1 1 100.00%
sal 18m6.46s 0 30 50.00%
scheduling 52m1.496s 16 18 32.08%
skdmxa 0m0.0s 0 0 0.00%
skdmxa2 0m0.0s 0 0 0.00%
total 75m58.211s 59 49 42.35%

Simplex

SMT-Temporal-Planning 11m16.264s 43 0 84.31%
check 0m0.051s 1 1 100.00%
sal 34m21.282s 0 30 50.00%
scheduling 49m12.33s 27 21 45.28%
skdmxa 2m46.0s 0 1 25.00%
skdmxa2 3m34.727s 0 2 6.25%
total 101m10.654s 71 55 49.41%

Z3

SMT-Temporal-Planning 2m21.387s 47 0 92.16%
check 0m0.058s 1 1 100.00%
sal 15m39.961s 0 59 98.33%
scheduling 23m40.351s 36 28 60.38%
skdmxa 3m58.355s 0 4 100.00%
skdmxa2 23m12.162s 16 16 100.00%
total 68m52.274s 100 108 81.57%

Table A.1: QF_RDL

52 Appendix A. Runtimes

A.2 QF_IDL

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

Z3

(a) Z3 vs. simplex

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex
B

el
lm

an
-F

or
d

(b) Simplex vs. Bellman-Ford

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

F
lo

yd
-W

ar
sh

al
l

(c) Simplex vs. Floyd-Warshall

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Floyd-Warshall

B
el

lm
an

-F
or

d

(d) Floyd-Warshall vs. Bellman-Ford

Figure A.2: Runtime comparison for QF_IDL

A.2. QF_IDL 53

Solver Benchmarks Runtime SAT UNSAT Solved

Bellman-Ford

Averest 75m26.251s 149 94 96.43%
DTP 3m13.634s 32 28 100.00%
RTCL 4m28.293s 2 4 18.18%
bcnscheduling 0m0.0s 0 0 0.00%
cellar 1m40.046s 0 9 69.23%
check 0m0.049s 0 2 100.00%
diamonds 17m21.997s 0 15 41.67%
fuzzy-matrix 0m0.0s 0 0 0.00%
job_shop 20m34.83s 30 8 31.67%
mathsat 28m3.041s 12 118 89.04%
parity 125m14.146s 55 68 49.60%
planning 4m43.548s 2 43 100.00%
qlock 28m41.977s 12 13 34.72%
queens_bench 58m36.134s 66 17 28.04%
sal 0m46.676s 10 40 100.00%
schedulingIDL 134m57.819s 60 20 28.57%
sep 0m2.186s 9 8 100.00%
total 503m50.627s 439 487 54.53%

Floyd-Warshall

Averest 74m50.172s 150 94 96.83%
DTP 5m38.047s 32 28 100.00%
RTCL 4m28.824s 2 4 18.18%
bcnscheduling 0m0.0s 0 0 0.00%
cellar 4m29.771s 0 9 69.23%
check 0m0.046s 0 2 100.00%
diamonds 17m28.396s 0 15 41.67%
fuzzy-matrix 0m0.0s 0 0 0.00%
job_shop 27m6.218s 31 8 32.50%
mathsat 31m37.119s 13 116 88.36%
parity 99m23.62s 48 50 39.52%
planning 22m19.139s 2 43 100.00%
qlock 18m5.891s 7 9 22.22%
queens_bench 70m47.65s 62 16 26.35%
sal 1m3.091s 10 40 100.00%
schedulingIDL 117m26.52s 44 11 19.64%
sep 0m2.311s 9 8 100.00%
total 494m46.815s 410 453 50.82%

Simplex

Averest 45m26.412s 122 94 85.71%
DTP 31m46.773s 32 28 100.00%
RTCL 2m29.003s 2 4 18.18%
bcnscheduling 0m0.0s 0 0 0.00%
cellar 2m49.688s 0 9 69.23%
check 0m0.05s 0 2 100.00%
diamonds 18m27.449s 0 15 41.67%
fuzzy-matrix 0m0.0s 0 0 0.00%
job_shop 15m21.142s 21 8 24.17%
mathsat 52m27.167s 12 119 89.73%
parity 96m50.793s 34 47 32.66%
planning 30m0.953s 0 32 71.11%
qlock 6m51.387s 2 4 8.33%
queens_bench 35m1.909s 39 16 18.58%
sal 4m10.598s 10 40 100.00%
schedulingIDL 86m59.13s 30 6 12.86%
sep 0m3.498s 9 8 100.00%
total 428m45.952s 313 432 43.88%

Table A.2: QF_IDL

54 Appendix A. Runtimes

Solver Benchmarks Runtime SAT UNSAT Solved

Z3

Averest 0m36.512s 157 95 100.00%
DTP 0m5.711s 32 28 100.00%
RTCL 0m2.533s 4 29 100.00%
bcnscheduling 3m23.917s 4 3 53.85%
cellar 0m7.455s 0 13 100.00%
check 0m0.034s 0 2 100.00%
diamonds 13m5.946s 0 34 94.44%
fuzzy-matrix 0m0.0s 0 0 0.00%
job_shop 24m58.555s 72 11 69.17%
mathsat 14m10.065s 16 127 97.95%
parity 178m26.919s 112 93 82.66%
planning 0m37.096s 2 43 100.00%
qlock 15m41.025s 36 20 77.78%
queens_bench 14m1.743s 199 20 73.99%
sal 0m9.177s 10 40 100.00%
schedulingIDL 56m9.976s 246 31 98.93%
sep 0m0.563s 9 8 100.00%
total 321m37.227s 899 597 88.10%

Table A.3: QF_IDL continued

A.3. DFT 55

A.3 DFT

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

Z3

(a) Z3 vs. simplex

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

B
el

lm
an

-F
or

d
(b) Simplex vs. Bellman-Ford

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

F
lo

yd
-W

ar
sh

al
l

(c) Simplex vs. Floyd-Warshall

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Floyd-Warshall

B
el

lm
an

-F
or

d

(d) Simplex vs. Floyd-Warshall

Figure A.3: Runtime comparison for DFT problems.

56 Appendix A. Runtimes

Solver Benchmarks Runtime SAT UNSAT Solved

Bellman-Ford

hecs 0m38.458s 0 72 100.00%
iso26262 0m21.537s 0 16 100.00%
mcs 0m27.333s 0 96 100.00%
rc 0m25.24s 0 68 100.00%
sap 0m0.176s 1 3 100.00%
toy 0m5.659s 9 60 100.00%
total 1m58.403s 10 315 100.00%

Floyd-Warshall

hecs 1m0.023s 0 72 100.00%
iso26262 0m24.987s 0 16 100.00%
mcs 0m45.551s 0 96 100.00%
rc 0m53.887s 0 68 100.00%
sap 0m0.176s 1 3 100.00%
toy 0m19.209s 9 60 100.00%
total 3m23.833s 10 315 100.00%

Simplex

hecs 1m2.553s 0 72 100.00%
iso26262 0m26.586s 0 16 100.00%
mcs 0m37.681s 0 96 100.00%
rc 0m40.268s 0 68 100.00%
sap 0m0.182s 1 3 100.00%
toy 0m14.206s 9 60 100.00%
total 3m1.476s 10 315 100.00%

Z3

hecs 0m7.938s 0 72 100.00%
iso26262 0m4.659s 0 16 100.00%
mcs 0m6.722s 0 96 100.00%
rc 0m5.366s 0 68 100.00%
sap 0m0.128s 1 3 100.00%
toy 0m2.315s 9 60 100.00%
total 0m27.128s 10 315 100.00%

Table A.4: DFT problems

A.4. DFT Incremental 57

A.4 DFT Incremental

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

Z3

(a) Z3 vs. simplex

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

B
el

lm
an

-F
or

d
(b) Simplex vs. Bellman-Ford

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Simplex

F
lo

yd
-W

ar
sh

al
l

(c) Simplex vs. Floyd-Warshall

[
\IN-
CLUDE-
GRAPH-
ICS
OP-
TI-
MIZED
AWAY
BE-
CAUSE
IT
DOES
NOT
CON-
TRIBUTE
TO
EX-
PORTED
PDF]

10 100 1000 10000 100000
10

100

1000

10000

100000

Floyd-Warshall

B
el

lm
an

-F
or

d

(d) Simplex vs. Floyd-Warshall

Figure A.4: Runtime comparison for incremental DFT problems.

58 Appendix A. Runtimes

Solver Benchmarks Runtime SAT UNSAT Solved

Bellman-Ford

hecs 6m31.808s 1 6 9.72%
iso26262 0m0.0s 0 0 0.00%
mcs 45m16.421s 5 34 40.62%
rc 6m28.61s 0 11 16.18%
sap 0m0.18s 0 4 100.00%
toy 2m10.936s 5 60 94.20%
total 60m27.955s 11 115 38.77%

Floyd-Warshall

hecs 12m10.789s 2 6 11.11%
iso26262 0m0.0s 0 0 0.00%
mcs 43m10.22s 4 32 37.50%
rc 11m26.291s 2 11 19.12%
sap 0m0.187s 0 4 100.00%
toy 0m31.993s 5 59 92.75%
total 67m19.48s 13 112 38.46%

Simplex

hecs 3m9.94s 1 3 5.56%
iso26262 0m0.0s 0 0 0.00%
mcs 27m10.091s 0 15 15.62%
rc 14m4.958s 0 10 14.71%
sap 0m0.206s 0 4 100.00%
toy 3m22.896s 5 59 92.75%
total 47m48.091s 6 91 29.85%

Z3

hecs 24m13.276s 0 20 27.78%
iso26262 0m0.0s 0 0 0.00%
mcs 21m28.307s 0 62 64.58%
rc 25m39.406s 0 17 25.00%
sap 0m0.061s 0 4 100.00%
toy 1m15.023s 0 66 95.65%
total 72m36.073s 0 169 52.00%

Table A.5: Incremental DFT problems

	Introduction
	Preliminaries
	The Satisfiability Problem
	Satisfiability Modulo Theories
	SMT-RAT
	Difference Logic
	The Graph-based Approach

	Bellman-Ford-based Solver
	Incremental Negative Cycle Detection
	Conflict Resolution and Backtracking

	Floyd-Warshall-based Solver
	Incremental Floyd-Warshall
	Backtracking

	Preprocessing
	Experimental Results
	Conclusion
	Summary
	Discussion and Future Work

	Bibliography
	Appendix
	Runtimes
	QF_RDL
	QF_IDL
	DFT
	DFT Incremental

