
Implementing arithmetic over algebraic numbers
A tutorial for Lazard’s lifting scheme

Gereon Kremer, Jens Brandt

Gereon Kremer | Stanford University | December 07, 2021 0/11

Implementing arithmetic over algebraic numbers

Gereon Kremer | Stanford University | December 07, 2021 1/11

Of course!

I Powerful software packages
Random selection: GAP, Magma, Maple, Mathematica, Sage, SINGULAR, ...

I Most new results can be implemented concisely
with one of the above software packages

I Oftentimes new results are published as software
within one of the above software packages

We are done here, thanks for the attention!

Heretical question:
Is your implementation in ${your favourite CAS} actually useful?

Implementing arithmetic over algebraic numbers

Can people use computer algebra methods?

Gereon Kremer | Stanford University | December 07, 2021 2/11

Of course!

I Powerful software packages
Random selection: GAP, Magma, Maple, Mathematica, Sage, SINGULAR, ...

I Most new results can be implemented concisely
with one of the above software packages

I Oftentimes new results are published as software
within one of the above software packages

We are done here, thanks for the attention!

Heretical question:
Is your implementation in ${your favourite CAS} actually useful?

Implementing arithmetic over algebraic numbers

Can people use computer algebra methods?

Gereon Kremer | Stanford University | December 07, 2021 2/11

Of course!

I Powerful software packages
Random selection: GAP, Magma, Maple, Mathematica, Sage, SINGULAR, ...

I Most new results can be implemented concisely
with one of the above software packages

I Oftentimes new results are published as software
within one of the above software packages

We are done here, thanks for the attention!

Heretical question:
Is your implementation in ${your favourite CAS} actually useful?

Implementing arithmetic over algebraic numbers

Can people use computer algebra methods?

Gereon Kremer | Stanford University | December 07, 2021 2/11

Of course!

I Powerful software packages
Random selection: GAP, Magma, Maple, Mathematica, Sage, SINGULAR, ...

I Most new results can be implemented concisely
with one of the above software packages

I Oftentimes new results are published as software
within one of the above software packages

We are done here, thanks for the attention!

Heretical question:
Is your implementation in ${your favourite CAS} actually useful?

Implementing arithmetic over algebraic numbers

Can people use computer algebra methods?

Gereon Kremer | Stanford University | December 07, 2021 2/11

Of course!

I Powerful software packages
Random selection: GAP, Magma, Maple, Mathematica, Sage, SINGULAR, ...

I Most new results can be implemented concisely
with one of the above software packages

I Oftentimes new results are published as software
within one of the above software packages

We are done here, thanks for the attention!

Heretical question:
Is your implementation in ${your favourite CAS} actually useful?

Implementing arithmetic over algebraic numbers

Can people use computer algebra methods?

Gereon Kremer | Stanford University | December 07, 2021 2/11

Assume ${your favourite computer algebra method} shall be

I used in a project that can not use closed-source software.
Macsyma, Magma, Maple, Mathcad, Mathematica, MATLAB, SMath, Wolfram Alpha

I maintained reliably.
Axiom, Derive, KANT/KASH, Magnus, Mathomatic, MuMATH, MuPAD, OpenAxiom

I integrated reasonably easily and efficiently.
SageMath, SymPy

I extended and modified.
model construction? incrementality? infeasible subsets?

Implementing arithmetic over algebraic numbers

A different point of view

Gereon Kremer | Stanford University | December 07, 2021 3/11

Assume ${your favourite computer algebra method} shall be

I used in a project that can not use closed-source software1.
Macsyma, Magma, Maple, Mathcad, Mathematica, MATLAB, SMath, Wolfram Alpha

I maintained reliably.
Axiom, Derive, KANT/KASH, Magnus, Mathomatic, MuMATH, MuPAD, OpenAxiom

I integrated reasonably easily and efficiently.
SageMath, SymPy

I extended and modified.
model construction? incrementality? infeasible subsets?

1Licensing and stuff. Ask you least distrusted lawer.

Implementing arithmetic over algebraic numbers

A different point of view

Gereon Kremer | Stanford University | December 07, 2021 3/11

Assume ${your favourite computer algebra method} shall be

I used in a project that can not use closed-source software1.
Macsyma, Magma, Maple, Mathcad, Mathematica, MATLAB, SMath, Wolfram Alpha

I maintained reliably2.
Axiom, Derive, KANT/KASH, Magnus, Mathomatic, MuMATH, MuPAD, OpenAxiom

I integrated reasonably easily and efficiently.
SageMath, SymPy

I extended and modified.
model construction? incrementality? infeasible subsets?

1Licensing and stuff. Ask you least distrusted lawer.
2Because, you know, people care about having issues fixed.

Implementing arithmetic over algebraic numbers

A different point of view

Gereon Kremer | Stanford University | December 07, 2021 3/11

Assume ${your favourite computer algebra method} shall be

I used in a project that can not use closed-source software1.
Macsyma, Magma, Maple, Mathcad, Mathematica, MATLAB, SMath, Wolfram Alpha

I maintained reliably2.
Axiom, Derive, KANT/KASH, Magnus, Mathomatic, MuMATH, MuPAD, OpenAxiom

I integrated reasonably easily and efficiently3.
SageMath, SymPy

I extended and modified.
model construction? incrementality? infeasible subsets?

1Licensing and stuff. Ask you least distrusted lawer.
2Because, you know, people care about having issues fixed.
3Conversion overhead sometimes is an issue.

Implementing arithmetic over algebraic numbers

A different point of view

Gereon Kremer | Stanford University | December 07, 2021 3/11

Assume ${your favourite computer algebra method} shall be

I used in a project that can not use closed-source software1.
Macsyma, Magma, Maple, Mathcad, Mathematica, MATLAB, SMath, Wolfram Alpha

I maintained reliably2.
Axiom, Derive, KANT/KASH, Magnus, Mathomatic, MuMATH, MuPAD, OpenAxiom

I integrated reasonably easily and efficiently3.
SageMath, SymPy

I extended and modified4.
model construction? incrementality? infeasible subsets?

1Licensing and stuff. Ask you least distrusted lawer.
2Because, you know, people care about having issues fixed.
3Conversion overhead sometimes is an issue.
4Using a black box is not always appropriate.

Implementing arithmetic over algebraic numbers

A different point of view

Gereon Kremer | Stanford University | December 07, 2021 3/11

SMT =̂ Satisfiability modulo theories =̂ first-order formulae over theories

SMT solvers have found widespread use: all of “Big Tech” heavily use them.
Licensing issues, performance and reliability are really important

For NRA solvers implement (variants of) cylindrical algebraic decomposition.

How do these SMT solvers implement CAD?
They do somehow – so everything is fine?

Few libraries exist within or alongside SMT solvers that implement the bare
minimum. Developers that are able and willing to do this job are rare. The
problems fill another talk.

Implementing arithmetic over algebraic numbers

Computer algebra techniques in SMT solvers

Gereon Kremer | Stanford University | December 07, 2021 4/11

SMT =̂ Satisfiability modulo theories =̂ first-order formulae over theories

SMT solvers have found widespread use: all of “Big Tech” heavily use them.
Licensing issues, performance and reliability are really important

For NRA solvers implement (variants of) cylindrical algebraic decomposition.

How do these SMT solvers implement CAD?
They do somehow – so everything is fine?

Few libraries exist within or alongside SMT solvers that implement the bare
minimum. Developers that are able and willing to do this job are rare. The
problems fill another talk.

Implementing arithmetic over algebraic numbers

Computer algebra techniques in SMT solvers

Gereon Kremer | Stanford University | December 07, 2021 4/11

SMT =̂ Satisfiability modulo theories =̂ first-order formulae over theories

SMT solvers have found widespread use: all of “Big Tech” heavily use them.
Licensing issues, performance and reliability are really important

For NRA solvers implement (variants of) cylindrical algebraic decomposition.

How do these SMT solvers implement CAD?
They do somehow – so everything is fine?

Few libraries exist within or alongside SMT solvers that implement the bare
minimum. Developers that are able and willing to do this job are rare. The
problems fill another talk.

Implementing arithmetic over algebraic numbers

Computer algebra techniques in SMT solvers

Gereon Kremer | Stanford University | December 07, 2021 4/11

SMT =̂ Satisfiability modulo theories =̂ first-order formulae over theories

SMT solvers have found widespread use: all of “Big Tech” heavily use them.
Licensing issues, performance and reliability are really important

For NRA solvers implement (variants of) cylindrical algebraic decomposition.

How do these SMT solvers implement CAD?
They do somehow – so everything is fine?

Few libraries exist within or alongside SMT solvers that implement the bare
minimum. Developers that are able and willing to do this job are rare. The
problems fill another talk.

Implementing arithmetic over algebraic numbers

Computer algebra techniques in SMT solvers

Gereon Kremer | Stanford University | December 07, 2021 4/11

SMT =̂ Satisfiability modulo theories =̂ first-order formulae over theories

SMT solvers have found widespread use: all of “Big Tech” heavily use them.
Licensing issues, performance and reliability are really important

For NRA solvers implement (variants of) cylindrical algebraic decomposition.

How do these SMT solvers implement CAD?
They do somehow – so everything is fine?

Few libraries exist within or alongside SMT solvers that implement the bare
minimum. Developers that are able and willing to do this job are rare. The
problems fill another talk.

Implementing arithmetic over algebraic numbers

Computer algebra techniques in SMT solvers

Gereon Kremer | Stanford University | December 07, 2021 4/11

Assume you already have a working CAD with McCallum’s projection.

You want Lazard’s projection & lifting:
I (Almost) the smallest projection set for CAD

resultant + discriminant + leading coefficient + trailing coefficient
I Changing the projection is trivial
I Proven to be sound (unlike McCallum) if you implement the lifting scheme.

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi

q := subst(ai, xi, q)
isolate real roots of q (now univariate in xn)

Seems easy enough?
What if ai ∈ Q \Q?

[McCallum 1985] [Lazard 1994] [McCallum et al. 2019]

Implementing arithmetic over algebraic numbers

This paper: Lazard’s lifting and projection scheme

Gereon Kremer | Stanford University | December 07, 2021 5/11

Assume you already have a working CAD with McCallum’s projection.

You want Lazard’s projection & lifting:
I (Almost) the smallest projection set for CAD

resultant + discriminant + leading coefficient + trailing coefficient
I Changing the projection is trivial
I Proven to be sound (unlike McCallum)

if you implement the lifting scheme.

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi

q := subst(ai, xi, q)
isolate real roots of q (now univariate in xn)

Seems easy enough?
What if ai ∈ Q \Q?

[McCallum 1985] [Lazard 1994] [McCallum et al. 2019]

Implementing arithmetic over algebraic numbers

This paper: Lazard’s lifting and projection scheme

Gereon Kremer | Stanford University | December 07, 2021 5/11

Assume you already have a working CAD with McCallum’s projection.

You want Lazard’s projection & lifting:
I (Almost) the smallest projection set for CAD

resultant + discriminant + leading coefficient + trailing coefficient
I Changing the projection is trivial
I Proven to be sound (unlike McCallum) if you implement the lifting scheme.

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi

q := subst(ai, xi, q)
isolate real roots of q (now univariate in xn)

Seems easy enough?
What if ai ∈ Q \Q?

[McCallum 1985] [Lazard 1994] [McCallum et al. 2019]

Implementing arithmetic over algebraic numbers

This paper: Lazard’s lifting and projection scheme

Gereon Kremer | Stanford University | December 07, 2021 5/11

Assume you already have a working CAD with McCallum’s projection.

You want Lazard’s projection & lifting:
I (Almost) the smallest projection set for CAD

resultant + discriminant + leading coefficient + trailing coefficient
I Changing the projection is trivial
I Proven to be sound (unlike McCallum) if you implement the lifting scheme.

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi
q := subst(ai, xi, q)

isolate real roots of q (now univariate in xn)

Seems easy enough?
What if ai ∈ Q \Q?

[McCallum 1985] [Lazard 1994] [McCallum et al. 2019]

Implementing arithmetic over algebraic numbers

This paper: Lazard’s lifting and projection scheme

Gereon Kremer | Stanford University | December 07, 2021 5/11

Assume you already have a working CAD with McCallum’s projection.

You want Lazard’s projection & lifting:
I (Almost) the smallest projection set for CAD

resultant + discriminant + leading coefficient + trailing coefficient
I Changing the projection is trivial
I Proven to be sound (unlike McCallum) if you implement the lifting scheme.

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi
q := subst(ai, xi, q)

isolate real roots of q (now univariate in xn)

Seems easy enough?

What if ai ∈ Q \Q?

[McCallum 1985] [Lazard 1994] [McCallum et al. 2019]

Implementing arithmetic over algebraic numbers

This paper: Lazard’s lifting and projection scheme

Gereon Kremer | Stanford University | December 07, 2021 5/11

Assume you already have a working CAD with McCallum’s projection.

You want Lazard’s projection & lifting:
I (Almost) the smallest projection set for CAD

resultant + discriminant + leading coefficient + trailing coefficient
I Changing the projection is trivial
I Proven to be sound (unlike McCallum) if you implement the lifting scheme.

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi
q := subst(ai, xi, q)

isolate real roots of q (now univariate in xn)

Seems easy enough?
What if ai ∈ Q \Q?

[McCallum 1985] [Lazard 1994] [McCallum et al. 2019]

Implementing arithmetic over algebraic numbers

This paper: Lazard’s lifting and projection scheme

Gereon Kremer | Stanford University | December 07, 2021 5/11

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi
q := subst(ai, xi, q)

isolate real roots of q (now univariate in xn)

If ai ∈ Q \Q, this requires proper polynomial arithmetic over algebraic numbers!

Core issue: multivariate factorization over a field extension.
Also: take care which operation is performed in which structure!

Observation: Implementing multivariate factorization is prohibitive
for the SMT people

Implementing arithmetic over algebraic numbers

So what?

Gereon Kremer | Stanford University | December 07, 2021 6/11

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi
q := subst(ai, xi, q)

isolate real roots of q (now univariate in xn)

If ai ∈ Q \Q, this requires proper polynomial arithmetic over algebraic numbers!

Core issue: multivariate factorization over a field extension.
Also: take care which operation is performed in which structure!

Observation: Implementing multivariate factorization is prohibitive
for the SMT people

Implementing arithmetic over algebraic numbers

So what?

Gereon Kremer | Stanford University | December 07, 2021 6/11

f o r i := 0 to n− 1 do
vi := argmaxv∈Z(xi − ai)v divides q
q := q/(xi − ai)vi
q := subst(ai, xi, q)

isolate real roots of q (now univariate in xn)

If ai ∈ Q \Q, this requires proper polynomial arithmetic over algebraic numbers!

Core issue: multivariate factorization over a field extension.
Also: take care which operation is performed in which structure!

Observation: Implementing multivariate factorization is prohibitive
for the SMT people

Implementing arithmetic over algebraic numbers

So what?

Gereon Kremer | Stanford University | December 07, 2021 6/11

What’s in the paper?

How to implement Lazard’s lifting given CoCoALib and LibPoly.

[Abbott et al. 2018] [Jovanovic et al. 2017]

Implementing arithmetic over algebraic numbers

</lament>

Gereon Kremer | Stanford University | December 07, 2021 7/11

What’s in the paper?

How to implement Lazard’s lifting given CoCoALib and LibPoly.

[Abbott et al. 2018] [Jovanovic et al. 2017]

Implementing arithmetic over algebraic numbers

</lament>

Gereon Kremer | Stanford University | December 07, 2021 7/11

K0 = Q J0 = K0[x0, . . . , xn]

R0 = K0[x0]

K1 = K0(α0) = R0/〈p∗0〉 J1 = K1[x1, . . . , xn]

R1 = K1[x1]

K2 = K1(α1) = R1/〈p∗1〉 J2 = K2[x2, . . . , xn]

R2 = K2[x2]

ϕ0

ϕ1

C0

C1

Implementing arithmetic over algebraic numbers

Algebraic framework: tower of field extensions

Gereon Kremer | Stanford University | December 07, 2021 8/11

In the paper: actual working code!
https://github.com/cvc5/cvc5/blob/master/src/theory/arith/nl/cad/lazard_evaluation.cpp

vector<RingElem> p; // p0 . . . pn−1

vector<ring> K; // K0 . . . Kn

vector<ring> R; // R0 . . . Rn

K[0] = RingQQ();
// assigned variables x0, . . . xn−1

for (size_t i = 0; i < n; ++i)
{

R[i] = NewPolyRing(K[i],
{NewSymbol()});
RingElem mipo = /* from Ri */;
auto facs = factor(mipo);
p[i] = /* fac that vanishes */;
K[i+1] = NewQuotientRing(R[i],
ideal(p[i]));

}
// free variable xn

R[n] = NewPolyRing(K[n], {NewSymbol()});

Implementing arithmetic over algebraic numbers

Implementation

Gereon Kremer | Stanford University | December 07, 2021 9/11

https://github.com/cvc5/cvc5/blob/master/src/theory/arith/nl/cad/lazard_evaluation.cpp

lifting projection sat unsat total

libpoly McCallum 5064 5378 10442
libpoly Lazard 5062 5377 10439
Lazard McCallum 5088 5370 10458
Lazard Lazard 5090 5371 10461

I 4752 of 11552 benchmarks entered the nonlinear solver
I 925 of 11552 benchmarks require lifting non-rational assignments
I 664 of 11552 benchmarks see vanishing factors (750k total)
I McCallum and Lazard are identical on > 99.5% of the benchmarks

Correctness is for free!

Implementing arithmetic over algebraic numbers

Experiments (SMT-LIB, QF_NRA, 10min)

Gereon Kremer | Stanford University | December 07, 2021 10/11

lifting projection sat unsat total

libpoly McCallum 5064 5378 10442
libpoly Lazard 5062 5377 10439
Lazard McCallum 5088 5370 10458
Lazard Lazard 5090 5371 10461

I 4752 of 11552 benchmarks entered the nonlinear solver
I 925 of 11552 benchmarks require lifting non-rational assignments
I 664 of 11552 benchmarks see vanishing factors (750k total)
I McCallum and Lazard are identical on > 99.5% of the benchmarks

Correctness is for free!

Implementing arithmetic over algebraic numbers

Experiments (SMT-LIB, QF_NRA, 10min)

Gereon Kremer | Stanford University | December 07, 2021 10/11

I an implementation is not useful per se
I people will need to modify your implementation
I many applications need free libraries (e.g. CoCoALib)

I Lazard’s lifting requires additional algorithms
I we provide an implementation based on CoCoALib
I oftentimes not necessary (≈ 6% of SMT-LIB benchmarks)
I no significant impact on performance
I implementation is sound now

Implementing arithmetic over algebraic numbers

Conclusion

Gereon Kremer | Stanford University | December 07, 2021 11/11

I an implementation is not useful per se
I people will need to modify your implementation
I many applications need free libraries (e.g. CoCoALib)

I Lazard’s lifting requires additional algorithms
I we provide an implementation based on CoCoALib
I oftentimes not necessary (≈ 6% of SMT-LIB benchmarks)
I no significant impact on performance
I implementation is sound now

Implementing arithmetic over algebraic numbers

Conclusion

Gereon Kremer | Stanford University | December 07, 2021 11/11

I John Abbott, Anna M. Bigatti, and Elisa Palezzato. “New in CoCoA-5.2.4 and CoCoALib-0.99600
for SC-Square”. In: SC2. FLoC. Vol. 2189. July 2018, pp. 88–94. URL:
http://ceur-ws.org/Vol-2189/paper4.pdf.

I Dejan Jovanovic and Bruno Dutertre. “LibPoly: A Library for Reasoning about Polynomials”. In:
SMT. CAV. Vol. 1889. 2017. URL: http://ceur-ws.org/Vol-1889/paper3.pdf.

I Daniel Lazard. “An Improved Projection for Cylindrical Algebraic Decomposition”. In: Algebraic
Geometry and its Applications. 1994. Chap. 29, pp. 467–476. DOI:
10.1007/978-1-4612-2628-4_29.

I Scott McCallum. “An Improved Projection Operation for Cylindrical Algebraic Decomposition”. In:
EUROCAL. Vol. 204. 1985, pp. 277–278. DOI: 10.1007/3-540-15984-3_277.

I Scott McCallum, Adam Parusiński, and Laurentiu Paunescu. “Validity proof of Lazard’s method for
CAD construction”. In: Journal of Symbolic Computation 92 (2019), pp. 52–69. DOI:
10.1016/j.jsc.2017.12.002.

Implementing arithmetic over algebraic numbers • References

References I

Gereon Kremer | Stanford University | December 07, 2021 1/1

http://ceur-ws.org/Vol-2189/paper4.pdf
http://ceur-ws.org/Vol-1889/paper3.pdf
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/3-540-15984-3_277
https://doi.org/10.1016/j.jsc.2017.12.002

	Appendix
	References
	References

