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Assume
I you have an SMT solver (like cvc5)
I you support nonlinear arithmetic reasoning
I you produce formal proofs in the core solver (→ Haniel’s talk)
I you want to have proofs for theory reasoning
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I Obtain a (linear) model
I Select a lemma schema
I Instantiate appropriately
I Refute the current (linear) model

I Most of them are even simpler:

(x = 0) ∨ ¬(x = 0)

(x · z + y · z > 0)

⇒(k = x+ y ∧ k · z > 0)

(x · y ≥ b · x+ a · y − a · b)
⇔(x ≤ a ∧ y ≤ b) ∨ (x ≥ a ∧ y ≥ b)

Source: [Cimatti et al. 2018]

[Cimatti et al. 2018]
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I Simplex
I Input constraints

∧
j

∑
i cij · xi ./j c0j , ./j∈ {>,≥}

I Farkas lemmas provides coefficients for
∑

j sj
∑

i cij · xi = 0
I But either

∑
j c0j > 0 or some ./j is strict

I Interval Constraint Propagation
I Propagation: (0 ≤ x ≤ 2) ∧ (y = x2)⇒ (0 ≤ z ≤ 4)
I Split: (x < 7) ∨ (x = 7) ∨ (x > 7)

I Incremental linearization for transcendental functions [Cimatti et al. 2018]

I exp(x) > 0, (x > 0)⇒ (exp(x) > t+ 1), sin(x) = sin(−x), . . .
I Tangent lemmas based on Taylor approximations

For all of them:
Lemmas may be difficult to find, but are easy to prove.
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A brief digression...

Formal proofs for Cylindrical Algebraic Coverings • Proofs for CAD
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A very very very very abstract view:

Set of constraints

Set of polynomials

Set of solution candidates

SAT or UNSAT

Characterize truth-invariant cells

Select one point per cell

Search satisfiable point

What is the argument for answering UNSAT?
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We found no satisfiable sample point!

Why? So what?

Prove evaluation correct
needs RAN reasoning

Set of candidates was sufficient!

How come?

⋃
C = Rn

easy if you are careful
non-standard union reasoning

One candidate per cell
needs RAN reasoning

Cells truth-invariant

They are what?

First you compute polynomials in this particular way. Then the theorem of Puiseux with

parameters tells you where some factors of these do or do not vanish, and if the coefficients

are (complexifications of) real analytic functions, the polynomials are a complex conjucation

invariant. With the non-standard valuation for real root isolation to avoid nullification, . . .

just trust “me”
with this huge monolithic proof

Formal proofs for Cylindrical Algebraic Coverings • Proofs for CAD

Proof sketch for CAD
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Formalizations within theorem provers:
I RAN reasoning in Coq and Isabelle/HOL

[Cohen 2012] [Thiemann et al. 2016] [Joosten et al. 2020]

I Sturm sequences in Coq
[Eberl 2015]

I Implementation of CAD in Coq (no proofs)
[Mahboubi 2007]

I What if our algorithms are different?
Lazard valuation; Sturm’s theorem vs. Descartes’ rule of signs; . . .

I Will anyone ever understand these proofs?
I What about other proof checkers?
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Like CAD, but different.

I Regular CDCL(T)-style theory solver
I Algorithm similar to MCSAT / NLSAT
I Theory straight from CAD

Why should we care?
QF_NRA sat unsat solved

cvc5 5137 5596 10733
Yices2 4966 5450 10416
z3 5136 5207 10343
cvc5-old 3421 5376 8797

[Ábrahám et al. 2021]
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I Guess partial assignment

s1 × · · · × sk × sk+1

I Refute partial assignment using intervals

s 6∈ s1 × · · · × sk × (a, b)

I Lift covering to lower dimension

s1 × · · · × sk × {(−∞, a), [a, b], . . . (z,∞)} → s1 × · · · × sk−1 × (α, β)

I Eventually get satisfying assignment or a covering in first dimension

s = s1 × · · · × sn or s1 6∈ {(−∞, a), [a, b], . . . (z,∞)}

Formal proofs for Cylindrical Algebraic Coverings • Cylindrical Algebraic Coverings
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I Fix a variable ordering
I For the kth variable

I Use constraints to exclude unsatisfiable intervals
I Guess a value for the kth variable
I Recurse to k + 1st variable and obtain

I a full variable assignment (→ return SAT)
I or a covering for the k + 1st variable

I Use CAD machinery to infer an interval from this covering
I Until the collected intervals form a covering for the kth variable

Called for the first variable, we get either
I a model, or
I a conflict (formulated as a covering).

[Ábrahám et al. 2021]
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c1 : 4 · y < x2 − 4 c2 : 3 · y > 5− (x− 2)2 c3 : 4 · y > x+ 2

−3 −2 −1 1 2 3 4

−2

−1

1

2

c1

c2

c3

x

y
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function get_unsat_cover((s1, . . . , si−1))

I := get_unsat_intervals(s)
while

⋃
I∈I I 6= R do

si := sample_outside(I)
if i = n then return (SAT, (s1, . . . , si−1, si))
(f,O) := get_unsat_cover((s1, . . . , si−1, si))
if f = SAT then return (SAT, O)
else if f = UNSAT then
R := construct_characterization((s1, . . . , si−1, si), O)
J := interval_from_characterization((s1, . . . , si−1), si, R)
I := I ∪ {J}

return (UNSAT, I)

[Ábrahám et al. 2021]
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Are proofs trivial now?

No, but:
I Proof is much more constructive
I Hard reasoning is local to a partial assignment
I Feels more natural

Basically, we claim:
I Algorithm is a proof sketch (CAD is not)
I Proof steps are reasonably intuitive (CAD is not)

[Abrahám et al. 2021]
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c3 → y 6∈ (−∞, 0.5)
y 6∈ R

c1, c2 → x 6∈ (−2, 3)
x 6∈ R
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(SCOPE (c1 c3 c4 c5 )
(ARITH_NL_CAD_RECURSIVE

(SCOPE ( (ROOT_PREDICATE k=1 (<= x 0) (+ 1 (∗ 1 x ) ) ) )
(ARITH_NL_CAD_DIRECT

(ASSUME (ROOT_PREDICATE k=1 (<= x 0) (+ 1 (∗ 1 x ) ) ) )
(ASSUME c4 ) ) )

(SCOPE ( (ROOT_PREDICATE k=1 (>= x 0) (+ (− 2) (∗ 1 x ) ) ) )
(ARITH_NL_CAD_DIRECT

(ASSUME (ROOT_PREDICATE k=1 (>= x 0) (+ (− 2) (∗ 1 x ) ) ) )
(ASSUME c5 ) ) )

(SCOPE ( (ROOT_PREDICATE k=1 (> x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) )
(ROOT_PREDICATE k=2 (< x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )

(ARITH_NL_CAD_RECURSIVE
(ASSUME (ROOT_PREDICATE k=1 (> x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=2 (< x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(SCOPE ( (ROOT_PREDICATE k=1 (<= y 0) (+ (− 2) (∗ (− 1) x ) (∗ 4 y ) ) ) )

(ARITH_NL_CAD_DIRECT
(ASSUME (ROOT_PREDICATE k=1 (> x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=2 (< x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=1 (<= y 0) (+ (− 2) (∗ (− 1) x ) (∗ 4 y ) ) ) )
(ASSUME c3 ) ) )

(SCOPE ( (ROOT_PREDICATE k=1 (>= y 0) (+ 4 (∗ (− 1) (^ x 2) ) (∗ 4 y ) ) ) ) )
(ARITH_NL_CAD_DIRECT

(ASSUME (ROOT_PREDICATE k=1 (> x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=2 (< x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=1 (>= y 0) (+ 4 (∗ (− 1) (^ x 2) ) (∗ 4 y ) ) ) )
(ASSUME c1 ) ) ) ) ) )
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(SCOPE ( (ROOT_PREDICATE k=1 (<= y 0) (+ (− 2) (∗ (− 1) x ) (∗ 4 y ) ) ) )
(ARITH_NL_CAD_DIRECT

(ASSUME (ROOT_PREDICATE k=1 (> x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=2 (< x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=1 (<= y 0) (+ (− 2) (∗ (− 1) x ) (∗ 4 y ) ) ) )
(ASSUME c3 ) ) )

(c3 ∧ x > Root1(x
2 − x− 6) ∧ x < Root2(x

2 − x− 6))⇒ ¬(y ≤ Root1(4y − x− 2))
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(SCOPE ( (ROOT_PREDICATE k=1 (<= y 0) (+ (− 2) (∗ (− 1) x ) (∗ 4 y ) ) ) )
(ARITH_NL_CAD_DIRECT

(ASSUME (ROOT_PREDICATE k=1 (> x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=2 (< x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=1 (<= y 0) (+ (− 2) (∗ (− 1) x ) (∗ 4 y ) ) ) )
(ASSUME c3 ) ) )

(c3 ∧ x > Root1(x
2 − x− 6) ∧ x < Root2(x

2 − x− 6))⇒ ¬(y ≤ Root1(4y − x− 2))
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(SCOPE ( (ROOT_PREDICATE k=1 (<= y 0) (+ (− 2) (∗ (− 1) x ) (∗ 4 y ) ) ) )
(ARITH_NL_CAD_DIRECT

(ASSUME (ROOT_PREDICATE k=1 (> x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=2 (< x 0) (+ (− 6) (∗ (− 1) x ) (∗ 1 (^ x 2 ) ) ) ) )
(ASSUME (ROOT_PREDICATE k=1 (<= y 0) (+ (− 2) (∗ (− 1) x ) (∗ 4 y ) ) ) )
(ASSUME c3 ) ) )

(c3 ∧ x > Root1(x
2 − x− 6) ∧ x < Root2(x

2 − x− 6))⇒ ¬(y ≤ Root1(4y − x− 2))
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I Theory lemmas are usually easy to prove
I CAD-based lemmas are hard to prove
I Coverings provide a proof skeleton

Open questions:
I How can we make these proofs more accessible?
I Which parts of CAD theory are really necessary for proofs?
I What can we reasonably expect proof checkers to know?
I Are automatically verifiable CAD-based proofs feasible? When?

Any ideas?
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