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Abstract—Lithium-ion battery models that estimate their en-
ergy content after a series of charge and discharge operations are
essential in the optimal design, analysis and operation of battery-
based systems. We focus on the class of battery models that can
be calibrated entirely from the battery’s manufacturer-provided
specifications (spec). Such models are simple to calibrate and
are therefore widely used in practice. The best-known model in
this category was proposed by Tremblay et al. in 2007. This
model, however, has several shortcomings, including low fidelity
at high C-rates, and the fact that it does not model the battery
management system. We propose an alternative, called the Power-
based Integrated (PI) model that is also completely spec-based,
yet has much higher fidelity. We perform two types of validation,
the first one uses the voltage profiles in the spec while the other is
based on laboratory experiments. Both validations confirm that
our model, which we have publicly released as a Simulink system
block, has a mean absolute voltage error of less than 0.1 V across
a wide range of C-rates.

Index Terms—Lithium-ion battery, Storage, Modeling,
Simulink

I. INTRODUCTION

Lithium-ion batteries lie at the heart of many modern
devices and systems, including smartphones, electric vehicles,
and grid-scale energy storage. Models of Lithium-ion batteries,
that estimate their energy content after a series of charge and
discharge operations, hence play a central role in the optimal
design, analysis, and operation of these battery-based systems.

Many battery models have been developed in the past, with
varying degrees of computational complexity, ease of use,
and fidelity [1]. Some models aim to simulate the electro-
chemical processes within a battery, or emulate battery be-
haviour using electrical circuits; these approaches have been
shown to be highly accurate, but are computationally complex
and therefore not suitable for use in optimization or large-
scale simulation studies. Other models are based on neural
networks, which model the battery directly [2] or are used to
tune model parameters ([3], [4]).

Calibrating the parameters for these modelling approaches is
a challenge. For example, circuit-based models require pulse-
current charge/discharge voltage measurements from which
model parameters are extracted ([5], [6], [7], [8], [9], [10],
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[11], [12]), while neural network approaches require data sets
of battery measurements for training the network. These data
sets are difficult to obtain, making the models challenging to
use in practice.

In contrast, some models can be calibrated using only the
information typically found in the specifications document
(spec sheet) released by a manufacturer of the battery cells1.
A spec sheet typically includes information about nominal ca-
pacity, internal resistance, and voltage vs. ampere-hour curves
for battery charging and discharging at different currents.
Thiruganam et al. [13] propose a model that can be calibrated
using only the information found in the spec sheets released by
battery manufacturers like EIG, Sony, Panasonic, and Sanyo.
Their parameter calibration approach is complex, involving
the use of a genetic algorithm to fit the polynomial function
parameters of their model to the voltage curves from a spec
sheet. A simpler and more widely used spec-based model, i.e.,
model parameters are computed using only the spec, for simu-
lation2 was proposed by Tremblay et al [15] for four different
battery chemistries: Lithium-ion, Lead-acid Nickel-Cadmium,
and Nickel-Metal-hydride. A later publication [16] describes
improvements to the model equations that are specific to each
battery chemistry, and presents experiments that are used to
evaluate the accuracy of the models.

One of the defining features of the model proposed in [16]
by Tremblay et al. for Lithium-ion batteries (that we refer to as
the TD model) is how easy it is to obtain the model’s parameter
values, which can be extracted from the spec sheet and used
directly in the model without any additional work. Specifically,
the parameters can be calculated using the internal resistance
(Ohms), nominal capacity (Ampere-hour), the voltage at full
charge (Volts), and two points on a nominal voltage curve
(Ampere-hour, Volts) at a particular C-rate. This simplicity is
a major reason for the widespread use of the TD model for
simulating battery systems over more advanced models3.

Despite its widespread use, the TD model has some short-
comings:

1) The input to the model is current. When conducting
a power flow simulation of a power system that includes
a battery, it is desirable to have a battery model that
uses power as input because power is conserved, whereas
current may go through many transformations, which
would have to be explicitly modeled if the battery model
expects current as input.

1Examples of spec sheets can be found at http://category.alldatasheet.com
2We discuss other widely-used models, developed for the goal of system

optimization, in [14]
3Google Scholar indicates over 500 citations to each of [16] and [15].
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Fig. 1. The battery system.

2) The battery management system (BMS) is not mod-
elled. A battery has two components: the cells, each one
being an electrochemical system that can store energy,
and the BMS, which protects the cells from being dam-
aged due to improper use such as under/over-charging.
The TD model characterizes the behaviour of a cell but
not the BMS, fuses, and wiring, and therefore allows
the simulated battery to be used in a way that would
be prevented by a BMS.

3) The model is not accurate over a wide range of
charging and discharging rates. In the evaluation of the
TD model for Lithium-ion batteries [16], the experiments
were conducted using a limited range of charging and
discharging rates. A more thorough evaluation over a
larger range of currents and full charge-discharge cycles
(presented in this paper) shows that the model’s accuracy
is poor for some charging and discharging rates depend-
ing on the Lithium-ion technology.

In this paper, we present the Power-based Integrated (PI)
Lithium-ion battery model which can be used for simulation
studies of energy system design, operation, and analysis in-
volving such a battery. This model is easy to calibrate from
a standard spec sheet and uses power as input, rather than
current. It also models the functionality of a BMS. We perform
two types of validation, the first one uses the voltage profiles
in the spec as a benchmark, while the other is based on
laboratory experiments. We perform the validation for two
different Lithium-ion battery chemistries and find that the PI
model is significantly more accurate than the TD model. Our
model is freely available in the public domain as a Matlab
system block compatible with Simulink simulation software.

The rest of this paper is organized as follows. Section II
describes the model formulation and assumptions. Section III
describes the parameter calibration. Our model is validated
against spec voltage curves in Section IV, and with additional
experiments in Section V. We describe our Matlab system
block implementation in Section VI.

II. POWER-BASED INTEGRATED (PI) MODEL

Fig. 1 shows the system under study. The battery is com-
posed of a BMS and Lithium-ion cells. The BMS protects
the cells from damage, preventing the battery from being
charged or discharged at too high a power, or for the battery’s
voltage to lie outside a pre-defined range. Given this system,

we model the change in the battery system’s energy content
due to charging or discharging at a particular power level.

Specifically, let P (k) denote the charge/discharge power (in
Watts) during time step k. P (k) is positive if the battery is
being charged and negative if it is being discharged. The length
of each time step is denoted Tu (measured in seconds); in our
work Tu is typically between one and 300 seconds. Some
battery parameters depend on the current and voltage, which
are not inputs, so the model use the power P (k) to compute
internal estimates of the current, denoted I(k)(P (k)) or, in
short I(k) (in Amperes), and terminal voltage V (k)(P (k)),
or, in short, V (k) (in Volts).

Our model answers three questions:
Q1: Is P (k) infeasible, because the charge/discharge power

exceeds the battery’s power limits, or will cause the
battery voltage to go beyond the recommended range?

Q2: If not feasible, what is the highest feasible power that can
be applied?

Q3: If feasible, what is the new state of the battery?
Q1 and Q2 are related to the BMS functionality, and Q3 relates
to the evolution of the battery energy content over time.

Hence, given the battery system parameters (defined later)
and the battery energy content at time k−1, denoted b(k−1),
the outputs of the model (when P (k) is feasible) are the energy
content of the battery b(k) (in Watt-hours) and the two internal
variables of our model, i.e., the current I(k) and voltage V (k),
at the end of time slot k.

We refer to our model as the Power-based Integrated model
(PI model for short), since it integrates the functions of a BMS
and uses power as input. The model uses the applied power and
initial energy content to jointly compute the energy content,
applied current, and voltage, making use of a spec-derived
function which maps energy and current to voltage.

A. Description and Formulation

Lithium-ion batteries are complex electrochemical systems
and a typical spec sheet does not capture all aspects of battery
behaviour. To account for this, we make the following model-
ing assumptions. First, we assume that the battery temperature,
its internal resistance and its state of health4 do not change
over the course of operation of the model. Second, we assume
that the voltage memory effect [17] can be ignored. The
implications of these assumptions are discussed in Section VII.

We now describe our model in more detail. The PI model in-
corporates the following high-level characteristics of Lithium-
ion batteries:

• Charging and discharging penalties We model battery
charging and discharging inefficiences as penalty func-
tions of the current and voltage ηc(I, V ) and ηd(I, V ).
ηc(.) represents the fraction of applied power that is
stored in the battery when it is being charged at power
P , i.e., (1 − ηc(.))P is the power loss penalty due to
charging inefficiency. Symmetrically, ηd(.) represents the
power that needs to be discharged in order to obtain

4Spec sheets are mostly representative of new batteries; if the state of health
degrades then model parameters will need to be adjusted.
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power P < 0 from it, i.e., the battery loses energy at
a rate ηd(.)P . Note that ηc(.) ≤ 0 and ηd(.) ≥ 1.

• Charging/discharging rate limits To avoid overheating,
the BMS ensures that the battery cannot be charged
or discharged too quickly. In our model, αc denotes
the maximum charging current, and αd the maximum
discharging current.

• Energy content limits A BMS limits the battery voltage
to the range [Vmin, Vmax] to prevent the rapid degrada-
tion of its state of health. The amount of energy that
can be obtained from a battery that is initially fully
charged before the voltage reaches Vmin depends on
the discharging current being applied [18]. Similarly, the
charging current affects the amount of energy that can be
stored in the battery before the voltage reaches Vmax.
In our model, instead of a permissible voltage range,
we specify a permissible energy content range, using
content limits that are functions of the current (which
in turn depends on the charge/discharge power P (k)).
Specifically, the upper limit a1(I) is the energy content
at the point when the voltage reaches Vmin while being
discharged with a current of I and the lower limit a2(I) is
the energy content at the point when the voltage reaches
Vmax when being charged at a current I .

The following set of equations and constraints describes the
PI model:

b(k) = b(k − 1) + ∆E(k) (1)

∆E(k) =

{
ηc(I(k), V (k))P (k)Tu : P (k) ≥ 0
ηd(I(k), V (k))P (k)Tu : P (k) < 0

(2)

V (k) = M(b(k), I(k)) (3)

I(k) =
P (k)

V (k)
(4)

αd ≤ I(k) ≤ αc (5)
a1(I(k)) ≤ b(k) ≤ a2(I(k)) (6)

Eqs. (1) and (2) indicate that the energy content at the end of
time slot k is simply the energy content at the end of time slot
k−1 plus (resp. minus) the energy put into (resp. drawn from)
the battery in time slot k due to charging (resp. discharging).
Eq. (3) maps the energy content and the charge/discharge
current to the battery voltage, and will be discussed at length
in the next subsection. The two internal variables I(k) and
V (k) are also related through Eq. (4) which states that the
power is the product of current and voltage. Eqs. (5) and (6)
have been discussed above.

The PI model is therefore characterized by two parameters
(αc, αd), and the five functions ηc(I, V ), ηd(I, V ), a1(I),
a2(I) and M(b, I). Given the energy content of the previous
time slot b(k−1) and a feasible input power P (k), the model
calculates the battery energy content b(k), voltage V (k), and
current I(k). In the next subsections, we will discuss Eq. (3)
and how to use it. Section III explains how to calibrate these
parameters and functions using the battery’s spec sheet.

B. The function M
Most battery spec sheets provide a family of curves that

represent the battery’s terminal voltage as a function of its
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Fig. 2. M function, showing the terminal voltage as a function of energy
content and charge/discharge current. The blue lines are the reversible capacity
curves measured for a Li-Titanate cell [19]. The function, in grey, is a
discretization of the underlying continuous surface.

‘reversible capacity5’ when discharging or charging a cell at
different rates. Fig. 4 and Fig. 5 (reproduced from [19]) show
these functions for the Leclanché Li-Titanate cell. Although
the spec sheet only provides this data for some C-rates, we
can view these curves as representing a continuous surface.
A key insight in our work is to use a mesh function M (a
discretization of the underlying continuous surface) to map
the battery energy content and charge/discharge current to
the battery’s voltage. This function, which can be derived
from the spec sheet’s reversible capacity voltage curves (see
Fig. 4 and Fig. 5), captures the inherent non-linearities in
battery voltage behaviour. An example can be seen in Fig. 2.
Intuitively, M represents all feasible combinations of energy
content, charge/discharge current, and battery voltage.

We now discuss how to use the M function to compute the
change in battery voltage due to a certain amount of power
injection or discharge P (k). Note that the battery voltage
has to be feasible (lie on the surface discretized by M ) and
consistent with the amount of power injected/discharged, i.e.,
V (k) = P (k)/I(k). If M had been defined in the space
< I(k), P (k), V (k) >, this would correspond to finding the
intersection, if it existed, between the curve V (k)I(k) = P (k)
and the surface described by M . However, M is defined in the
space < I(k), b(k), V (k) > not < I(k), P (k), V (k). Thus, we
need to define an auxiliary space, as discussed next.

Consider the subset of the M surface that is described by:

S := {< I, b, V >: αd ≤ I ≤ αc,

a1(I) ≤ b = b(k)I ≤ a2(I),

Vmin ≤ V = M(b, I) ≤ Vmax},

where b(k)I is calculated using I as the estimate for current
using Eqs. (1) and (2). By construction, every point in S
satisfies all of the constraints of the model except for Eq. 4,
i.e., P (k) = V (k)I(k).

5This term is explained in Section III-B.
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Fig. 3. Three cases: No intersection (a), one intersection (b), and multiple
intersections (c). A red cross indicates an intersection.

We then construct, in an auxiliary 2D space < I, P >, the
line y = P (k) (this is the given power injection/discharge) and
the curve y = V I for all points (I, b, V ) ∈ S. The latter curve
is obtained by enumerating all points in S, then computing,
for each point, the corresponding pair of (I, V.I). The next
step is to compute the intersection(s), if any, between these
two curves. We do so by examining the points on the curve
y = V I (in increasing order of I) looking for adjacent pairs
of points < I1, V1 >and < I2, V2 > such that the sign of
P −V1∗I1 is different from that of P −V2∗I2. The difference
in sign indicates an intersection in between the two points, in
which case we linearly interpolate between the points to get
an estimate for the value of I at the point of intersection. b
and V values are then computed using this estimate.

Now, there are three possible cases (an example for each
case is shown in Fig. 3):

a) No intersection: There are no feasible voltage and
current estimates for the given P (k) and b(k − 1) (see
Fig. 3(a)). In that case, the power is iteratively reduced by
a small quantum value and S is recomputed for each value of
P (k) until an intersection is found. This value of P (k) is the

TABLE I
BATTERY SPECIFICATIONS

Value Li-Titanate LiFePO4

Nominal Capacity (Ah) 30 1.1
Vmin (V) 1.7 2
Vmax (V) 2.7 3.6
Internal Impedance (ω) 0.002 0.05
Max. charge (discharge) C-rate 4 (4) 4 (10)

maximum feasible power that the BMS can allow.
b) One intersection: Let that intersection point be

(I∗, P (k)) (see Fig. 3(b)). In that case, I∗ is the estimate
for I(k) and V (k) = P (k)

I∗ the voltage estimate.
c) Multiple intersections: The non-linearity of the sur-

face makes it possible for multiple intersections to occur, as
shown in Fig. 3(c). This case happens rarely for the Lithium-
ion cell chemistries we have tested, and only occurred near
the steep part of the voltage curve6. There are many potential
approaches to choosing one of the multiple intersection points
as our estimate. To preserve the continuity of voltage estimates
over time, we recommend choosing the point yielding a
voltage estimate which is the closest to the voltage value
estimated for the preceding time step (V (k − 1)).

Next, we explain how to calibrate our model.

III. MODEL CALIBRATION

Calibrating the parameters of the model requires a battery
spec sheet. We use the Leclanché Li-Titanate cell specifi-
cations document [19] as an example. Note that although
the description of our model calibration process may appear
complex, its inputs are easily obtained and the calculations
are relatively simple. For example, although we present some
equations as integrals, in practice we compute these numer-
ically as a Riemann sum. Moreover, this calibration process
has been automated as part of our Simulink implementation.

In a typical spec sheet, charging and discharging currents
are expressed in terms of a C-rate, where 1C is defined as
the current needed to fully charge or discharge the nominal
capacity of the battery (which is specified in the spec sheet)
in 1 hour. For the Li-Titanate cell, 1 C corresponds to a
30A, because the nominal capacity is 30Ah. Table I shows
the spec data (excluding voltage curves) for the Li-Titanate
and LiFePO4 cells.

A. Charge/discharge penalty functions: ηc(I, V ), ηd(I, V )

Let Ric and Rid denote the internal impedance values
(provided by the spec) during charging and discharging, re-
spectively. Note that some specs provide only a single value
Ri for internal impedance; in that case, Ric = Rid = Ri.
Then, it is easy to show that:

ηc(I, V ) = 1− IRic

V
for I > 0 (7)

ηd(I, V ) = 1− IRid

V
for I < 0 (8)

6The steep part of the voltage curve is seldom visited by many applications
because of the practice of restricting the state of charge to preserve battery
lifetime [20].
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for a C/2 charging current (15 Amperes) are labeled.

B. Voltage function: M

We now discuss how to calibrate the M function. Recall that
battery spec sheets provide the terminal voltage as a function
of ‘reversible capacity’ when discharging or charging a cell at
different C-rates. ‘Reversible capacity,’ expressed in units of
Ah or Coulombs, is the amount of charge added or removed
from the battery. Since the curve is expressed in volts, and 1
Joule = 1 Volt-Coulomb = 1 Watt-second, the area under each
curve in Fig. 4 indicates how much energy can be discharged
from the battery at the given C-rate. It is clear that as the
C-rate increases, the energy capacity of the battery decreases.
Similarly, the area under each curve in Fig. 5 represents the
energy needed to charge an empty battery at given C-rate.

Let xI1 and xI2 be the initial and final charge content of
the battery that is being charged or discharged at current I ,
i.e., when the voltage reaches Vmin or Vmax respectively. For
example, the xI1 and xI2 values have been labeled in Fig. 5 for
the C/2 curve (I = 15 Amperes). Correspondingly, let V I(x)
be the voltage when the battery charge content is x while
current I is applied. Let EI

d(Q) be the energy drawn from
a full battery when Q Coulombs are discharged at current I ,
and EI

c (Q) be the energy content of the battery when it is
charged to Q Coulombs using current I . Finally, let V I(Q)
be the battery voltage when current I is applied and the battery

reversible capacity is Q Coulombs. Then,

EI
d(Q) =

∫ Q

xI
1

V I(x)ηd(I, V ) dx (9)

EI
c (Q) =

∫ Q

xI
1

V I(x)ηc(I, V ) dx, (10)

and each point in the M function can be calculated as:

M(I, EI
d(Q)) = V I(Q) for I < 0 (11)

M(I, EI
c (Q)) = V I(Q) for I > 0. (12)

In practice, we numerically evaluate the integral as a
Riemann sum, where the (x, V I(x)) tuples are obtained by
digitizing the curves from the spec sheet using a standard plot
digitizer7 and linearly interpolating between the C-rate curves
using a suitably fine digitization grid. Fig. 2 shows the M
mesh for the example Li-Titanate cell. This maps the energy
content in the domain [0 Wh,72.5 Wh] and current in the
domain [-5 C, 5 C] to a voltage in the range [1.5 V, 2.7 V].

C. Energy Content Limits: a1(I), a2(I)

The upper and lower limits on energy content can also be
derived from the voltage vs. reversible capacity curves in the
spec sheet. By definition, a1(I) is the energy remaining in a
battery when the voltage reaches Vmin while being discharged
with current I , i.e., a1(I) = Emax

d −EI
d(xI2), where Emax

d is
the maximum8 EI

d(xI2) over all I . Similarly,a2(I) is the energy
in the battery when the voltage reaches Vmax at current I , i.e.,
a2(I) = EI

c (xI2). Summarizing:

a1(I) = Emax
d − EI

d(xI2) (13)

a2(I) = EI
c (xI2) (14)

D. Charging/Discharging limits: αc, αd

The spec sheet almost always gives recommended maxi-
mum charging and discharging C-rates, which are used di-
rectly. αc is the maximum charge current, and αd is the
maximum (negative) discharge current.

IV. VALIDATION AGAINST SPEC

In this section, we evaluate the ability of our model to
reproduce the voltage curves found in the spec. We simulate
constant current charging and discharging on the PI model,
using the same charging rates that were used to obtain the
voltage curves from the spec and evaluate how closely the
spec voltage curves are reproduced.

We compare the PI model against two versions of the TD
model. The first version is the default implementation of the
model in Simulink. Since the default TD model does not
include a BMS, we created a second version of the model
(referred to as the TDB model) that incorporates a BMS which
keeps the cell voltage at the voltage limit when the TD model’s

7We use the online tool available at https://automeris.io/WebPlotDigitizer/
8Typically, the maximum amount of energy is obtained by using a very low

discharging current

https://automeris.io/WebPlotDigitizer/
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Fig. 6. Li-Titanate cell discharged at 1C.
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Fig. 7. Li-Titanate cell charged at 1 C constant current.

voltage would otherwise exceed the limit. This allows a fairer
comparison of the TD and PI models. The simulation files and
the experimental data used to evaluate our model are freely
available on Github9. Note that although the model presented
by Thirugnanam et al in [13] can also be calibrated using a
spec, doing so requires extensive additional work in setting up
the genetic algorithm optimizer to obtain the model parameters
and is hence more difficult to use than the PI and TD/TDB
models. Hence, we compare our PI model with real voltage
curves, as well as the TD and TDB models.

We calibrate the PI model using all the voltage curves in
the spec of the Li-Titanate and LiFePO4 cells; the TD and
TDB models use the 1 C Li-Titanate discharge voltage curve
and the 4.55 C LiFePO4 discharge voltage curve10 from the
spec. Note that the Li-Titanate cell spec has voltage curves
for up to 2 C discharging and 1 C charging and the LiFePO4

spec has curves for up to 9.1 C discharging and no charging
voltage curves.

Fig. 6 compares the models against the 1 C discharging
curve from the Li-Titanate spec. The PI model replicates this
curve very well, unlike the TD and TDB models. A similar
pattern is seen in Fig. 7 for the Li-Titanate cell charged at
1 C. For the LiFePO4 technology, Fig. 8 compares model
performance for a 4.55 C discharging curve. All models
replicate the curve well for this technology, although the TD
model has higher errors at the start of the discharge.

9https://github.com/iss4e/PIModel Testing.git
10The voltage curve with the lowest current in the LiFePO4 spec sheet was

measured at 5 A, which is 4.55 C.
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Fig. 8. LiFePO4 cell discharged at 4.55 C constant current.

Fig. 9 shows the MAVE for Li-Titanate spec voltage curves.
The PI model has very low error on average, especially
compared to the TD and TDB models. The same comparison
for LiFePO4 cells is given in Table II, since there are only two
voltage curves to compare against in the spec of this cell. TD
and TDB models behave similarly because the BMS is rarely
active during these tests.

V. FURTHER VALIDATION WITH EXPERIMENTATION

The spec sheets for the cells used in our evaluation include
reversible capacity curves for a limited number of charging and
discharging currents. Furthermore, the spec sheet characterizes
an average cell, but each individual cell may vary slightly due
to the manufacturing process. To better evaluate our model, we
measured voltage curves over a wider range of charging and
discharging currents using the setup described in Section V-A
for several cells described below. For example, the spec sheet
for the Li-Titanate cell shows voltage curves for currents up
to 2 C, but recommends a maximum charging current of 4 C;
to increase the scope of our evaluation, we ran experiments to
obtain voltage curves for discharging rates all the way up to 5
C to test beyond the limits of the spec sheet. We use measured
voltage curves for parameter calibration of all the models
being evaluated to avoid introducing errors that are caused by
inconsistencies between the voltage curves of the cells in our
experiments and their corresponding spec. Specifically, the PI
model is parameterized using measured voltage curves across
the full range of C-rates measured in our experiments, while
the TD and TDB models use the 1 C discharging curve for both
Li-Titanate and LiFePO4 cell tests. Section V-B describes the
constant-current testing that goes all the way to 4 C charging
and discharging recommended by the spec, as well as 5 C
where the voltage curve is more non-linear and hence more
difficult to model. Section V-C covers the validation on a ‘real-
world’ power profile.

A. Experimental Setup

We performed a series of experiments on two Li-Titanate
and two LiFePO4 energy storage cells under different condi-
tions. Each experiment consists of a single-cell battery that
is charged or discharged according to an experiment profile.

https://github.com/iss4e/PIModel_Testing.git
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Fig. 9. MAVE for Li-Titanate spec voltage curves.

TABLE II
MAVE FOR LIFEPO4 SPEC VOLTAGE CURVES

C-rate PI TD TDB
-9.1 0.012 0.039 0.039

-4.55 0.011 0.12 0.12

The Li-Titanate cells [19] have a voltage range of [1.711,2.7] V,
and nominal capacity of 30 Ah, although with low discharging
rates a capacity of at least 32.7 Ah is possible. The LiFePO4

cells [21] have a voltage range of [2.0,3.6] V, and nominal
capacity of 1.1 Ah.

The experiments were conducted using BaSyTec XCTS
Lab battery testing equipment (manufactured by BaSyTec
GmbH, Germany), which has a programmable interface for
specifying the charging and discharging processes of a cell,
and hence can mimic a BMS programmed to prevent the
battery voltage from going beyond [Vmin, Vmax]. The cells
were connected using a 4-wire connection to the test machine.
The equipment gives precise measurements of battery voltage
and current. The cells were placed in a Binder MK 53-E2
temperature control chamber (Binder GmbH, Germany) to
keep the ambient temperature at a constant 21 degrees Celsius
during testing. Fig. 10 shows the lab testing environment.

Most of the experiments involve charge/discharge cycling
of the cell under different currents and recording the current,
voltage, and total charge (Ah) every 10 seconds. We also
ran experiments using a variable charge/discharge profile that
reflects how a battery would be used to provide energy storage
for a system with a solar power source and building load
over an 8-hour period, with a measurement granularity of 1
second. To create this profile, we took 8 hours of solar PV
power generation and building load data measured on-site at
the Technology Center for Energy at University of Applied
Sciences Landshut, Germany, and used it to construct the
charge/discharge pattern of a battery if it were used to buffer
the excess solar energy and serve the building load. Fig. 11
offers a visualization of how the PI, TD, and TDB models
were run on the same charge/discharge profile as the real cells
in our experiments, with the measured voltage used as the
benchmark.

(a) (b)

Fig. 10. Experimental setup. (a) Li-Titanate cell in temperature chamber (a),
and (b) two LiFePO4 cells connected to the power brackets.

PI Model

Tremblay Model

Tremblay Model

+ BMS

Lab Experiment

Charge/

Discharge

Profile

INPUT OUTPUT

Fig. 11. Evaluation setup. Charge/discharge profiles were tested on real cells,
our PI model, and two implementations of the TD model.

B. Constant-current tests

The results from experiments on constant-current charging
and discharging at various C-rates are summarized in Fig. 12
for Li-Titanate and Fig. 13 for LiFePO4 cells. The PI model
with measured parameters has a MAVE lower than 0.1 V for
all C-rates tested, while the TD and TDB models have much
higher errors at high C-rates compared to low C-rates.

C. Real-world profile experiment

Fig. 14 compares the voltage estimates of PI and TD
models with the measured voltage when using a ‘real-world’
varying charge/discharge profile on a Li-Titanate cell. This
test shows the effectiveness of the PI model beyond constant-
current testing, and mimics the real-world application of a
battery used to balance PV generation with building power
consumption. The PI model estimates the voltage with very
low errors, with 0.016 V error on average for the PI model with
spec parameters and 0.008 V error with measured parameters,
especially relative to the errors of the TD model (0.128 V
error, on average) under the same conditions. Note that the
BMS is not active in this experiment, hence the TD and TDB
models give the same voltage estimate.

D. Discussion

The large difference in the accuracy of the PI model
compared to the TD model can be at least partially explained

11In the experiments with the Li-Titanate cell, we allowed the voltage to
drop to 1.5 V, which is lower than the recommended minimum of 1.7 V given
by the spec.
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Fig. 12. Li-Titanate MAVE with respect to measured voltage curves.
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Fig. 13. LiFePO4 MAVE with respect to measured voltage curves.

by noting that the TD model uses only a few points along
a single discharging voltage curve for parameter calibration.
While this is sufficient to characterize the voltage of the battery
at the rate that is used for model calibration for some cell
chemistries (as seen in Fig. 8), it is not sufficient for Li-
Titanate cells (Fig. 6 and Fig. 7), nor to cover the wide range
of charging and discharging rates that can be used by a real
application (Figs. 9, 12, 13, and Table II). The PI model makes
use of the entire voltage curve across the full range of available
charging and discharging rates, and is hence able to model
voltage behaviour across the full range, and can accurately
model the voltage profiles of different Li-ion chemistries.

VI. SIMULINK IMPLEMENTATION

The PI model has been implemented as a Matlab system
block that is compatible with Simulink simulation software12.
In addition to implementing the equations of the model, the
following user-friendly features have also been included.

• Automated Parameter Estimation The parameter es-
timation has been fully automated. The user specifies
the files containing voltage curves as <c-rate, ampere-
hour, voltage> tuples which can be extracted from the
reversible capacity voltage curves found in the spec
sheet using freely available online graph digitizing tools.
The user also specifies the nominal capacity, internal
impedance, maximum charging and discharging current,

12Matlab File Exchange link:
https://www.mathworks.com/matlabcentral/fileexchange/
63078-lithium-ion-pi-model
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Fig. 14. Li-Titanate battery voltage for the given charge/discharge profile.

initial energy content, and the length of time steps for the
discrete simulation.

• Smart BMS The constraints on energy content and
applied power are implemented so that the model throws
a software exception when a constraint is violated. The
user can adjust the power according to the information
provided by the exception. The exception provides the
user with the maximum power that the model could
charge/discharge without violating the constraint. This
allows the user to implement a ‘smart’ BMS that makes
smooth adjustments to the input power to keep the battery
operating safely; we provide an example of how to
capture and respond to the exception, along with the
model itself, on Matlab File Exchange.

• Parameter Extrapolation In cases where the spec sheet
fails to provide the voltage curves for the full operating
range of the cell, the model uses a linear extrapolation of
the available data to obtain the full voltage curve. This is
not ideal for model accuracy, but keeps the model usable
in the absence of data.

VII. LIMITATIONS AND CONCLUSION

In contrast to the widely-used spec-based Lithium-ion bat-
tery model proposed by Tremblay et al, we propose the Power-
based Integrated (PI) model. The PI model is similar to the TD
model in terms of the effort required to calibrate the model
parameters. However, it has a higher fidelity across a wider
range of charge/discharge currents. Moreover, by using power
as input, rather than current, it makes the overall system model
easier to build, and by modeling the functionality of a Battery
Management System it is more complete. The PI model has
been validated for two different battery chemistries and we find
that the mean absolute voltage error is consistently below 0.1
V. We have implemented and publicly released the PI model
as a Matlab/Simulink system block model.

Our model has two main limitations. It is spec-based
and we assume that the following information is present in
the spec: voltage curves, nominal capacity and the internal

https://www.mathworks.com/matlabcentral/fileexchange/63078-lithium-ion-pi-model
https://www.mathworks.com/matlabcentral/fileexchange/63078-lithium-ion-pi-model
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resistance. Although it is typical for at least a few voltage
curves and the nominal capacity to be included in the spec,
not all spec sheets provide the same information. In cases
where only a limited number of voltage curves is provided,
the model would interpolate and extrapolate based on the
available data. In cases where the internal resistance is not
provided, it would have to be obtained through experiments or
approximated using information available from the Internet for
the given cell chemistry. The second limitation is the problem
of multiple feasible combinations of cell voltage and current,
as described in Section II-B, which is inherent to discrete
power-based models. A given power can suggest multiple
feasible combinations of cell voltage and current in rare cases,
and model estimates in these conditions may not be accurate.

Our model assumes that temperature and internal resistance
are constant. In reality, the ambient temperature may vary
and charging/discharging the battery increases the internal
temperature and affects the voltage of the battery, while
the internal resistance varies with the charge of the battery.
These dependencies are not typically described in spec sheets
(although temperature-dependent voltage curves are becoming
more prevalent), and our model assumptions reflect this.

In future work, we plan to investigate the application of
the PI model to different battery technologies, such as Lead-
Acid, Sodium-Nickel-Chloride, and Redox-Flow batteries. We
believe the model will fit a wide range of batteries whose cell
energy capacities range from 10 Wh to 100 kWh.
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