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Comparison of Different Approaches for Solar PV
and Storage Sizing

Fiodar Kazhamiaka, Yashar Ghiassi-Farrokhfal, Srinivasan Keshav, and Catherine Rosenberg

Abstract—We study the problem of optimally and simulta-
neously sizing solar photovoltaic (PV) and storage capacity in
order to partly or completely offset grid usage. While prior work
offers some insights, researchers typically consider only a single
sizing approach. In contrast, we use a firm theoretical foundation
to compare and contrast sizing approaches based on robust
simulation, robust optimization, and stochastic network calculus.
We evaluate the robustness and computational complexity of
these approaches in a realistic setting to provide practical, robust
advice on system sizing.

I. INTRODUCTION

In the last few years, the prices of solar panels and storage
have dropped dramatically, putting them in reach of many
consumers. Companies such as Trina, Yingli, and Canadian
Solar offer solar panels at a cost of less than USD 0.5/Watt,
and companies such as Tesla, Sonnen, and Moixa provide off-
the-shelf (albeit expensive) storage solutions.

Consider an entity that wants to purchase and install solar
PV panels and storage in order to partly or completely offset
grid usage1. How much of each should they buy? If the budget
is not a constraint, then both can be generously sized, with
ample slack capacity. However, given the high cost of storage,
budget is often a binding constraint. Thus, we would like to
provide practical guidance on the smallest possible sizing2 to
adequately meet the anticipated load. This is the subject of
our work.

We expect many entities to face such a sizing problem in
the future. These include individuals, small companies, and
building operators faced with the rising cost of grid-provided
electricity.

While prior work on this topic offers some insights, re-
searchers typically consider only a single sizing approach [1],
[2], [3], [4], [5], [6]. Moreover, the approaches advocated
by some past researchers results in sizing decisions that may
not be robust to perturbations in the inputs. In our work, we
attempt to provide practical, robust advice on system sizing.
To do so, we compare and contrast multiple sizing approaches,
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1The former case corresponds to that of an entity that remains grid-
connected but wants to reduce its overall cost for electricity and the latter
corresponds to an off-grid scenario. We treat them both identically in our
work.

2By sizing, we refer to the power/energy size of the storage in kW/kWh
and the size of solar generation in kWp.

extending well-known approaches as necessary to reduce them
to practice.

The approaches we study use historical solar generation and
electricity consumption (load) time series as input to compute
the sizing. Given that this data is difficult to obtain for a
horizon long enough to adequately capture the non-stationarity
of the underlying stochastic processes, we assume that past
and future samples are drawn from the same distribution.
Nevertheless, any practical data-driven approach must take
steps to prevent overfitting to historical data.

In our work, we tackle the problem of overfitting by extend-
ing three approaches to computing a robust sizing: simulation,
mathematical programming, and stochastic network calculus.
With simulation and mathematical programming approaches,
we compute a robust sizing by using upper probability bounds
on the sizings that meet the performance requirements on
historical data; with stochastic network calculus, roughly
speaking, we reduce the available data to a set of representative
features that are then used to compute probability bounds on
the performance targets achieved by any given sizing (this
statement is made more precise later in the paper).

We make three key contributions:
• We provide a firm theoretical foundation for robust and

practical sizing of both solar PV generation and storage
based on three approaches: simulation, optimization, and
stochastic network calculus.

• We make contributions to the state-of-the-art in stochastic
network calculus.

• We evaluate the robustness and computational complexity
of these approaches in a realistic setting.

We have publicly released the program modules for com-
puting robust PV-storage system sizing via simulation and
stochastic network calculus [7].

II. RELATED WORK

Prior work on sizing approaches for energy storage in the
presence of renewable energy sources can be grouped into
three main classes: mathematical programming, simulation,
and analytical methods. We sketch these approaches here,
with a survey of representative work, deferring details of each
approach to Section V.

A. Mathematical Programming

There exist many methods for solving sizing optimization
problems. In this paper, we focus on mathematical program-
ming, which is a scenario-based approach. It requires mod-
elling the system as a set of parameters and variables that
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are constrained to represent the capabilities of the physical
system being modelled and an objective function representing
the system target. Importantly, it typically does not model the
operating policy; instead, the optimal operation is an output
of the optimization program, and is dependent on the inputs.
An algorithm, or solver, is used to search the space of feasible
solutions to find the one which maximizes (or minimizes) the
objective function for the given parameters. For example, in
Reference [8], the problem of sizing a battery to meet the
energy demands of a microgrid is formulated as a mixed-
integer linear program. In Reference [9], the problem of sizing
batteries and solar panels under a fixed budget to maximize
the revenue of a solar farm is formulated as a non-linear
optimization problem, which is linearized to reduce the solving
time.

Another notable optimization approach is to formulate a
robust optimization problem [10], in which the objective
function is optimized even when the inputs are perturbed.
We do not cover robust optimization in this paper; rather, we
present a simpler approach to dealing with uncertainties in the
input parameters.

B. Simulation

Simulations are scenario-based sizing approaches that pro-
vide optimal system sizing for a given trajectory (i.e, a time
series) for load and PV generation. They are versatile: a
simulation program can evaluate different combinations of PV
panel and battery sizes, calculating metrics such as loss of load
probability (LOLP) [4], expected unserved energy (EUE), and
operating cost [11]. The simulated system can be operated
using virtually any operating strategy, such as those proposed
in [3], [6], [2], [4], and can implement complex battery models
[11].

C. Analytical Methods

Inspired by the analogy between energy buffering by bat-
teries and data buffering in computer networks, a variety of
analytical methods have been proposed for storage capacity
sizing in the literature. For example, in Reference [12] the
system is modelled as a cyclic non-homogenous Markov chain,
and the authors propose a steady-state analysis to determine
whether a given system size is sufficient to meet a target LOLP.
In Reference [13], the authors use a probabilistic tail bound
on the aggregate of many regulated energy demand loads to
jointly size the battery capacity and transformers for a certain
LOLP in a residential setting.

Among existing analytical approaches, stochastic network
calculus (SNC) [14] has shown great robustness and accu-
racy. This approach has been used in several applications:
battery sizing to reduce reliance on diesel generators in rural
areas with unreliable grid connections [15], energy demand
management in a fleet of electric car charging stations [16],
gaining energy flexibility through heating/cooling systems in
data centres [17], supply-demand matching for prosumers [18],
[19], [20], and profit maximization for renewables in electricity
markets [21].

Applying stochastic network calculus to energy systems has
some subtleties, due to the unique statistical properties of the
underlying energy processes and the storage model in use.
This has led to a series of incremental improvements in this
field of research. The idea of using stochastic network calculus
for energy systems was proposed in [19], where the authors
assume ideal storage devices and use affine functions to sepa-
rately model the long-term behavior of each of energy demand
and energy supply. In Reference [18], the authors improve
this approach by assuming a more realistic storage model and
more complicated uni-variate envelopes for energy demand
and supply. It is shown in [21] that uni-variate envelopes
cannot properly capture the statistical properties of solar power
due to its substantial seasonality; hence, introducing bi-variate
envelopes to separately model the long term behavior of energy
demand and supply. In this paper, we advance the state-of-the-
art as discussed in Section VII-B.

III. GOAL

At a high level, the goal of our work is to provide robust,
practical advice on how to size both solar panels and storage to
partly or completely offset grid usage. This section discusses
the inputs and objective of this sizing problem.

A. Inputs

It is reasonable to assume that an entity making a sizing
decision would have access to a representative set of load
traces, especially with the widespread deployment of smart
meters that typically measure hourly load3. It is also possible
to obtain hourly solar radiation traces in the geographical
location of the entity, for most parts of the world [22], and
calculate the corresponding power generated from PV panels
with reasonable accuracy [23] .

In keeping with prior work, we make the assumption that
these historical traces are generally representative of loads and
generation. Nevertheless, the future will never exactly mimic
the past; if it did, we would be able to make decisions with
perfect information. Thus, the sizing decision must be robust
to perturbations in the inputs, i.e., to ‘small’ changes in the
solar irradiation or loads (we make this precise in Section IV).

In addition to generation and load traces, we need two other
inputs. First, we need to know how a decision is made to
either inject power into or withdraw power from the storage
system. This operating policy can be quite complex, and is
the subject of much research [3], [12], [24], [9]. Nevertheless,
simple rules such as ‘store excess solar energy’ and ‘discharge
the store when solar generation is less than the load’ are often
adequate for most situations. We assume that, for the case of
simulation and stochastic network calculus approaches, such
an operating policy is provided to the sizing decision-maker.
Second, it is necessary to model the behaviour of a storage
system in response to power injection and discharge. We use
a recently-proposed storage model in our work [25].

To summarize, we assume that the sizing decision-maker
has access to the following inputs:

3Finer-grained traces would, of course, be good to have, but unlikely to be
available in practice.
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• A representative set of solar traces S = {Si} (for now,
think of them as one trace per-year, but we discuss this
point in more detail in Section IV-C).

• A representative set of load traces D = {Dj} that
constitute a set of load scenarios. Each load trace needs
to be of the same time duration as the solar traces.

• An operating policy: for the simulation and stochastic
network calculus approaches, the set of rules that deter-
mine when the store is charged or discharged.

• A storage model, along with all associated model param-
eters: given the current state of charge, and the applied
power, this is a set of equations that computes the new
state of charge.

B. Sizing Objective

Given the inputs in Section III-A, our objective is to
compute the “best" sizing for solar PV panels and the storage
capacity. What constitutes the best choice will depend on the
situation at hand. Several quality metrics are plausible4:
• Minimize LOLP: This is the probability that the system

is unable to meet the load from solar generation. This
probability can be numerically estimated as the ratio of
the time period during which the load is unmet from solar
generation to the total time period under consideration.

• Minimize expected unserved energy (EUE): This is the
total amount of load (energy) that cannot be delivered
from solar generation during the period under considera-
tion. If this load is not met from the grid, there will be
user discomfort.

• Minimize financial cost: This is the dollar cost of pur-
chasing the solar panel and storage system, as well as the
cost of purchasing, as necessary, electricity from the grid,
at its currently prevailing price. It can be viewed either as
a one-time capital cost added to a periodical operational
expense, due to potential purchases from the grid and
the eventual degradation of the equipment from wear
and tear. Note that if we can associate a cost to meeting
unmet load from the grid or a diesel generator, then the
cost-minimization objective incorporates the objective of
minimizing unmet load.

• Maximize robustness: This is the degree of sensitivity
of the sizing to perturbations in the input. Intuitively
speaking, we wish to pick an approach such that small
perturbations in the inputs result in only a small pertur-
bation in the sizing [26]. We discuss this point in greater
detail in Section IV.

• Minimize computation time: We expect that the sizing
decision will be made on behalf of a system purchaser
by a sizing decision maker. The computation cost of each
such decision, therefore, should not be onerous.

In many cases, there will be a trade-off between cost on
the one hand, and LOLP/EUE and robustness on the other.
Moreover, robustness and computation cost go hand-in-hand,
since to get robust results we (generally) have to process more
data and hence perform more computation. In this work, for

4For each application, one or multiple of these items can serve as objectives
and one or multiple others as constraints.

concreteness, we focus on minimizing the cost of solar PV and
storage, subject to meeting a certain LOLP or EUE constraint.

Traditionally, the LOLP/EUE target is specified together
with a length of time over which this criteria should be
met [27]. For example, a common loss-of-load target for
reliable grid-scale electrical systems is one day over a period
of 10 years, corresponding to an LOLP target of 0.000274.
Such a high level of reliability makes sense when frequent
or prolonged loss-of-load events correspond to millions of
dollars in losses to the economy supported by the electrical
system. Achieving this level of reliability equates to sizing
for the worst-case behaviour with virtually 100% confidence,
requiring expensive systems that are oversized for the average
behaviour but are nevertheless cheaper than the cost of loss-
of-load events.

In contrast, smaller microgrids such as a house can tolerate
higher LOLP due to smaller penalties associated with loss-of-
load events, the ability to easily shut off electrical appliances
at times of high load with negligible costs, and the availability
of the grid and perhaps a diesel generator to offset some
of these events. For the same reasons, sizing the system for
the worst case would be a sub-optimal financial decision.
Hence, a home-owner could desire a system that achieves
target LOLP of 5% over all 90-day periods, with a confidence
of 95%. Mathematically, this corresponds to a system which
gives P(LOLP ≤ 0.05) ≥ 0.95 over any 90-day period. We
will refer to the time interval, the LOLP/EUE target, and the
confidence as the quality of service (QoS) target.

Using other optimization objectives is also possible, and
discussed at greater length in Section VII.

IV. THE IMPACT OF NON-STATIONARITY

A key insight in our work is that the traces which serve
as input to any sizing approach may neither be stationary nor
representative of the future. We discuss this next.

A. Traces, Trajectories, and Stochastic Processes

A solar or load trace with T entries of the form (time,
value) is a trajectory instantiated from a stochastic process,
which is defined as a set of random variables indexed by
time. That is, Si(t), the tth element of the ith solar trace
(resp. Dj(t), the tth element of the jth load trace) is a value
assumed by the random variable S(t) (resp. D(t)) from a
corresponding distribution. Hence, we can fully characterize
the historical solar (resp. load) stochastic process by defining
joint distribution of a set of T random variables, one for each
time step. Assuming independence of each time step, we can
decouple these distributions, allowing us to use the set S
(resp. D) of solar generation (resp. load) traces to estimate
parameters for each of the T distributions. For example, the
numerical mean of the tth time step of the set of traces can be
viewed as an estimate of the mean of the tth distribution and
the sample variance of this set is an estimate of its variance.
Thus, with sufficient data, we can use standard statistical
techniques to find the best-fitting distributions that characterize
a set of traces.



4

Given this characterization of historical stochastic processes,
what can we say about the future? Suppose that the generation
and load stochastic processes were time-invariant. Then, once
the historical processes are characterized, the future is also
‘known’ in that we can generate potential future trajectories
by generating a random value per time step from the corre-
sponding distribution. We can then choose a sizing that meets
our sizing objectives not just for historical trajectories, but also
for potential future trajectories.

However, this naive approach has three problems. First, even
assuming independence of time steps, it is onerous to define T
separate distributions, since T can be very large, on the order
of 10,000 – 100,000 values. Second, there is no guarantee that
a stochastic process parametrized based on historical traces
will adequately represent the future. Third, we do not have
any guidelines on how much data is ‘enough.’ To solve these
problems, we need to take a closer look at the generation and
load stochastic processes.

B. Causes of Non-Stationarity

A key observation is that both the solar and load stochastic
processes are non-stationary5 due to three effects:

1) Diurnality. For example, the distribution of the r.v. S(t)
corresponding to a time slot t at night will differ from
the distribution of an r.v. corresponding to a time slot at
mid-day.

2) Seasonality. For example, the distribution of the r.v. S(t)
corresponding to a time slot t at mid-day in winter will
differ from the distribution of an r.v. corresponding to a
time slot at mid-day in summer.

3) Long-term trends. For example, the distribution of the
r.v.’s D(t) and S(t) corresponding to a time slot t at the
start of a trace may differ from their distribution for a
time slot later in the trace.

4) Autoregressivity. For example, the distributions of the
r.v.’s S(t) and D(t) are dependent on the values taken
by the respective r.v.’s S(t− 1) and D(t− 1).

Non-stationarity should be taken into account upon charac-
terizing historical generation and load stochastic processes.

C. Stochastic Process Parametrization

Recall that the parameters of the stochastic process, i.e.,
corresponding to each of the T distributions constituting the
process, are derived from solar and load traces. Given that the
process has both diurnal and seasonal non-stationarity effects,
the solar and load traces must be both detailed enough and
long enough to capture all three effects. More precisely, :
• The traces should have sufficient temporal resolution to

capture diurnal changes. That is, the time step should be
sufficiently small to have an adequate number of values
for each part of the day.

• The traces should be long enough to capture seasonality,
i.e., at least one year in duration, if not longer.

5Roughly speaking, this means that statistics computed from two different
random sub-samples of the traces can differ.

• The traces should be long enough to capture any long-
term trends in load (we assume that solar generation is
stationary at the time scale of a year).

• There should be enough traces in the set of traces so that
there are sufficient samples to adequately estimate the
parameters of each distribution.

Ideally, we would have access to per-minute load and
generation traces spanning several decades. Then, setting
T = 60 × 24 × 365 = 525, 600, i.e., per minute of the
year, we would obtain multiple sample values for each time
step, allowing us to estimate, with adequate confidence, the
parameters of each of the T solar generation distributions,
and potentially long-term trends in the load (for example by
fitting a linear regression to the residual after accounting for
diurnal and seasonal effects).

In practice, it is unlikely that such data traces are available.
Load and solar generation are often measured at a time scale
of 30 minutes or longer, and it is rare to have more than a
year or two of data. Therefore, we resort to the following
pragmatic approach that, in our experience, works reasonably
well: create a set of sub-samples from data traces that spans
multiple seasons. More precisely, given a dataset in the form
of a time series that is at least one year long and starts and
ends on the same day, we join the ends of the data to create a
circular time series. We then sample blocks of X days, where
X is the time interval in the QoS target, from the time series by
choosing random start times. We call each of the n samples a
‘scenario’, and treat their ensemble as an estimate of expected
future scenarios.

We now discuss three robust sizing approaches that base
their sizing decisions on these ‘traces of the future.’ We
defer a discussion on how to evaluate the robustness of these
approaches to Section VI.

V. ROBUST SIZING APPROACHES

The sizing decision, that is, choosing the size of the store
B (in kW/kWh) and of the solar panels C (in kW) to meet
one or more of the objectives discussed in Section III-B, can
be made using many different approaches. In this section, we
present three representative approaches.

We make the following assumptions:
• For simplicity, and for reasons of space, we assume that

the goal is to find the minimum-cost storage and solar
PV sizes that meet a certain LOLP or EUE QoS criterion
over a given time duration of X days.

• We assume that we have available a solar generation
trace S and load trace D corresponding to the same
time interval and with a length of at least one year. As
already discussed, from these traces we can obtain n
scenario samples of X days of solar generation and the
corresponding load.

• We only size the storage system for energy, not for
power, since sizing for power is typically trivial (the
power rating of the storage system must exceed the sum
of power draws of the set of simultaneously active load
components).

• We assume the storage system energy capacity can only
take one of b different values and that the solar panel size
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Figure 1: System diagram

can only take on one of c different values. Hence, sizing
a system is essentially conducting a grid search through
bc pairs of solar PV panel sizes and storage capacity sizes
and determining the optimal sizing, i.e., the sizing with
the minimum cost which has some guarantee of satisfying
the target LOLP/EUE.

• We assume that if a certain combination of storage and
PV values results in a certain LOLP/EUE, then larger
values of either storage or PV will always result in lower
values of LOLP/EUE. This allows us to use a greedy grid
search heuristic.

We denote the number of time steps in the load and solar
generation traces by T . πB is the price for one unit of battery
(i.e., 1 cell), and πC is the price for one unit of PV panel. We
normalize the solar generation Si trace, so that it represents
the generation from a single PV panel unit. Finally, the LOLP
target is denoted ε, and the EUE target, expressed as a fraction
of the total load, is denoted θ.

A. Optimization

In this approach, we formulate an optimization program for
solar panel and battery sizing with the objective of minimizing
the capital cost of the system, subject to physical system
and LOLP/EUE constraints. We do not specify the operating
policy, leaving this decision to the optimization solver. This
allows us to compute the best possible sizing in the case of
optimal operation. In this sense, although the sizing decision
made by the optimization program is a potentially-unattainable
lower bound, it measures the level of sub-optimality in the
operating policy used in the two other approaches.

Our approach has two phases. In the first phase, for each
scenario and for each of the b potential battery sizes, we
compute the optimal solar panel size C, assuming optimal
operation. This gives us n sizing curves defined by the
interpolation of b sizings that were computed for each scenario
(see Figure 2). In the second phase, we use a technique based
on the Sample Univariate Chebyshev bound [28] to compute
a robust sizing that is insensitive to the details of individual
traces. We discuss each phase in turn.

1) Phase 1: For phase 1, define Pc to be the charging
power, Pd to be the discharging power, Pdir to be the power
that flows directly from PV panels to load, and E to be the
energy content. The size of the battery is B and the generation
capacity of the panels is C. Figure 1 shows a labelled system
diagram.

The battery model used here is Model 1* from [25] with
the following parameters: ηc (resp. ηd) the charging (resp.
discharging) efficiency, αc (resp. αd) the charging (resp.
discharging) rate limit, u1, v1, u2, v2 used to characterize the

power-dependent lower and upper limits on the energy content
(see constraint (6)). The energy content at the end of time slot
t is denoted E(t), and the initial energy content is U . Recall
that the data trace for solar generation S is for one unit of PV
panel and that D denote the household electricity load. The
duration of a time-step is Tu and the number of time-steps in
a data trace is T .

We will first present the full formulation with an LOLP
constraint, and then show how it can be modified to work
with a EUE constraint. Given a scenario (S(t)), (D(t)), and
storage parameters B, ηc, ηd, αc, αd, u1, v1, u2, v2, U , and
trace parameters Tu and T , the problem can be formulated as:

min
C,Pc,Pd,
Pdir,I,γ,E

C (1)

subject to
Pc(t) + Pdir(t) ≤ S(t)C ∀t (2)
Pdir(t) + Pd(t) = D(t)− δ(t) (3)
E(0) = U (4)
E(t) = E(t− 1) + Pc(t)ηcTu − Pd(t)ηdTu ∀t

(5)
u1Pd(t) + v1B ≤ E(t) ≤ u2Pc(t) + v2B ∀t

(6)
0 ≤ Pc(t) ≤ Bαc ∀t (7)
0 ≤ Pd(t) ≤ Bαd ∀t (8)
I(t) ∈ {0, 1} ∀t (9)
B,C, Pdir(t), δ(t), E(t) ≥ 0 ∀t (10)

1/T

T∑
t=1

I(t) ≤ ε (11)

I(t) ≤ δ(t)Z ∀t (12)
δ(t) ≤ I(t)D(t) ∀t (13)
Pc(t)Pd(t) = 0 ∀t (14)

where constraint 2 states that the sum of what goes into
the battery and directly towards the load is bounded by the
solar generation, δ(t) is the load that is not met from solar
generation at time t (it is always ≤ D(t)), constraints 5–8)
represent the battery model, and I(t) is an binary variable used
to indicate if the load is met or not in time-step t (I(t) = 1
means the load is not met). Constraint 12 ensures that I(t) is
zero if δ(t) = 0 (Z is a large positive constant), constraint 13
ensures that I(t) is one if δ(t) > 0 and constraint (11) is the
LOLP constraint. Constraint 14 forbids simultaneous charging
and discharging and it was shown in [9] that it can be ignored
which makes the problem an Integer Linear Program (ILP).
Note that in this problem B and C are real numbers, i.e., they
are not limited to the pre-defined values used for the other two
approaches.

To express an EUE constraint, this problem formulation can
be modified as follows. Replace Constraints 11–13 with:

T∑
t=1

δ(t) ≤ θ
T∑
t=1

D(t) (15)
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Note that the formulation with the EUE constraint is a Linear
Program (LP), which can be solved much more efficiently than
an ILP.

We use this mathematical program to compute the smallest6

C for each of the b battery sizes so that the system meets the
QoS target; these points define a curve in a (B,C) space. We
denote each curve as Ki corresponding to the ith scenario, for
a total of n curves.

2) Phase 2: In phase 2, we use the n sizing curves obtained
in phase 1 to compute a probability bound on the system size
with a given measure of confidence.

First, for each of the b values of B′, we construct the set LB′
consisting of points in the (B,C) space along the intersection
of the line at B = B′ and each curve Ki.

LB′ = {C ′′ : C ′′ = Ki(B
′)} (16)

Each set of points can be viewed as samples from a
distribution defined by the sizing curves. Denote the size of the
set |LB′ | = NB′ . Not all sizing curves have a value defined at
B′, so NB′ ≤ n. We can compute a sample Chebyshev bound,
as formulated in [29], on the C values as follows:

P
{
|C − µC,NB′ | ≥ λσC,NB′

}
≤

min
(
1,

1

NB′ + 1

⌊ (NB′ + 1)(N2
B′ − 1 +NB′λ

2)

N2
B′λ

2

⌋)
(17)

The inequality above is a bound on the probability that the
difference between some future value of C for the correspond-
ing B′ from the estimated mean µC,NB′ exceeds a factor λ of
the estimated standard deviation σC,NB′ . To use this inequality
to compute a sizing, we first find the smallest λ that satisfies
our confidence measure γ:

min
λ

( 1

NB′ + 1

⌊ (NB′ + 1)(N2
B′ − 1 +NB′λ

2)

N2
B′λ

2

⌋)
≤ 1− γ

(18)

Next, we rearrange the inequality in the LHS of Eq. 17 to
obtain a robust value C∗B′ using the λ that satisfies Eq. 18:

C∗B′ = µC,NB′ + λσC,NB′ (19)

The resulting set of points (B′, C∗B′ ) can be interpolated
to define a curve which we call the Chebyshev curve on C,
since each point on the curve is a Chebyshev bound on C
values. Similarly, we can construct a Chebyshev curve on B
by computing Chebyshev bounds on the following sets for
each of the c values of C’:

LC′{B′′ : Zi(B′′) = C ′} (20)

The upper envelope of these Chebyshev curves represents
system sizings which are robust with respect to both B and
C with confidence measure γ. We use the least-cost system
along the upper envelope as the robust sizing.

If we are confident that the estimated mean and standard
deviation have converged to the population mean after n

6The solution gives us the optimal C as a real number, which we round
up to the nearest potential C value among the c possibilities.

0 10 20 30 40 50 60 70 80 90

B (kWh)

0

10

20

30

40

C
 (

k
W

)

Sample Chebyshev curve on B

Sample Chebyshev curve on C

Analytical Chebyshev curve on B

Analytical Chebyshev curve on C

Sizing curves

Figure 2: Fifty sizing curves as well as their sample and
analytical Chebyshev curves for γ = 0.95.

samples, we can obtain a tighter bound characterized by a
value of λ that satisfies the following:

(1− λ)−1 = 1− γ (21)

Using Eq. 21 in place of Eq. 18 corresponds to the classical
analytical Chebyshev bound which assumes that the popula-
tion mean and standard deviation are known.

3) Computation cost: The two Chebyshev curves can be
computed with O(bn+ cn) computations, hence the computa-
tion time of this approach is dominated by the computation of
the sizing curves via the optimization program. The inputs to
the optimization program are the solar and load traces, each
of size O(T ), for a total size of O(T ). Asymptotically, this
is also the number of variables in the program. Denoting by
Q = O(T ) the number of variables and L = O(T ) as the
number of bits of input to the algorithm, even for an LP, which
is far more computationally efficient than an ILP, the best-
known approach, the interior-point method, requires a runtime
of O(Q3.5L2 · logL · loglogL) ≈ O(T 5.5 · logT ) [30]. Since
we need nb such runs, and our problem is integer, the total
complexity is lower bounded by O(nbT 5.5 · logT ).

B. Simulation

In this approach, we run system simulations to construct
the sizing curves for each of the n scenarios. Specifically, for
each scenario, for each potential sizing choice, and for each
time step t ∈ [1, T ], we determine the availability of solar
power S(t) and the load D(t). Depending on these values,
the storage and PV sizes under test, and the given operating
policy, we use the storage model to either charge or discharge
the store, updating its SoC as in Eq. 5. If we find that there
is a need to discharge the store, but its SoC is zero, then we
mark that the load is unmet from solar generation for this time
step. At the end of each simulation, we empirically compute
the LOLP ε or EUE θ for this sizing.

We use a search algorithm that, given a scenario, efficiently
searches the (B,C) space to compute the sizing curve:
Step 1: For C = Cmax, start at B = Bmin and increment B
to find the smallest value of B such that the system satisfies
the target performance requirement, and store (B,C).
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Step 2: Decrement C, then start from the most recent value of
B and increment it until the system satisfies the performance
requirement, and store (B,C).
Step 3: Repeat previous step through C = Cmin. Stored
(B,C) pairs give us the sizing curve.

This algorithm first finds the edge of the curve at C =
Cmax, then traces the rest of the curve using at most b + c
simulations. We then use phase 2 as described in Section V-A2
to process these curves and compute a robust sizing from the
upper envelope of the two Chebyshev curves.

Note that the computation cost of this approach is O(nT (b+
c)), since each time step takes O(1) computation time, there
are T steps per simulation, and (b+ c)n simulations.

C. Stochastic Network Calculus (SNC)
Unlike the mathematical programming and simulation ap-

proaches, which can compute either LOLP or EUE metrics
with minor changes, stochastic network calculus has signif-
icant differences in the mathematical formulation used to
compute the sizing for each metric. Given a sizing, a QoS
target and a set of scenarios, the SNC approach computes
a loss bound on each scenario. We consider a sizing to be
valid if the percentage of scenarios that meet the LOLP or
EUE target meets the confidence target. The algorithm used
to efficiently search the (B,C) space for robust sizings is the
same as the one used to compute sizing curves as described
in Section V-B.

The formulation is complex, so for each metric we follow
the full formulation with a summary of the algorithm for
computing the loss bound on each scenario.

1) SNC for LOLP: In this approach, we characterize the
net power arrival to the battery using lower and upper bounds
computed on the ensemble of input traces. Then, we use
stochastic network calculus to compute the LOLP for each
choice of storage and solar panel size (B,C). The output is a
statistical characterization of the LOLP ε as a function of the
selected choices of (B,C). We then use the greedy heuristic
discussed in Section V-B to compute the least-cost sizing that
meets the LOLP criterion. Since SNC sizing is known to be
robust to small perturbations in the input traces, we view this
least-cost sizing as being robust to the input traces.

Denote by Pc(t) and Pd(t), respectively, the charging and
discharging power from and to the battery, given by an
operating policy corresponding to:

Pc(t) = min ([S(t)C −D(t)]+, αcB) (22)
Pd(t) = min ([D(t)− S(t)C]+, αdB) (23)

That is, we assume that the operating policy is as follows:
the battery is charged whenever the generation S(t) exceeds
the load, and discharged otherwise, with a bound Bαc on
the charge power and a bound Bαd on the discharge power
(matching Eq. 7-8). Different operating strategies will require
these equations to be modified appropriately.

Define the net power inflow to the battery at any time as
the overall net equivalent power injected to the battery, which
is

Pnet(t) = ηcPc(t)− ηdPd(t) (24)

Note that at any time instant t, Pc(t) ·Pd(t) = 0, and Pnet(t)
can be expressed as

Pnet(t) =

{
ηcPc(t) if S(t)C ≥ D(t)
−ηdPd(t) if S(t)C < D(t)

(25)

Please also note that while Pc(t), Pd(t) ≥ 0 at any time t,
Pnet(t) can be both positive and negative, and represents the
rate at which the buffer changes over time.

According to the battery model in Reference [25], the
instantaneous available battery capacity is a function of
charge/discharge power to/from the battery. The larger the
charge/discharge power the lower the instantaneous available
battery capacity. This means that apart from the power con-
straints discussed above, we also have energy constraints in
battery operations. To be more precise, the battery state of
charge E(t) at any time t must satisfy B1(t) ≤ E(t) ≤ B2(t),
where

B1(t) = u1Pd(t) + v1B (26)
B2(t) = u2Pc(t) + v2B (27)

With the above notation, the state of charge of a battery E(t)
at any time t can be, recursively, expressed by

E(t) = [E(t− 1) + Pnet(t)Tu]
B2(t)
B1(t)

(28)

where [·]B2(t)
B1(t)

truncates the inner expression to a lower bound
B1(t) and an upper bound B2(t), or equivalently for any y

[y]
B2(t)
B1(t)

=

 B1(t) if y < B1(t)
B2(t) if y > B2(t)
y otherwise

(29)

Recall that LOLP is the probability that at time t the energy
to be withdrawn from the battery reaches the lower battery
capacity boundary (i.e., B1(t)) and hence the demand cannot
be met at that time. Mathematically speaking, this means that

LOLP = P{E(t− 1) + Pnet(t)Tu < B1(t)} ∀t (30)

where E(t − 1) can be computed recursively according to
Eq. 28. Please note that Eq. 30 is equivalent to Eq. 11 by
setting LOLP ≤ ε, both of them enforcing LOLP constraint
in the steady-state regime. In the steady-state, all time instants
t within T have probabilistically identical weights in violating
LOLP restriction. This is attained by averaging over all time
instants within T with equal weights in Eq. 11 and by
formulating the terms in the probability expression in Eq. 30
in a way to represent and model any time instant in T .

The recursive equation in Eq. 30 can be turned into a
complicated min-max non-recursive equation. At any time t,
the min-operand searches, in the range of [0, t−1], for the last
reset time before t, which is the last occurrence of a loss of
load event. As shown in Reference [15], instead of applying
the min-operand to t scenarios in [0, t − 1], we can highly
accurately approximate LOLP by only accounting for only
two scenarios: (I) the reset time occurs at the last time slot
t− 1 and (II) there has been no reset time since t = 0.

Hence, define LOLP I and LOLP II representing LOLP,
respectively under the two scenarios mentioned above and
LOLP can be approximated by

LOLP ≈ min
(
LOLP I, LOLP II) (31)
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Under scenario I, the last reset time always happens at
the previous time slot. The LOLP under this scenario can be
closely approximated by a battery-less scenario. This means
that LOLP I can be approximated by the likelihood that the
instantaneous demand is larger than the instantaneous supply,
or mathematically speaking:

LOLP I ≈ P{D(t) > S(t)C} (32)

Under scenario II, there is no reset time until time t. This
means that the battery state of charge has never reached its
lower boundary. Assuming that the battery is initially full
(E(0) = ν2B), LOLP II is given by:

LOLP II

= P {E(t) < B1(t)} ∀t (33)

= P
{
v2B − sup

0≤s≤t
(−Pnet(s, t))Tu < B1(t)

}
∀t (34)

= P
{

sup
0≤s≤t

(
u1Pd(t)

Tu
− Pnet(s, t)

)
>
v2 − v1
Tu

B

}
∀t
(35)

where Pnet(s, t) is defined as

Pnet(s, t) :=

t∑
k=s+1

Pnet(k) (36)

We model the tail-bound in Eq. 35 with an exponential
distribution. This means that we compute pII

l , λ
II
l ≥ 0 such

that for any δ ≥ 0, the following condition holds:

P

 sup
0≤s≤t

(
u1Pd(t)

Tu
− Pnet(s, t)

)
︸ ︷︷ ︸

:=Y t

> δ

 ≈ pII
l e
−λII

l δ (37)

where Y t is defined to simplify notation for the rest of
derivations. Combining Eq. 35 with Eq. 37, we have

LOLP II = P
{
Y t >

v2 − v1
Tu

B

}
≈ pII

l e
−λII

l (
v2−v1
Tu

B) (38)

and finally LOLP can be computed, by inserting Eq. 32 and
Eq. 38 into Eq. 31. There are three unknowns in Eq. 31 to
be evaluated: LOLP I, pII

l , and λII
l that can be computed as

discussed next.
We can translate this mathematical presentation into an

algorithm: given n scenarios, we compute n different sample
paths of the stochastic processes P id and P inet for a time
horizon of length T . We can compute LOLP, using stochastic
network calculus, following these steps in turn:
Step 1: Compute LOLP I for i = [1, n]: This is a point-wise
probability, expressed in Eq. 32 and can be computed as

LOLP i,I =

∑T
t=0 I

(
Di(t) > Si(t)C

)
T

(39)

where I(x) is the indicator function, which is 1 if x is true
and 0, otherwise.

Step 2: Construct Y i,t: To compute pII
l and λII

l , we first
construct the set of all Y i,t for any ensemble trace i ∈ [1, n]
and any time t ≤ T , defined as:

Y i,t = sup
0≤s≤t

(
u1P

i
d(t)

Tu
− P inet(s, t)

)
(40)

It can be shown that Y i,t can be expressed, recursively, by

Y i,1 =
u1
Tu
P id(1)− P inet(1) (41)

Y i,t =
u1
Tu
P id(t)− P inet(t)

+ max

(
Y i,t−1 − u1

Tu
P id(t− 1), 0

)
(42)

Step 3: Compute pi,II
l and λi,II

l for i = [1, n]: Using Y i,t

from the previous step, pi,IIl is the likelihood of Y i,t, being
positive, or

pi,IIl =

∑T
t=1 I

(
Y i,t > 0

)
T

(43)

and λi,IIl can be obtained as the exponent of fitting an expo-
nential distribution to the following set

λi,IIl ∼ Exponential
({
Y i,t | Y i,t > 0

})
(44)

Step 4: Compute LOLP: Compute LOLP i,II, according to
Eq. 38. Then LOLP = min(LOLP i,I, LOLP i,II). The sizing
is valid if the following condition holds:∑n

i=1 I(LOLP i ≤ ε)
n

≥ γ (45)

where γ is the confidence parameter.
2) SNC for EUE: In this section, we first formulate the

value of unserved energy (UE) at any time instant t. The UE
at any time t is given by

UE(t) = [E(t− 1) + Pnet(t)Tu −B1(t)]+ (46)

Moreover, define the probability of unserved energy (PUE) as
the complement cumulative distribution function (CCDF) of
the unmet load, which is

PUE(y) = P[UE(t) > y] (47)

The expected value of the unserved energy (EUE) can be
expressed as a function of the unmet load probability (PUE),
as follows

EUE =

∫ ∞
0

PUE(y)dy (48)

We use a similar strategy as used for LOLP formulation,
to compute PUE. To be more precise, we consider two
scenarios: (I) the reset time being the last time slot t−1 and (II)
there has been no reset time since the beginning. Let us define
PUEI and PUEII, representing the unmet load probability,
respectively under Scenarios I and II. We approximate PUE
with the minimum of what we observe in scenarios I and II;
i.e.,

PUE(y) ≈ min
(
PUEI(y), PUEII(y)

)
(49)



9

Under scenario I

PUEI(y) = P {D(t)− S(t)C − y > 0} ≈ pI
ue
−λI

uy (50)

where we assume that the tail bound of D(t) − S(t) can be
well approximated by an exponential distribution to obtain the
right-hand-side in Eq. 50.

Under scenario II

PUEII(y)

= P {E(t− 1) + Pnet(t)Tu −B1(t)− y > 0} (51)

= P
{

sup
0≤s≤t

(
u1Pd(t)

Tu
− Pnet(s, t)

)
>

(ν2 − ν1)B + y

Tu

}
(52)

≈ pII
l e
−λII

l

(
(ν2−ν1)B+y

Tu

)
(53)

= pII
ue
−λII

uy (54)

where

pII
u = pII

l e
−λII

l (ν2−ν1)B

Tu ; λII
u =

λII
l

Tu
(55)

Inserting Eq. 50 and Eq. 54 in Eq. 49, we have

PUE(y) ≈
(
pI
ue
−λI

uy, pII
ue
−λII

uy
)

(56)

Inserting Eq. 56 to Eq. 48, yields

EUE =

pII
u

λII
u
− pII

u

λII
u

(
pII
u

pI
u

) λII
u

λI
u−λ

II
u +

pI
u

λI
u

(
pII
u

pI
u

) λI
u

λI
u−λ

II
u if pI,II

u , λI,II
u > 0

pI
u

λI
u
− pI

u

λI
u

(
pI
u

pII
u

) λI
u

λII
u−λ

I
u +

pII
u

λII
u

(
pI
u

pII
u

) λII
u

λII
u−λ3 if pI,II

u , λI,II
u < 0

pII
u

λII
u

if pI,II
u > 0, λI,II

u < 0
pI
u

λI
u

if pI,II
u < 0, λI,II

u > 0

(57)

where pI,II
u = pI

u − pII
u and λI,II

u = λI
u − λII

u. Finally, for the
given tolerable unmet demand ratio θ, we must ensure that

EUE

E[D(t)]
≤ θ ∀t (58)

We translate this mathematical presentation into an algo-
rithm: given n scenarios, we compute n different sample paths
of the stochastic processes P id and P inet for a time horizon of
length T . We can compute the EUE bound using stochastic
network calculus by following these steps in turn:
Step 1: Compute pI

u and λI
u: We first construct the set of all

Zi,t for all sample paths i and all time t ≤ T as

Zi,t = Di(t)− Si(t)C (59)

Then, pi,Iu is given by

pi,Iu =

∑T
t=0 I

(
Zi,t > 0

)
T

(60)

and λi,Iu can be obtained as the exponent of fitting an expo-
nential distribution to the following set

λi,Iu ∼ Exponential
({
Zi,t | Zi,t > 0

})
(61)

Table I: Battery model parameters
Parameter αc αd u1 u2 v1 v2 ηc ηd
Value 1 1 0.053 -0.125 0 1 0.99 1.11∗
∗includes inverter inefficiencies of ∼10%

Step 2: Compute pi,II
u and λi,II

u : To do so, we should
first compute pi,II and λi,II according to Step 3 in LOLP
computation algorithm. Inserting these values in Eq. 55 yields
the corresponding pi,IIu and λi,IIu .
Step 3: Compute the EUE restriction: By inserting the
values obtained in previous steps in Eq. 57 and Eq. 58. The
sizing is valid if the percentage of scenarios whose loss bound
is under θ satisfies the confidence measure γ.

3) Computational complexity: For both LOLP and EUE
formulations, each test requires O(T ) time to construct the
set Y and calculate the parameters of LOLP I and LOLP II

for each of the n scenarios. This needs to be repeated over
every tested combination of (B,C), of which there are at most
(b + c) by using the search algorithm in Section V-B. Hence
the total complexity is O(nT (b+ c)).

VI. NUMERICAL EVALUATION

For concreteness, we numerically evaluate our approaches
using four years of PV generation and load data collected
from a number of homes in the Pecan Street Dataport [31].
We present a detailed view of results for three homes in the
dataset, representing homes with low, mid, and high levels
of consumption. We also present the results of an aggregated
sizing evaluation across 52 homes from this dataset.

To evaluate the cost of a particular sizing, we set πC , the
installed cost of solar panels, to be USD 2.50/W and πB , the
cost of storage, to be USD 460/kWh7, with battery parameters
corresponding to a Lithium-Nickel-Manganese-Cobalt battery
chemistry [32], [33] as summarized in Table I. The battery
model is Model 1* in Reference [25] and we use the simple
operating policy of charging the battery when solar generation
exceeds the load, and discharging the battery when load
exceeds solar generation. The battery starts with a full state
of charge.

Although our approach to optimization-based sizing is ro-
bust, in that it is insensitive to small perturbations in the input
trace, it is often not possible to use optimization-based sizing
in real life, because it relies on optimal operation of the storage
system, using a policy that cannot be determined in advance.
Thus, we only evaluate our Chebyshev-curve sizing approach
using sizings curves computed via simulation, and compare
this sizing to the SNC approaches.

A. Convergence

In accordance with the simulation and optimization ap-
proaches, the recommended system size is based on a sta-
tistical measure of the underlying samples of computed sizing
curves. With SNC, we compute a probabilistic upper-bound
on the number of loss-of-load events for each scenario in the
ensemble. With all three approaches, the recommended size is
progressively refined as more scenarios are evaluated.

7Source: https://www.tesla.com/powerwall
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We find that in all three approaches, B and C values
converge after about 100 randomly sampled scenarios for ε
or θ targets of 0.05. For smaller targets, more scenarios are
required for convergence.

B. Sizing
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Figure 3: Comparing sizings at different confidences with SNC
and simulation approaches, for LOLP with ε = 0.05 (3a) and
EUE with θ = 0.05 (3b).

Figure 3 shows sizings from SNC and simulation ap-
proaches for ε = 0.05 and θ = 0.05, over 100-day periods
with a confidence of 95% and 97%. The figures include the
sizing curves and the Chebyshev curves computed from them.
The sizing obtained for all approaches with 95% confidence
lie above the sizing curves. Using 97% confidence gives a
more conservative sizing, which is more robust to variations
in scenarios that might be observed in the future and are not
fully captured in the historical data.

We note that sizing obtained using the optimization ap-
proach (not included in Figure 3) is identical to the sizing
obtained using simulations for an EUE target, but is always
much smaller than with the other two approaches for an
LOLP target. This is not surprising, given that the optimization
approach chooses the optimal operating strategy, rather than
the basic strategy used by the other approaches; the basic
strategy happens to be optimal for minimizing EUE.

Table II: Computation time (Linux user time) mean and
standard error

Method
Mean CPU time per 100 scenarios (h:m:s)

LOLP EUE
µ std. error µ std. error

Simulation 0:0:38 < 0:0:01 0:0:38 < 0:0:01
Optimization 46453:20:05 896:6:55 277:45:21 1:01:22

SNC 0:0:24 < 0:0:01 0:0:16 < 0:01

C. Robustness

We compare robustness of the sizing that results from the
different sizing approaches in Figure 4, which summarizes
the results of leave-one-year-out analysis for a sample low,
mid, and high electricity consumption home in the dataset.
For each of the 4 years in the dataset, we compute a sizing by
randomly sampling 100-day scenarios from the other 3 years.
We then use the simulation and SNC approaches to compute a
robust system size using either 95% or 97% confidence bounds
for ε = 0.05 (Figures 4a,4b) or θ = 0.05 (Figures 4c,4d).
Each size is then tested on scenarios from the test year, and
the distribution of resulting LOLP and EUE values for each
scenario is presented as a histogram.

Note also that each of the four subsets of three years of
data can result in a substantially different sizing. If a year with
particularly high load is left out, such as the 3rd year in the
high-consumption household, the sizing results in a violation
of the QoS, indicating that solar generation and load may
highly variable across years. This variability can be accounted
for by sizing conservatively, which can be achieved by using
a higher confidence bound. Specifically, note that with γ =
0.95, there are several instances where both simulation- and
SNC-based sizings fail to meet the performance bound. This
is because of atypical behaviour in one of the year compared
to the other years. When γ is increased to 0.97, the number
of violations decreases for both approaches. Compared to the
SNC approach, the simulation approach is more sensitive to
increases in γ, since the Chebyshev curves give very loose
bounds at high confidence, while the SNC approach uses an
empirical confidence measure. In practice, we expect γ to be
a user-supplied parameter that reflects their level of optimism.

The aggregated results for 52 Austin, Texas houses with
data through years 2014-2017 are shown in Figure 5. For each
house, we compute a leave-one-year-out sizing for an LOLP
or EUE target of 0.05 over a period of 100 days with 95%
confidence. We then test this size on 200 randomly selected
100-day periods from the test year, for a total of 52×4×200 =
41600 tests for each sizing approach. The results are presented
in histogram form. Notably, the fraction of values that are
within the 5% LOLP and EUE target are well within γ = 0.95.

D. Computation time

Recall that the asymptotic complexity of the optimization
approach is lower bounded by O(nbT 5.5logT ). The compu-
tational complexity of simulation and SNC is O(nT (b + c)).
Thus, for large values of T , which is typical, the best ap-
proaches are simulation and SNC (with SNC up to a factor of
2.5 faster than simulation).
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Figure 4: The vertical histograms show the leave-one-year-out sizing performance on scenarios sampled from the test year for
three households, four years for each. The resulting LOLP or EUE of the system with size computed using the simulation-based
approach is shown in the blue histograms extending to the left, while red histograms extending to the right show comparable
results with the SNC approach. Figures 4a and 4b are for an LOLP target of 0.05, with 95% and 97% confidence respectively,
while Figures 4c and 4d are for an EUE target of 0.05, with 95% and 97% confidence respectively. For test years where the
resulting LOLP/EUE sometimes exceeds the target, there is an annotation showing percentage of scenarios that exceed the
target.
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Figure 5: Aggregated leave-one-year-out test results on 52 houses. Percentage of tests that land within the LOLP (Figure 5a)
or EUE (Figure 5b) target for simulation (left) and SNC (right) sizing approaches

Table II shows the CPU time required to process 100
scenarios, each of which has 365 days of data, on a 2.7GHz
Intel Xeon CPU. It is clear that simulations and SNC take
the least time, with optimization taking five to seven orders of
magnitude more8.

VII. DISCUSSION

A. Comparison of the three approaches

Our work evaluates three distinct approaches to robust and
practical sizing of solar and storage systems. Over and above
the numerical comparison in Section VI, we now make some
qualitative observations about their relative merits.

8We used CPLEX 12.6.3, which has highly parallelized LP and ILP solvers

Unlike some prior work [34], [35], [9] which solve the
joint problem of optimal sizing and optimal operation, in
this work, we study only sizing. However, with optimization,
the operation rules are a free variable, in that the output of
the optimization program is also the optimal charge/discharge
schedule. Note that these operation rules cannot be used in
practice, because the rules depend in detail on the traces, and
the details of the future are unknown. If we could encode
operation rules into the optimization program, we would be
able to come up with a sizing that did not have this coupling.
Unfortunately, it is non-trivial, perhaps impossible, to encode
arbitrary operation rules in an optimization program. For
instance, consider the operation rule “Charge the store from
the grid if the battery charge is below 30% and the grid price
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is lower than $0.12/kWh." This rule defines a dependency
between the charging power and the battery charge, which
complicates the formulation of the program and also makes it
non-linear and hence difficult to solve efficiently.

There is a similar problem with stochastic network calculus,
where encoding complex charge/discharge operations rules
into Equations (22) and (23) may result in greatly complicating
the subsequent analysis. In contrast, the simulation approach
can be used with any operating strategy. Moreover, it has
acceptable compute speed (though slower than stochastic
network calculus). Thus, from a qualitative perspective, the
simulation approach is perhaps the best one, especially when
combined with a post hoc Chebyshev bound.

B. Contributions of our work
Our work makes multiple contributions. To begin with, it

is the first work, to our knowledge, that provides robust and
practical advice on sizing by comparing multiple approaches.

Second, our use of a univariate Chebyshev curve in combi-
nation with optimal sizing for multiple scenarios is innovative,
and can be generalized to other robust optimization problems.

Third, the LOLP and EUE formulations using SNC in
Section V-C considerably advance the state-of-the-art in SNC
analysis of battery-equipped systems, such as in Refer-
ences [21], [18]. This is because the battery model used in this
work is more realistic (and more complicated). Additionally,
we take a different approach in characterizing energy profiles:
We model net energy demand directly, instead of modelling
supply and demand separately. We further characterize the tail
bounds of the net load directly instead of defining envelopes
and characterizing the residual processes with respect to the
envelopes as done in prior work. This has substantial implica-
tions on the time complexity and also accuracy of the model.
Finally, the derivations of EUE here are new and advancing
the state-of-the-art in SNC and also its application in energy
systems.

C. Limitations and future work
Studying the impact of energy consumption and generation

patterns on the system size, especially from homes in different
geographical regions, is an interesting avenue for future work.
To facilitate this line of research, we have made the code
for computing robust system sizes with simulation and SNC
methods publicly available [7].

Our work suffers from some limitations, as discussed next.
First, we have assumed that the load is not under our control.

In some cases, it is possible to ask the energy consumers
to modify their behaviour, using a control signal. Thus, for
example, a home owner may be asked to defer a heavy load if
the state of charge of the storage was particularly low. In this
situation, it is obvious that the system sizing can be much
smaller. However, sizing a system in the presence of load
control is a much more complex problem, in that it requires
jointly optimizing the storage operation as well as the load
control actions. We intend to explore this in future work.

Second, the computation times presented in this paper are
only indicative. For example, both simulations and the stochas-
tic network calculus algorithm can be tuned, or re-coded in

a more efficient low-level language to improve computation
times. Similarly, it is well known that choice of optimization
meta-parameters can also significantly impact the computation
time. Nevertheless, given the substantial differences in perfor-
mance, we believe our results are representative of expected
outcomes in practical scenarios.

Finally, our approaches are scenario-based, and we treat
the length of each scenario as being specified by the user
in their QoS target. There are challenges in this setup that
we have not thoroughly explored. First, we have made an
implicit assumption that each scenario starts with a particular
(full) battery state of charge. When the scenarios are short
and the QoS targets are tight, the initial charge state may have
a significant impact on the frequency of loss events in the
system; to sidestep this issue, we experimentally determined
that the time duration in the QoS target must be at least 60
days for the QoS we presented in this paper. In future work, we
intend to explore how to satisfy QoS targets with shorter time
periods. Second, sampling long scenarios from a short dataset
can result in a sample distribution that does not accurately
reflect the solar and load processes due to overfitting.

VIII. CONCLUSION

We evaluate and compare three state-of-the-art approaches
to size solar generation and storage in a realistic setting.
Unlike prior work, which evaluates a single approach and
does not evaluate the robustness of the resulting solution, we
compare the sizing results from these approaches on identical
inputs, permitting a fair comparison. We find that, due to both
qualitative and quantitative reasons, simulation appears to be
the best tool for sizing in a realistic setting. In carrying out
our work, we have made contributions to the state of the art
both in the area of stochastic network calculus and in the use
of sample Chebyshev bounds to obtain a novel technique for
robust optimization and simulation.
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