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Abstract. Satisfiability-modulo-theories (SMT ) solving is a technique
for checking the satisfiability of logical formulas. In this context, recently
a framework called model-constructing satisfiability calculus (MCSAT )
has been introduced which relaxes some design restrictions of the classical
SMT setting and allows more freedom to construct an efficient interplay
between the search for models in the Boolean and the theory domains.
In this paper we discuss issues of dynamic variable orderings to drive the
MCSAT model search for the theory of non-linear real arithmetic.
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1 Problem Statement

Satisfiability-modulo-theories (SMT) solving is a technique for checking the sat-
isfiability of (usually quantifier-free) first-order logic formulas. In classical lazy
SMT solving, the search is decomposed in two interacting modules: at the
Boolean level, truth values are searched for the theory constraints of an input
formula such that the Boolean structure (the Boolean abstraction) of the formula
is satisfied; this Boolean search is assisted by theory consistency checks for the
corresponding constraints as selected by the current Boolean truth assignment.

Accordingly, a classical SMT solver consists of two components: a Boolean
solver and a theory solver. The Boolean solver, which is typically a SAT solver
based on techniques called DPLL [5] and CDCL [10], searches for a solution for
the Boolean abstraction by deciding which truth values to try for the theory
constraints, propagating already assigned Boolean values to derive implications,
and resolving Boolean conflicts occurring during propagation. During this search,
the SAT solver1 passes theory constraints corresponding to the current (possibly
partial) Boolean model to the theory solver. The theory solver checks the con-
sistency of the given constraints in the theory, usually by constructing a model
for the theory variables, or returns an explanation for the unsatisfiability in
cases where no such assignment exists. The latter explanations are added to the
original formula to exclude theory-inconsistent Boolean models from the further
search. The search continues until either both the SAT and theory solver have

1 In the following, when we talk about a SAT solver then we mean one based on DPLL
and CDCL.
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constructed a complete assignment for both the Boolean and theory variables or
all Boolean assignments have been excluded.

Recently, a framework called model-constructing satisfiability calculus (MC-
SAT ) was introduced [9,11], which allows the simultaneous construction of Boolean
and theory models, enabling more freedom for the design of the interplay be-
tween the search in the Boolean and in the theory domains. In this approach,
the Boolean and theory modules from the classical framework are merged into a
single solver that works on the Boolean structure and the theory simultaneously.
This solver performs decisions not only on the Boolean (abstraction) variables,
but also on the theory variables by making theory decisions. Throughout the
procedure, the two models are kept consistent, meaning that the truth values
of constraints at the Boolean level never contradict to their evaluation under
the theory model. When the current partial theory model cannot be further ex-
tended to a complete and consistent theory model, theory conflict resolution is
applied to generate an explanation in form of a lemma that can be learned to
exclude this and “similar” inconsistent guesses from the further search.

In quantifier-free non-linear real arithmetic, the constraints are polynomial
equalities or inequalities over the real domain. For this theory, we have imple-
mented in our SMT-RAT solver [4] different theory solver modules for classical SMT
solving. Additionally, we have also adapted for MCSAT the cylindrical algebraic
decomposition method (CAD), the virtual substitution method (VS ) and the
Fourier-Motzkin variable elimination method (FM ) for generating explanations.
For CAD, we employ the approach outlined in [9] (commonly known as nlsat),
where we support different projection operators, and alternatively implement
an adaptation of the OneCell-CAD approach presented in [2,3] for explanation
generation as described in [12]. The adaptation of VS is based on our presenta-
tion from [13], where elimination is restricted to the unassigned variables. The
Fourier-Motzkin variable elimination is adapted in the spirit of [8], enhanced
with explicit support for equalities and weak inequalities.

It is well-known that the variable ordering is a crucial ingredient both in
theory and practice for many solving techniques. For all of the above methods –
SAT solving, FM, VS and CAD – the variable ordering can move the performance
from the worst-case to “almost trivial” or vice-versa. At the same time finding
the best (or at least a “good”) variable ordering in a reasonable amount of time
is essentially impossible in all cases. Thus heuristics are heavily used in practice
to find reasonably good variables orderings quickly.

The original MCSAT approach for non-linear real arithmetic [9] assumes a
static ordering of theory variables. This static variable ordering guides also the
Boolean search: the solver identifies those clauses that are univariate in the
first unassigned variable in the static theory variable ordering under the current
theory model (i.e., the first unassigned theory variable is the only unassigned
one occurring in them) and performs Boolean propagations and Boolean deci-
sions only with respect to those clauses. If all such clauses are satisfied at the
Boolean level then the next theory decision is made, extending the theory model
in agreement with the Boolean model (if possible). While we can use a form of
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conflict-driven activity-based heuristics (like VSIDS) for the Boolean variables,
the static theory variable ordering heavily restricts the flexibility here.

The restriction to consider univariate clauses only was already lifted in [11]
and the possibility to even include the theory variables in such an activity-based
heuristic – essentially treat Boolean and theory variables equally in one com-
bined variable ordering – was proposed [8]. Note however that [11] described
the general MCSAT framework independently of a specific theory and [8] only
discusses linear real arithmetic (combined with uninterpreted functions). Un-
fortunately, this does not directly transfer to non-linear real arithmetic: while
regular polynomial constraints have a clear semantic meaning independently of
the variable ordering, we need to consider extended polynomial constraints (as
defined in [9]) that pose additional challenges under changing variable orders.

In the remainder of this paper we discuss how to design MCSAT for non-
linear real arithmetic with dynamic theory variable ordering, meaning that the
ordering of any variables may change throughout the computation. This includes
necessary algorithmic modifications, some considerations for the implementation
and completeness issues. Finally, we report on some preliminary experiments.
We assume the reader to be reasonably familiar with the MCSAT framework as
presented in [9,11] as well as SAT solving and classical SMT solving.

2 Variable orderings in MCSAT

The fundamental idea of MCSAT is to construct the Boolean model and theory
model simultaneously. This allows the Boolean reasoning and the theory reason-
ing to complement (and possibly learn from) each other more flexibly than in
traditional SMT solving. The variable scheduler is the crucial component driving
this process, mainly determining how we interleave Boolean and theory reason-
ing. Given the importance of the variable ordering on practical performance, it
is possible (even probable) that more elaborate computations in the scheduling
heuristics pay off in terms of overall solving time.

When devising a variable scheduling heuristic we need to answer two ques-
tions: Firstly, how should we interleave (or prioritize) the Boolean and theory
reasoning? Secondly, how should the variables (both Boolean and theory) be
ordered? For Boolean variables solvers usually rely on conflict-driven activity-
based heuristics like VSIDS while theory variables are mostly static (based on
some heuristic) throughout the whole solving process.

Experience shows that constructing a good variable ordering upfront is hard.
Even for a pure CAD (or VS) computation that is not embedded in some other
framework (like traditional SMT or MCSAT) the results are mixed. The existing
heuristics almost exclusively focus on syntactic properties (like variable degree
or number of occurrences), and adversarial inputs seem to be neither hard to
construct nor particularly contrived or artificial.

Similar to CDCL-style SAT solving – and following [8] – we therefore use a
dynamic variable ordering for theory variables as well in the hope to learn an
efficient variable ordering during solving.
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2.1 MCSAT Extensions in SMT-RAT

Our implementation contains several changes compared to the descriptions from
[9,11,8] that influence which heuristics can be used and how we can implement
them. Some are clearly beyond the previously published descriptions while others
are possibly intended by the authors but have not been made explicit.

– Our core solver is based on a CDCL-style SAT solver (MiniSAT) and thus
incorporates all common optimizations and heuristics that go beyond what
is presented in [9,11] for the Boolean reasoning.

– A set of active literals is maintained that contains those literals occurring in
not-yet satisfied clauses. It is sufficient to decide only literals from this set
to obtain a complete procedure.

– Before a Boolean decision is made, we check for feasibility together with
the current theory model. That is, after deciding the constraint we do not
run into an immediate theory conflict. If the constraint is not feasible, we
insert its negation as a lazy theory propagation. If this propagation leads to a
conflict later on, the explanation is generated on request. This is essentially
one concrete way how to apply the T-Propagate rule from [11].

– Whenever a theory assignment is computed, we optionally apply substitution
of the current partial model in the assigned literals, collect those that are
linear after the substitution and use a Simplex-based solver to check their
consistency. This may yield a satisfying model for the whole set of assigned
literals, or allow to determine infeasibility earlier.

– We combine multiple explanation backends (similar to [8]) based on FM,
VS, CAD as in [9] and OneCell-CAD. Besides allowing to fall back to “more
complete” explanation backends, the variable scheduler could also exploit
a particular combination of backends by favouring constraints that can be
handled by more efficient methods (for example linear constraints).

2.2 Heuristics

To evaluate the implementation and get a first feeling on the impact in practice,
we consider several different variable orderings here:

Boolean first. All Boolean variables are decided first with an activity-based
dynamic ordering before any theory decision is made. We use a static theory
variable ordering based on features like maximum degrees or coefficients roughly
following the “triangular ordering” from [7]. Many possibilities here are yet un-
explored, for example other variable orderings proposed in [7] or [6].

Theory first. Same as Boolean first, but theory decisions are made before any
Boolean decision is made. Note that after deciding all theory variables, only
Boolean variables not representing a theory constraint need to be decided.
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Univariate constraints. Like before we use a static ordering for theory variables
and a dynamic ordering for Boolean variables. For Boolean decisions we only
consider variables that are univariate under the current theory model and per-
form a theory decision if none is left. This interleaves the Boolean and theory
reasoning and, combined with active literals tracking, is very similar to nlsat

from [9].

Uniform activies. As in [8], the activity is tracked for both Boolean and theory
variables in a conflict-driven manner (like VSIDS). For Boolean variables, those
are the resolution variables, and for theory variables, those are the ones occurring
in the corresponding theory constraints, counted only once per conflict. The
unassigned variable (Boolean or theory) with highest activity is decided first.

Random. A random ordering over all variables (Boolean and theory) is fixed
and decided in this order. This strategy is only used as a reference.

3 Issues with dynamic variable orderings

As already noted using a dynamic ordering for theory variables has some conse-
quences that go well beyond what we know from regular SMT solving.

3.1 Handling extended polynomial constraints

Explanations from a CAD-based explanation backend may contain extended
polynomial constraints of the form

y ∼ rooti(p(z, x1, . . . , xn))

where ∼ ∈ {<,>,=, 6=,≤,≥}, y, z, x1, . . . , xn are real-valued variables, p is a
polynomial with rational coefficients and variables z, x1, . . . , xn. If x1, . . . , xn
are assigned to values α(x1), . . . , α(xn), then rooti(p(z, x1, . . . , xn)) represents
the ith zero of the univariate polynomial p(z, α(x1), . . . , α(xn)) in z. Such a
constraint evaluates to true if the ith root exists and α(y) compares to this root
as indicated by ∼, and to false otherwise.

Assuming a fixed theory variable ordering, the way how such extended poly-
nomial constraints are constructed within the explanation guarantees that for
each of these constraints x1, . . . , xn are assigned before y and thus the above
semantics are well-defined. Changing the theory variable ordering may lead to
a situation where y is assigned while some xi ∈ {x1, . . . , xn} is still unassigned
if the respective constraint was generated under a different variable ordering. In
some sense, we no longer have a constraint on y but a constraint on xi. Since
the semantics for such an expression is not well-defined, a consistent value for xi
cannot be calculated making theory decisions impossible. Note that the above se-
mantics could be extended, but actually using constraints under these extended
semantics has proven to be extremely difficult – if not impossible – in practice.
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We currently employ a rather simple solution: we disable (i.e. exclude from
theory consistency checks) all constraints of the form y ∼ rooti(p(z, x1, . . . , xn))
where some x1, . . . , xn is not yet assigned but y has been chosen for a decision.
We observe that constraints are not necessarily disabled if the ordering changes
but only if the ordering becomes incompatible (y moves before one of x1, . . . , xn).
Note that constraints can safely be re-enabled, whenever its ordering is compat-
ible with the current one again: Then, they do not immediately evaluate to a
value as at least y is not assigned.

Note that after disabling a constraint, the regions excluded by it might be
considered again. However, this does endanger termination: For any region and
for each particular ordering, at most finitely many explanations are generated
excluding this region. Additionally, any two explanations excluding a common
region but generated under different incompatible orderings either are unequal or
one of them is not generated (as then, no constraint would have been disabled);
thus, no explanation is learned twice.

3.2 Completeness

While a SAT solving process advances with any Boolean conflict resolution, for
MCSAT the explanation backends need to fulfill additional requirements for
completeness. The completeness proof of MCSAT from [9] requires that all con-
straints occurring in an explanation clause must come from some finite set of
constraints that depends on the input formula; we then say that an explanation
backend fulfils the finite basis property. This property holds for all the described
explanation backends individually under a static theory variable ordering based
on the following (inductive) argument: given a finite set of k-dimensional con-
straints, these explanation backends can construct only finitely many new con-
straints of dimension k − 1 or less and we can (conceptually easily) enumerate
all of them. Based on this enhanced set, we can construct the constraints of
dimension k − 2 or less, and so on, ultimately obtaining a finite basis.

This argument still holds if we combine multiple explanation backends us-
ing the same static variable ordering. Note that the variable ordering of these
explanation backends is not identical by construction: while the ordering on the
assigned variables is fixed by the MCSAT trail we can have multiple unassigned
variables whose ordering is unspecified. Though explanations never contain unas-
signed variables, it is not immediately clear whether explanation backends that
use different orderings for unassigned variables can be combined safely.

If the variable ordering is dynamic, we lose the finite basis property as we can
see from the counterexample for Fourier-Motzkin and VS shown in Example 1
and we assume similar examples to exist for CAD. Though this technically does
not prove incompleteness, we doubt that some weaker property exists so that
the procedure still terminates in all cases with an infinite basis for explanations.

Example 1. For the set of constraints

{x1 = 2︸ ︷︷ ︸
c1

, x1 = 2x2︸ ︷︷ ︸
c2

, x2 = 2x1︸ ︷︷ ︸
c3

}
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an infinite sequence of new constraints can be created by either FM or VS steps:

– eliminating x1 in {c1, c2} gives c4 : x2 = 1,
– eliminating x2 in {c3, c4} gives c5 : 2x1 = 1,
– eliminating x1 in {c2, c5} gives c6 : 4x2 = 1,
– eliminating x2 in {c3, c6} gives c7 : 8x1 = 1, . . .

We can assure completeness with a stronger version of what we described as
disabled constraints in Section 3.1: we store the variable ordering that was used
when some clause was constructed and disable the whole clause for decisions and
propagations when the current variable ordering is incompatible. With the same
argument as given in Section 3.1, the procedure remains complete as lemmas are
not generated twice and we only have finitely many variable orderings.

However, our main goal in making the theory variable ordering dynamic is
not to work on the core problem from different perspectives – as one could un-
derstand CDCL-style SAT solving – but rather find an advantageous ordering
dynamically and eventually settle on this one. The (syntactic) finite basis prop-
erty ensures that every conflict makes at least a certain amount of progress (by
excluding one of finitely many regions). Ever-changing theory variable orderings
can easily lead to non-termination in MCSAT as we have seen in Example 1
by (potentially) excluding infinitesimally small regions. Note however that we
consider this a theoretical issue: if we ensure that the theory variable ordering
becomes stable at some point, similar to how restarts are handled in CDCL-style
SAT solving, we can assume this to be safe in practice.

4 Experimental Results

The relative performance of the heuristics we defined above on the SMT-LIB
benchmark set for QF NRA are shown in Figures 1 and 2. It should be noted
that a large part of the SMT-LIB [1] benchmark set for QF NRA has no complex
Boolean structure. Throughout the experiments, we used a combination of the
FM, VS and Onecell-CAD explanation backends by calling them in this order
and falling back to the next backend if one failed.

Solver SAT UNSAT overall

Random 4533 4694 9227 80.3 %
Boolean first 4532 4716 9248 80.5 %
Univariate 4565 4721 9286 80.8 %
Univariate + active literals 4644 4775 9419 82.0 %
Uniform activities 4701 4774 9475 82.5 %
Theory first 4698 4779 9477 82.5 %

Fig. 1. Solved instances by variable ordering heuristics
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Fig. 2. Performance of variable ordering heuristics

We observe that the Boolean first strategy works only slightly better than
a random ordering and significantly worse than most other heuristics. Univari-
ate constraints improves upon this, in particular if combined with active literals
tracking which is close to the nlsat heuristic from [9]. However, active literals
tracking brings no benefit when combined with Theory first or Uniform activi-
ties. The Uniform activities and Theory first strategies perform best with Theory
first having a slight advantage in terms of the average running time.

The success of both the Theory first and Univariate + active literals strate-
gies may indicate that the nlsat strategy from [9] is effective because Boolean
decisions are delayed, and it actually delays them even more than the Univariate
+ active literals strategy: while we only consider univariate literals from not yet
satisfied clauses, nlsat only considers literals from univariate clauses. We did
not yet implement the nlsat strategy in our solver.

One may assume that the Uniform activities strategy performs well because
it essentially converges towards the Theory first ordering. This is however not the
(only) reason for its effectiveness. We experimented with ways to further increase
the activities of theory variables compared to Boolean variables: increasing ac-
tivities of theory variables multiple times per conflict; strictly favouring theory
variables in the case of equal activities; using the Theory first strategy where
the theory variables are ordered according to activities. All of those performed
worse than just using uniform activities, suggesting that Uniform activities and
Theory first are effective for different reasons.

5 Future work

We have seen that the variable ordering has a significant impact on the overall
performance and might be the key to better running times in practice. We only
had a first glimpse of the possibilities that result from dynamic variable order-
ings. It is not clear yet that lifting all restrictions are strictly beneficial, but the
preliminary experiments we presented could be evidence for this.
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We aim at investigating other variable ordering schemes that combine es-
tablished dynamic heuristics from SAT solving with variable ordering heuristics
borrowed from the computer algebra community. It should be noted however
that experimenting with variable orderings should not be overly specialized by
“overfitting” to the SMT-LIB benchmark set.

Dynamic variable orderings also give rise to theoretical questions about the
completeness of MCSAT. While we presented evidence for non-termination (un-
der extremely pessimistic assumptions about MCSAT), we conjecture that ter-
mination can be assured for reasonable (dynamic) variable orderings with argu-
ments resembling the use of restarts in SAT solving.
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open source C++ toolbox for strategic and parallel SMT solving. In: Proc. of
SAT 2015. LNCS, vol. 9340, pp. 360–368 (2015). https://doi.org/10.1007/978-3-
319-24318-4 26

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

6. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc.
of ISSAC 2004. pp. 111–118 (2004). https://doi.org/10.1145/1005285.1005303

7. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a vari-
able ordering for truth-table invariant cylindrical algebraic decomposition
by incremental triangular decomposition. In: Proc. of ICMS 2014 (2014).
https://doi.org/10.1007/978-3-662-44199-2 68
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