Cylindrical Algebraic Coverings for Quantifiers

Gereon Kremer, Jasper Nalbach
August 12, 2022
$S C^{2} @$ FLoC, Haifa

© Canitivr hybride RWIHAACHEN

Disclaimer \& Acknowledgements

Disclaimer \& Acknowledgements

Familiar with Cylindrical Algebraic Coverings? This works just as you would expect.

Disclaimer \& Acknowledgements

Familiar with Cylindrical Algebraic Coverings? This works just as you would expect.

Also: no implementation or experiments

Disclaimer \& Acknowledgements

Familiar with Cylindrical Algebraic Coverings? This works just as you would expect.

Also: no implementation or experiments

Thanks to Dagstuhl Seminar 22072

The Circle of Life - NRA edition

The Circle of Life - NRA edition

The Circle of Life - NRA edition

The Circle of Life - NRA edition

The Circle of Life - NRA edition

Cylindrical Algebraic Coverings

- Guess partial assignment

$$
s_{1} \times \cdots \times s_{k} \times s_{k+1}
$$

[Ábrahám et al. 2021] [Kremer et al. 2021]

Cylindrical Algebraic Coverings

- Guess partial assignment

$$
s_{1} \times \cdots \times s_{k} \times s_{k+1}
$$

- Refute partial assignment using intervals

$$
s \notin s_{1} \times \cdots \times s_{k} \times(a, b)
$$

[Ábrahám et al. 2021] [Kremer et al. 2021]

Cylindrical Algebraic Coverings

- Guess partial assignment

$$
s_{1} \times \cdots \times s_{k} \times s_{k+1}
$$

- Refute partial assignment using intervals

$$
s \notin s_{1} \times \cdots \times s_{k} \times(a, b)
$$

- Lift covering to lower dimension

$$
s_{1} \times \cdots \times s_{k} \times\{(-\infty, a),[a, b], \ldots(z, \infty)\} \rightarrow s_{1} \times \cdots \times s_{k-1} \times(\alpha, \beta)
$$

Cylindrical Algebraic Coverings

- Guess partial assignment

$$
s_{1} \times \cdots \times s_{k} \times s_{k+1}
$$

- Refute partial assignment using intervals

$$
s \notin s_{1} \times \cdots \times s_{k} \times(a, b)
$$

- Lift covering to lower dimension

$$
s_{1} \times \cdots \times s_{k} \times\{(-\infty, a),[a, b], \ldots(z, \infty)\} \rightarrow s_{1} \times \cdots \times s_{k-1} \times(\alpha, \beta)
$$

- Eventually get satisfying assignment or a covering in first dimension

$$
s=s_{1} \times \cdots \times s_{n} \quad \text { or } \quad s_{1} \notin\{(-\infty, a),[a, b], \ldots(z, \infty)\}
$$

[Ábrahám et al. 2021] [Kremer et al. 2021]

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x Guess $x \mapsto 0$ $c_{1} \rightarrow y \notin(-1, \infty)$

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x
Guess $x \mapsto 0$
$c_{1} \rightarrow y \notin(-1, \infty)$
$c_{2} \rightarrow y \notin(-\infty, 0.75)$

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x
Guess $x \mapsto 0$
$c_{1} \rightarrow y \notin(-1, \infty)$
$c_{2} \rightarrow y \notin(-\infty, 0.75)$
$c_{3} \rightarrow y \notin(-\infty, 0.5)$

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x

Guess $x \mapsto 0$
$c_{1} \rightarrow y \notin(-1, \infty)$
$c_{2} \rightarrow y \notin(-\infty, 0.75)$
$c_{3} \rightarrow y \notin(-\infty, 0.5)$
Construct covering

$$
(-\infty, 0.5),(-1, \infty)
$$

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x

Guess $x \mapsto 0$
$c_{1} \rightarrow y \notin(-1, \infty)$
$c_{2} \rightarrow y \notin(-\infty, 0.75)$
$c_{3} \rightarrow y \notin(-\infty, 0.5)$
Construct covering

$$
(-\infty, 0.5),(-1, \infty)
$$

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x

Guess $x \mapsto 0$
$c_{1} \rightarrow y \notin(-1, \infty)$
$c_{2} \rightarrow y \notin(-\infty, 0.75)$
$c_{3} \rightarrow y \notin(-\infty, 0.5)$
Construct covering

$$
(-\infty, 0.5),(-1, \infty)
$$

Construct interval for x $x \notin(-2,3)$

Cylindrical Algebraic Coverings - example

$$
c_{1}: 4 \cdot y<x^{2}-4 \quad c_{2}: 4 \cdot y>4-(x-1)^{2} \quad c_{3}: 4 \cdot y>x+2
$$

No constraint for x

Guess $x \mapsto 0$
$c_{1} \rightarrow y \notin(-1, \infty)$
$c_{2} \rightarrow y \notin(-\infty, 0.75)$
$c_{3} \rightarrow y \notin(-\infty, 0.5)$
Construct covering

$$
(-\infty, 0.5),(-1, \infty)
$$

Construct interval for x $x \notin(-2,3)$
New guess for x

Cylindrical Algebraic Coverings for Quantifiers

We want to characterize both true and false regions of quantified formulae.

Cylindrical Algebraic Coverings for Quantifiers

We want to characterize both true and false regions of quantified formulae.

Core change

Instead of a model return satisfying interval with suitable characterization.

Cylindrical Algebraic Coverings for Quantifiers

We want to characterize both true and false regions of quantified formulae.

Core change

Instead of a model return satisfying interval with suitable characterization.

Challenges:

- Boolean structure?
\rightarrow consider constraints of (suitable) implicants
- Model construction?
\rightarrow reconstruct from characterization of true region.
- Interval in dimension zero?
\rightarrow just a technicality, use T, \perp
- Termination guarantees?
\rightarrow still the same

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for Quantifiers

Cylindrical Algebraic Coverings for QE

- Consider free variables first
- Use previous approach for bounded variables
- Collect all SAT regions for free variables
- Use solution formula construction from [Brown 1999]
- Return disjunction of all SAT regions

Conclusion

- Cylindrical Algebraic Coverings can be adapted to quantifiers and QE
- It mostly works as you would think it does
- A number of subtle challenges
- Provides for a few nice generalizations
- No implementation yet

Conclusion

- Cylindrical Algebraic Coverings can be adapted to quantifiers and QE
- It mostly works as you would think it does
- A number of subtle challenges
- Provides for a few nice generalizations
- No implementation yet

Thank you for your attention! Any questions?

References

- Erika Ábrahám, James H. Davenport, Matthew England, and Gereon Kremer. "Deciding the Consistency of Non-Linear Real Arithmetic Constraints with a Conflict Driven Search Using Cylindrical Algebraic Coverings". In: Journal of Logical and Algebraic Methods in Programming 119 (2021), p. 100633. DOI: 10.1016/j.jlamp. 2020. 100633.
- Christopher W. Brown. "Solution Formula Construction for Truth Invariant CADs". PhD thesis. University of Delaware, 1999. URL: https://www.usna.edu/Users/cs/wcbrown/research/Thesis.html.
- Gereon Kremer, Erika Ábrahám, Matthew England, and James H. Davenport. "On the Implementation of Cylindrical Algebraic Coverings for Satisfiability Modulo Theories Solving". In: SYNASC. 2021. DOI: 10.1109/SYNASC54541.2021.00018.

