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ABSTRACT
We study the problem of optimally and simultaneously sizing solar
photovoltaic (PV) and storage capacity in order to partly or com-
pletely offset grid usage. While prior work offers some insights,
researchers typically consider only a single sizing approach. In con-
trast, we use a firm theoretical foundation to compare and contrast
sizing approaches based on robust simulation, robust optimization,
and stochastic network calculus. We evaluate the robustness and
computational complexity of these approaches in a realistic setting
to provide practical, robust advice on system sizing.
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1 INTRODUCTION
In the last few years, the prices of solar panels and storage have
dropped dramatically, putting them in reach of many consumers.
Companies such as Trina, Yingli, and Canadian Solar offer solar
panels at a cost of less than USD 0.5/Watt, and companies such as
Tesla, Sonnen, and Moixa provide off-the-shelf (albeit expensive)
storage solutions.

Consider an entity that wants to purchase and install solar PV
panels and storage in order to partly or completely offset grid us-
age1. How much of each should they buy? If the budget is not a
constraint, then both can be generously sized, with ample slack
capacity. However, given the high cost of storage, budget is of-
ten a binding constraint. Thus, we would like to provide practical

1The former case corresponds to that of an entity that remains grid-connected but
wants to reduce its overall cost for electricity and the latter corresponds to an off-grid
scenario. We treat them both identically in our work.
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guidance on the smallest possible sizing2 to adequately meet the
anticipated load. This is the subject of our work.

We expect many entities to face such a sizing problem in the
future. These include individuals, small companies, and building
operators faced with the rising cost of grid-provided electricity.

While prior work on this topic offers some insights, researchers
typically consider only a single sizing approach [8, 9, 22, 25, 27,
34]. Moreover, the approaches advocated by some past researchers
results in sizing decisions that may not be robust to perturbations
in the inputs. In our work, we attempt to provide practical, robust
advice on system sizing. To do so, we compare and contrast multiple
sizing approaches, extending well-known approaches as necessary
to reduce them to practice.

We make three key contributions:
• We provide a firm theoretical foundation for robust and
practical sizing of both solar PV generation and storage
based on three approaches: simulation, optimization, and
stochastic network calculus

• We make contributions to the state-of-the-art both in sto-
chastic network calculus and robust optimization

• We evaluate the robustness and computational complexity
of these approaches in a realistic setting

2 RELATEDWORK
Prior work on sizing approaches for energy storage in the presence
of renewable energy sources can be grouped into three main classes:
mathematical programming, simulation, and analytical methods.
We sketch these approaches here, with a survey of representative
work, deferring details of each approach to Section 5.

2.1 Mathematical Programming
There exist many methods for solving sizing optimization problems.
In this paper, we focus on mathematical programming, which is a
scenario-based approach. It requires modelling the system as a set
of parameters and variables that are constrained to represent the
capabilities of the physical system being modelled and an objective
function representing the system target. Importantly, it typically
does not model the operating policy; instead, the optimal operation
is an output of the optimization program, and is dependent on
the inputs. An algorithm, or solver, is used to search the space of
feasible solutions to find the one which maximizes (or minimizes)
the objective function for the given parameters. For example, in
Reference [10], the problem of sizing a battery to meet the energy
demands of a microgrid is formulated as a mixed-integer linear
program. In Reference [16], the problem of sizing batteries and
solar panels under a fixed budget to maximize the revenue of a solar

2By sizing, we refer to the power/energy size of the storage in kW/kWh and the size
of solar generation in kWp.
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farm is formulated as a non-linear optimization problem, which is
linearized to reduce the solving time.

Another notable optimization approach is to formulate a robust
optimization problem [6], in which the objective function is opti-
mized even when the inputs are perturbed. We do not cover robust
optimization in this paper; rather, we present a simpler approach
to dealing with uncertainties in the input parameters.

2.2 Simulation
Simulations are scenario-based sizing approaches that provide opti-
mal system sizing for a given trajectory (i.e, a time series) for load
and PV generation. They are versatile: a simulation program can
evaluate different combinations of PV panel and battery sizes, cal-
culating metrics such as loss of load probability (LOLP) [8], unmet
load, and operating cost [2]. The simulated system can be operated
using virtually any operating strategy, such as those proposed in
[8, 9, 22, 25], and can implement complex battery models [2].

2.3 Analytical Methods
Inspired by the analogy between energy buffering by batteries
and data buffering in computer networks, a variety of analytical
methods have been proposed for storage capacity sizing in the
literature. For example, in Reference [12] the system is modelled as
a cyclic non-homogenous Markov chain, and the authors propose
a steady-state analysis to determine whether a given system size is
sufficient to meet a target LOLP. In Reference [3], the authors use a
probabilistic tail bound on the aggregate of many regulated energy
demand loads to jointly size the battery capacity and transformers
for a certain LOLP in a residential setting.

Among existing analytical approaches, stochastic network cal-
culus (SNC) [20] has shown great robustness and accuracy. This
approach has been used in several applications: battery sizing to re-
duce reliance on diesel generators in rural areas with unreliable grid
connections [30], energy demand management in a fleet of electric
car charging stations [26], gaining energy flexibility through heat-
ing/cooling systems in data centres [4], supply-demand matching
for prosumers [17, 29, 33], and profit maximization for renewables
in electricity markets [18].

Applying stochastic network calculus to energy systems has
some subtleties, due to the unique statistical properties of the un-
derlying energy processes and the storage model in use. This has led
to a series of incremental improvements in this field of research. The
idea of using stochastic network calculus for energy systems was
proposed in [33], where the authors assume ideal storage devices
and use affine functions to separately model the long-term behavior
of each of energy demand and energy supply. In Reference [17], the
authors improve this approach by assuming a more realistic stor-
age model and more complicated uni-variate envelopes for energy
demand and supply. It is shown in [18] that uni-variate envelopes
cannot properly capture the statistical properties of solar power
due to its substantial seasonality; hence, introducing bi-variate
envelopes to separately model the long term behavior of energy
demand and supply. In this paper, we advance the state-of-the-art
as discussed in Section 7.2.

3 GOAL
At a high level, the goal of our work is to provide robust, practical
advice on how to size both solar panels and storage to partly or
completely offset grid usage. This section discusses the inputs and
objective of this sizing problem.

3.1 Inputs
It is reasonable to assume that an entity making a sizing decision
would have access to a representative set of load traces, especially
with the widespread deployment of smart meters that typically
measure hourly load3. It is also possible to obtain hourly solar
radiation traces in the geographical location of the entity, for most
parts of the world [19]. In keeping with prior work, we make the
assumption that these historical traces are generally representative
of loads and generation. Nevertheless, the future will never exactly
mimic the past; if it did, we would be able to make decisions with
perfect information. Thus, the sizing decision must be robust to
perturbations in the inputs, i.e., to ‘small’ changes in the solar
irradiation or loads (we make this precise in Section 4).

In addition to generation and load traces, we need two other
inputs. First, we need to know how a decision is made to either
inject power into or withdraw power from the storage system. This
operating policy can be quite complex, and is the subject of much
research [7, 12, 16, 25]. Nevertheless, simple rules such as ‘store
excess solar energy’ and ‘discharge the store when solar generation
is less than the load’ are often adequate for most situations. We
assume that, for the case of simulation and stochastic network cal-
culus approaches, such an operating policy is provided to the sizing
decision-maker. Second, it is necessary to model the behaviour of a
storage system in response to power injection and discharge. We
use a recently-proposed storage model in our work [23].

To summarize, we assume that the sizing decision-maker has
access to the following inputs:

• A representative set of solar traces S = {Si } (for now, think
of them as one trace per-year, but we discuss this point in
more detail in Section 4.3).

• A representative set of load traces D = {D j } that constitute
a set of load scenarios. Each load trace needs to be of the
same time duration as the solar traces.

• An operating policy: for the simulation and stochastic net-
work calculus approaches, the set of rules that determine
when the store is charged or discharged.

• A storage model, along with all associated model parameters:
given the current state of charge, and the applied power, this
is a set of equations that computes the new state of charge.

3.2 Sizing Objective
Given the inputs in Section 3.1, our objective is to compute the
“best" sizing for solar PV panels and the storage capacity. What
constitutes the best choice will depend on the situation at hand.
Several quality metrics are plausible4:

3Finer-grained traces would, of course, be good to have, but unlikely to be available in
practice.
4For each application, one or multiple of these items can serve as objectives and one
or multiple others as constraints.
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• Minimize LOLP: This is the probability that the system is
unable to meet the load from solar generation. This proba-
bility can be numerically estimated as the ratio of the time
period during which the load is unmet from solar generation
to the total time period under consideration.

• Minimize unmet load (UL): This is the total amount of
load (energy) that cannot be delivered from solar generation
during the period under consideration. If this load is not met
from the grid, there will be user discomfort.

• Minimize financial cost: This is the dollar cost of purchas-
ing the solar panel and storage system, as well as the cost of
purchasing, as necessary, electricity from the grid, at its cur-
rently prevailing price. It can be viewed either as a one-time
capital cost added to a periodical operational expense, due
to potential purchases from the grid and the eventual degra-
dation of the equipment from wear and tear. Note that if we
can associate a cost to meeting unmet load from the grid
or a diesel generator, then the cost-minimization objective
incorporates the objective of minimizing unmet load.

• Maximize robustness: This is the degree of sensitivity of
the sizing to perturbations in the input. Intuitively speaking,
we wish to pick an approach such that small perturbations
in the inputs result in only a small perturbation in the sizing
[28]. We discuss this point in greater detail in Section 4.

• Minimize computation time: We expect that the sizing
decision will be made on behalf of a system purchaser by a
sizing decision maker. The computation cost of each such
decision, therefore, should not be onerous.

In many cases, there will be a trade-off between cost on the
one hand, and LOLP/UL and robustness on the other. Moreover,
robustness and computation cost go hand-in-hand, since to get
robust results we (generally) have to process more data and hence
performmore computation. In this work, for concreteness, we focus
on minimizing the cost of solar PV and storage, subject to meeting
a certain LOLP constraint. Using other optimization objectives is
also possible, and discussed at greater length in Section 7.

4 THE IMPACT OF NON-STATIONARITY
A key insight in our work is that the traces which serve as input to
any sizing approach may neither be stationary nor representative
of the future. We discuss this next.

4.1 Traces, Trajectories, and Stochastic
Processes

A solar or load trace with T entries of the form (time , value) is a
trajectory instantiated from a stochastic process, which is defined
as a set of random variables indexed by time. That is, Si (t), the
t th element of the ith solar trace (resp. D j (t), the t th element of
the jth load trace) is a value assumed by the random variable S(t)
(resp. D(t)) from a corresponding distribution. Hence, we can fully
characterize the historical solar (resp. load) stochastic process by
defining joint distribution of a set of T random variables, one for
each time step. Assuming independence of each time step, we can
decouple these distributions, allowing us to use the set S (resp. D)
of solar generation (resp. load) traces to estimate parameters for
each of theT distributions. For example, the numerical mean of the

t th time step of the set of traces can be viewed as an estimate of
the mean of the t th distribution and the sample variance of this set
is an estimate of its variance. Thus, with sufficient data, we can use
standard statistical techniques to find the best-fitting distributions
that characterize a set of traces.

Given this characterization of historical stochastic processes,
what can we say about the future? Suppose that the generation
and load stochastic processes were time-invariant. Then, once the
historical processes are characterized, the future is also ‘known’ in
that we can generate potential future trajectories by generating a
random value per time step from the corresponding distribution.
We can then choose a sizing that meets our sizing objectives not just
for historical trajectories, but also for potential future trajectories.

However, this naive approach has three problems. First, even
assuming independence of time steps, it is onerous to define T
separate distributions, since T can be very large, on the order of
10,000-100,000 values. Second, there is no guarantee that a stochas-
tic process parametrized based on historical traces will adequately
represent the future. Third, we do not have any guidelines on how
much data is ‘enough.’ To solve these problems, we need to take a
closer look at the generation and load stochastic processes.

4.2 Causes of Non-Stationarity
A key observation is that both the solar and load stochastic pro-
cesses are non-stationary5 due to three effects:

(1) Diurnality. For example, the distribution of the r.v. S(t)
corresponding to a time slot t at night will differ from the
distribution of an r.v. corresponding to a time slot at mid-day.

(2) Seasonality. For example, the distribution of the r.v. S(t)
corresponding to a time slot t at mid-day in winter will differ
from the distribution of an r.v. corresponding to a time slot
at mid-day in summer.

(3) Long-term trends. For example, the distribution of the r.v.’s
D(t) and S(t) corresponding to a time slot t at the start of a
trace may differ from their distribution for a time slot later
in the trace.

Given this non-stationarity, we need to be careful both in char-
acterizing historical generation and load stochastic processes and
extrapolating from the past to the future. We consider each in turn.

4.3 Stochastic Process Parametrization
Recall that the parameters of the stochastic process, i.e., corre-
sponding to each of theT distributions constituting the process, are
derived from solar and load traces. Given that the process has both
diurnal and seasonal non-stationarity effects, the solar and load
traces must be both detailed enough and long enough to capture all
three effects. More precisely, :

• The traces should have sufficient temporal resolution to
capture diurnal changes. That is, the time step should be
sufficiently small to have an adequate number of values for
each part of the day.

• The traces should be long enough to capture seasonality, i.e.,
at least one year in duration, if not longer.

5Roughly speaking, this means that statistics computed from two different random
sub-samples of the traces can differ.
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• The traces should be long enough to capture any long-term
trends in load (we assume that solar generation is stationary
at the time scale of a year).

• There should be enough traces in the set of traces so that
there are sufficient samples to adequately estimate the pa-
rameters of each distribution.

Ideally, we would have access to per-minute load and generation
traces spanning several decades. Then, setting T = 60 ∗ 24 ∗ 365 =
525, 600, i.e., per minute of the year, we would obtain multiple sam-
ple values for each time step, allowing us to estimate, with adequate
confidence, the parameters of each of the T solar generation distri-
butions, and potentially long-term trends in the load (for example
by fitting a linear regression to the residual after accounting for
diurnal and seasonal effects).

In practice, it is unlikely that such data traces are available. Load
and solar generation are oftenmeasured at a time scale of 30minutes
or longer, and it is rare to have more than a year or two of data.
Given this, we propose the following pragmatic approach.

First, given the length of realistic data traces, we believe that
mathematically well-founded long-term trend analysis is likely to
be impossible. Thus, we model long-term trends with a simple
approximation, as discussion in Section 4.4.

Second, we need to extract sub-processes of the solar and load
processes that are stationary despite seasonality and diurnality.
Consider the following: suppose we can assume that the solar gen-
eration process is stationary from 8am to 9am on any day of a given
season6. Then, we can model this sub-process as being drawn from
a set of i.i.d random variables, meaning we can model it completely
by estimating the parameters of the corresponding distribution.

Thus, we divide the year into a small number of seasons, such as
four (winter, spring, summer, and fall) and assume that seasonality
can be ignored within each such interval. Moreover, to model diur-
nality, we estimate the parameters of a distribution for a set of time
periods (of typically 30 minutes to one hour) for each season. Finally,
recognizing that loads during working days and non-working days
can differ significantly, we separately model their distributions.

As a concrete example, given a few years of solar and load traces
with time granularity of one hour, we would estimate distribution
parameters for solar generation for the time period 12:00am-1:00am
for winter, 1:0am-2:00am for winter, ..., 11:00pm-12:00am for fall,
for a total of 24*4 distributions and estimate distribution parameters
for load for the period 12:00am-1:00am on working day for winter,
12:00am-1:00am on a non-working day for winter, ..., 11:00pm-
12:00am on a working day for fall, 11:00pm-12:00am for a non-
working day for fall, for a total of 2*24*4 distributions7.

4.4 From Past to Future
Given a set of parametrized distributions, corresponding to the
historical solar and load stochastic processes, we need to generate
traces corresponding to potential future load and solar trajectories.
6Given our independence assumption, we do not model the relationship between this
sub-process and the sub-process corresponding to 9am-10am, or the same sub-process
corresponding to the same time duration in another part of the year. That is, we do
not use a time-series model, and hence do not directly model temporal effects that
may persist across time steps.
7If traces have a time-granularity finer than one hour, and we expect the load/solar
process to be stationary for one hour, then we can aggregate all the trace values within
the stationary interval when estimating distribution parameters.

If this set of distributions can be assumed to be time-homogeneous,
i.e., without long-term trends, then we can generate as many tra-
jectories as we wish from these distributions. To take long-term
trends into account, we propose to use a simple expedient: to boost
the mean of each distribution in our set of load distributions by a
factor ρD which models long-term trends in load, and ρS for solar.
To first-order, ρD models a fractional increase/decrease in mean
load, which we anticipate to be the impact of appliance acquisition
or disposal, while ρS models panels degradation.

We now discuss three robust sizing approaches that base their
sizing decisions on ‘traces of the future.’ We defer a discussion on
how to evaluate the robustness of these approaches to Section 6.

5 ROBUST SIZING APPROACHES
The sizing decision, that is, choosing the size of the store B (in
kW/kWh) and of the solar panels C (in kW) to meet one or more
of the objectives discussed in Section 3.2, can be made using many
different approaches. In this section, we present three representative
approaches.

We make the following assumptions:
• For simplicity, and for reasons of space, we assume that
the goal is to find the minimum-cost storage and solar PV
sizes that meet a certain LOLP criterion. Generalizing this
approach to other criteria, such as minimizing unmet load,
is discussed in Section 7.

• We assume that we have availablem solar generation and
n load traces Si ,D j , i, j ∈ [1,m], [1,n] respectively. We call
each of themn combinations of traces a ‘trace pair.’ Trace
pairs correspond to potential futures and can either be mea-
surements from the past or can be generated by a parametrized
stochastic process, as discussed in Section 4.4.

• We only size the storage system for energy, not for power,
since sizing for power is typically trivial (the power rating
of the storage system must exceed the sum of power draws
of the set of simultaneously active load components).

• For the simulation and stochastic network calculus approaches,
we futher assume the storage system energy capacity can
only take one of b different values and that the solar panel
size can only take on one of c different values. Hence, these
two approaches do a grid search through bc pairs of solar
PV panel sizes and storage capacity sizes and return the opti-
mum sizing with the minimum cost which also satisfies the
target LOLP.

• We assume that if a certain combination of storage and PV
values results in a certain LOLP, then larger values of either
storage or PV will always result in lower values of LOLP.
This allows us to use a greedy grid search heuristic.

We denote the number of time steps in the load and solar gener-
ation traces by T . πB is the price for one unit of battery (i.e., 1 cell),
πC is the price for one unit of PV panel generation. We normalize
the solar generation Si trace, so that it represents the generation
from a unit PV module. Finally, the LOLP target is denoted ϵ .

5.1 Optimization
In this approach, we formulate an optimization program for solar
panel and battery sizing with the objective of minimizing the capital
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cost of the system, subject to physical system and LOLP constraints.
We do not specify the operating policy, allowing it to be decided
by the optimization solver. This allows us to compute the best
possible sizing. In this sense, although the sizing decision made by
the optimization program is a potentially-unattainable lower bound,
it measures the level of sub-optimality in the operating policy used
in the two other approaches.

Our approach has two phases. In the first phase, for each trace
pair, we compute the optimal sizing, assuming optimal operation.
This gives usmn sizings. In the second phase, we use a bivariate
Chebyshev bound [31] to compute a robust sizing that is insensitive
to the details of individual traces. We discuss each phase in turn.

5.1.1 Phase 1. For phase 1, define Pc to be the charging power,
Pd to be the discharging power, Pdir to be the power that flows
directly from solar to load, and b to be the energy content. The size
of the battery is B and the generation capacity of the panels is C .
Figure 1 shows a labelled system diagram.

The battery model used here is Model 1* from [23] with the
following parameters: ηc (resp. ηd ) the charging (resp. discharging)
efficiency, αc (resp. αd ) the charging (resp. discharging) rate limit,
u1, v1, u2, v2 used to characterize the power-dependent lower and
upper limits on the energy content (see constraint (6)). Recall that
the data trace for solar generation S is for one unit of PV panel
and that D denote the household electricity load. The duration of a
time-step is Tu and the number of time-steps in a data trace is T .

Given a trace pair (S(t)), (D(t)), and storage parameters ηc , ηd ,
αc , αd , u1, v1, u2, v2, costs πB , πC , and trace parameters Tu and T ,
the problem can be formulated as:

min
B,C,Pc ,Pd ,
Pdir , I,γ ,b

πBB + πCC (1)

subject to
Pc (t) + Pdir (t) ≤ S(t)C ∀t (2)
Pdir (t) + Pd (t) = D(t) − γ (t) (3)
b(0) = B/2 (4)
b(t) = b(t − 1) + Pc (t)ηcTu − Pd (t)ηdTu ∀t (5)
u1Pd (t) +v1B ≤ b(t) ≤ u2Pc (t) +v2B ∀t (6)
0 ≤ Pc (t) ≤ Bαc ∀t (7)
0 ≤ Pd (t) ≤ Bαd ∀t (8)
I (t) ∈ {0, 1} ∀t (9)
B,C, Pdir (t),γ (t),b(t) ≥ 0 ∀t (10)

1/T
T∑
t=1

I (t) ≤ ϵ (11)

I (t) ≤ γ (t)Z ∀t (12)
γ (t) ≤ I (t)D(t) ∀t (13)
Pc (t)Pd (t) = 0 ∀t (14)

where constraint (2) states that the sum ofwhat goes into the battery
and directly towards the load is bounded by the solar generation,
γ (t) is the load that is not met from solar generation at time t (it is
always ≤ D(t)), constraints (5)-(8) represent the battery model, and
I (t) is an binary variable used to indicate if the load is met or not

 B units of 

battery storage

D(t)

Pc(t)

Pdir(t)

b(t)

S(t) · C
C units of 

PV panel
Load

Pd(t)

Figure 1: System diagram

in time-step t (I (t) = 1 means the load is not met). Constraint (12)
ensures that I (t) is zero if γ (t) = 0 (Z is a large positive constant),
constraint (13) ensures that I (t) is one if γ (t) > 0 and constraint (11)
is the LOLP constraint. The last constraint forbids simultaneous
charging and discharging and it was shown in [16] that it can be
ignored which makes the problem a Linear Integer Program (LIP).
Note that in this problem B andC are real numbers, i.e., they are not
limited to the pre-defined values used for the other two approaches.

5.1.2 Phase 2. In phase 2, relying on a recent advance in the
area of multivariate concentration bounds–specifically, Theorem 1
in Reference [31]– we use the set ofmn = N sizings to compute a
multivariate Chebyshev bound. Specifically, we calculate the 2 × 2
empirical covariance matrix ΣN and empirical means µN ,B and
µN ,C of the N values of B andC , and then compute the ellipsoid of
(B′, C ′) points that bounds the 95% probability density mass of the
(B, C) distribution as:[

B′ − µN ,B
C ′ − µN ,C

]T
Σ−1N

[
B′ − µN ,B
C ′ − µN ,C

]
= Λ2 (15)

where Λ2 satisfies the following equation:

2(N 2 − 1 + NΛ2)
N 2Λ2 = 0.05 (16)

We then select the least-cost (B′, C ′) value on upper right quad-
rant8 of this empirical ellipsoid boundary (see Figure 3 for an exam-
ple) as the least-cost, robust sizing. To our knowledge, this approach
to robust optimization is novel, differing from prior approaches
that rely on formulating a ‘robust counterpart’ to an optimization
problem [5].

If we are confident that the empirical means and covariance have
converged to the population mean after N samples, we can use a
tighter ellipsoid characterized by a Λ2 that satisfies the following:

2
Λ2 = 0.05 (17)

which is equivalent to Eq. 16 when N → inf , i.e. the analytical
bound, in accordance with Theorem 2 in [31].

5.1.3 Computation cost. The inputs to the optimization program
are the solar and load traces, each of size O(T ), for a total size of
O(T ). Asymptotically, this is also the number of variables in the pro-
gram. Denoting byQ = O(T ) the number of variables and L = O(T )
as the number of bits of input to the algorithm, even for a linear pro-
gram, which is far more computationally efficient than a linear inte-
ger program, the best-known approach, the interior-point method,
8The upper right quadrant contains only (B′,C ′) pairs which exceed (µN ,B, µN ,C )
and represent robust sizing options.
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requires a runtime of O(Q3.5L2.loдL.loдloдL) ≈ O(T 5.5.loдT ) [32].
Since we needmn such runs, and our problem is integer, the total
complexity is lower bounded by O(mnT 5.5.loдT ).

5.2 Simulation
In this approach, we run a total of up tomnbc simulations: one for
each of the bc choices of storage and solar sizing, and for each of
themn trace pairs, to determine the corresponding LOLP.

Specifically, for each trace pair, for each potential sizing choice,
and for each time step t ∈ [1,T ], we determine the availability of
solar power S(t) and the load D(t). Depending on these values, the
storage and PV sizes under test, and the given operating policy,
we use the storage model to either charge or discharge the store,
updating its SoC as in Eq. 5. If we find that there is a need to
discharge the store, but its SoC is zero, then we mark that the load
is unmet from solar generation for this time step. At the end of each
simulation, we empirically compute the LOLP ϵ for this sizing.

To minimize the number of simulations, we use a simple greedy
heuristic. Specifically, we order all bc choices of storage and solar
generation in order of capital cost, lowest to highest. We then
simulate the choices in order of increasing cost. The output of this
approach is an set ofmn sizing choices (one per trace pair) for solar
and storage sizing that are the least-cost and also satisfy a given
LOLP criterion.

As in Section 5.1.2, we view this set as a set of samples drawn
from a bivariate (B, C) distribution, and compute a robust sizing
from a Chebyshev bound.

Note that the computation cost of this approach is O(mnbcT ),
since each time step takesO(1) computation time, there areT steps
per simulation, andmmbc simulations.

5.3 Stochastic Network Calculus (SNC)
In this approach, we characterize the net power arrival to the battery
using lower and upper bounds computed on the ensemble of input
traces. Then, we use stochastic network calculus to compute the
LOLP for each choice of storage and solar panel size (B,C). The
output is a statistical characterization of the LOLP ϵ as a function
of the selected choices of (B,C). We then use the greedy heuristic
discussed in Section 5.2 to compute the least-cost sizing that meets
the LOLP criterion. Since SNC sizing is known to be robust to small
perturbations in the input traces, we view this least-cost sizing as
being robust to the input traces.

5.3.1 Details. Denote by Pc (t) and Pd (t), respectively, the charg-
ing and discharging power from and to the battery, given by an
operating policy corresponding to:

Pc (t) = min ([S(t) − D(t)]+,αcB) (18)
Pd (t) = min ([D(t) − S(t)]+,αdB) (19)

That is, we assume that the operating policy is as follows: the battery
is charged whenever the generation S(t) exceeds the load, and
discharged otherwise, with a bound Bαc on the charge power and
a bound Bαd on the discharge power (matching Eq. 7-8). Different
operating strategies will require these equations to be modified
appropriately.

Define the net power inflow to the battery at any time as the
overall net equivalent power injected to the battery, which is

Pnet (t) = ηcPc (t) − ηdPd (t) (20)

Note that at any time instant t , Pc (t).Pd (t) = 0, and Pnet (t) can be
expressed as

Pnet (t) =
{
ηPc (t) if S(t) ≥ D(t)
−ηdPd (t) if S(t) < D(t) (21)

Please also note that while Pc (t), Pd (t) ≥ 0 at any time t , Pnet (t)
can be positive or negative at any time.

According to the battery model in Reference [23], the instanta-
neous available battery capacity is a function of charge/discharge
power to/from the battery. The larger the charge/discharge power
the lower the instantaneous available battery capacity. This means
that apart from the power constraints discussed above, we also
have energy constraints in battery operations. To be more pre-
cise, the battery state of charge b(t) at any time t must satisfy
B1(t) ≤ b(t) ≤ B2(t), where

B1(t) = u1Pd (t) +v1B (22)
B2(t) = u2Pc (t) +v2B (23)

With the above notation, the state of charge of a battery b(t) at any
time t can be, recursively, expressed by

b(t) = [b(t − 1) + Pnet (t)Tu ]B2(t )
B1(t )

(24)

where [.]B2(t )
B1(t )

truncates the inner expression to a lower bound B1(t)
and an upper bound B2(t), or equivalently

b(t) =


B1(t) if b(t − 1) + Pnet (t)Tu < B1(t)
B2(t) if b(t − 1) + Pnet (t)Tu > B2(t)
b(t − 1) + Pnet (t)Tu otherwise

(25)

Recall that LOLP is the probability that at time t the energy to
be withdrawn from the battery reaches the lower battery capacity
boundary (i.e., B1(t)) and hence the demand cannot be met at that
time. Mathematically speaking, this means that

LOLP = P{b(t − 1) + Pnet (t)Tu < B1(t)} ∀t (26)

where b(t − 1) can be computed recursively according to Equa-
tion (24). This recursive equation can be turned into a complicated
min-max non-recursive equation. At any time t , the min-operand
searches, in the range of [0, t − 1], for the last reset time before t ,
which is the last occurrence of a loss of load event. As shown in
Reference [30], instead of applying the min-operand to t scenarios
in [0, t − 1], we can highly accurately approximate LOLP by only
accounting for only two scenarios: (I) the reset time occurs at the
last time slot t − 1 and (II) there has been no reset time t = 0.

Hence, define LOLP I and LOLP II representing LOLP, respectively
under the two scenarios mentioned above and LOLP can be approx-
imated by

LOLP ≈ min
(
LOLP I,LOLP II

)
(27)

Under scenario I, the last reset time always happens at the previ-
ous time slot. The LOLP under this scenario can be closely approx-
imated by a battery-less scenario. This means that LOLP I can be
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approximated by the likelihood that the instantaneous demand is
larger than the instantaneous supply, or mathematically speaking:

LOLP I ≈ P{D(t) > S(t)} (28)

Under scenario II, when there is no reset time until time t , then
the battery state of charge has never reached its lower boundary
and LOLP II is given by:

LOLP II = P

{
B2(0) − sup

0≤s≤t
(−Pnet (s, t))Tu < B1(t)

}
∀t (29)

= P

{
v2B − sup

0≤s≤t
(−Pnet (s, t))Tu < B1(t)

}
∀t (30)

= P

{
sup

0≤s≤t

(
u1Pd (t)
Tu

− Pnet (s, t)
)
<

v2 −v1
Tu

B

}
∀t (31)

where in the second line we assume that the battery is initially full
and Pnet (s, t) is defined as

Pnet (s, t) =
t∑

k=s+1
Pnet (k) (32)

Suppose that G(s, t ;σ ), given by

G(s, t ;σ ) = u1E[Pd (t)]
Tu

−
t∑

k=s+1
E[Pnet (k)] + σ (33)

for some σ ≥ 0 is a sample path envelope on u1Pd (t )
Tu − Pnet (s, t).

This means that for any δ ≥ 0

P

(
sup

0≤s≤t

(
u1Pd (t)
Tu

− Pnet (s, t) − G(s, t ;σ )
)
> δ

)
≈ p1e

−λδ (34)

For any choice of σ , define and compute ω(σ ) to be

ω(σ ) =
[
sup
s,t

G(s, t ;σ )
]
+

(35)

Combining sample path definition with Equation (31), we have

LOLP II ≤

P

{
sup

0≤s≤t

(
u1Pd (t)
Tu

− Pnet (s, t) − G(s, t ;σ )
)
>

v2 −v1
Tu

B − ω(σ )
}
∀t

(36)

While Equation (36) holds as an upper bound on LOLP II for any
choice of σ , we can make this upper bound tighter and use it as
an approximation, when the right-hand side is minimized over all
choices of σ ≥ 0; i.e.,

LOLP II ≈ min
σ
P

{
sup

0≤s≤t

(
u1Pd (t)
Tu

− Pnet (s, t) − G(s, t ;σ )
)

>
v2 −v1
Tu

B − ω(σ )
}
∀t
(37)

Denote σ ∗ the argmin value of the above minimization. Then, com-
bining Equation (37) and Equation (34), yields

LOLP II ≈ pIIe−λ
II(v2−v1Tu

B−ω(σ ∗)) (38)

and finally LOLP can be computed, by inserting Equations (28-38)
into Equation (27). There are three unknowns in Equation (27) to
be evaluated: LOLP I, pII, and λII that can be computed as discussed
next.

5.3.2 Algorithm. We now translate this mathematical presenta-
tion into an algorithm. Suppose that we havem solar generation
traces and n load traces; i.e., Si ,D j , i, j ∈ [1,m], [1,n] respectively.
This leads tomn different sample paths of the stochastic processes
P
i, j
d and P i, jnet for a time horizon of lengthT . We can compute LOLP,
using stochastic network calculus, following these steps in turn:
Step 1: ComputeLOLP I:This is a point-wise probability, expressed
in Equation (28) and can be computed as

LOLP I =

∑m
i=1

∑n
j=1

∑T
t=0 I

(
D j (t) > Si (t)

)
mnT

(39)

where I(x) is the indicator function, which is 1 if x is true and 0,
otherwise.
Step 2: Initialize LOLP = LOLP I and σ = 0.
Step 3: Construct Y i, j,t (σ ) for the given σ : To compute pII and
λII, we should first construct the set of allY i, j,t (σ ) for any ensemble
trace i, j ∈ [1,m], [1,n] and any time t ≤ T , defined as:

Y i, j,t (σ ) = sup
0≤s≤t

(
u1P

i, j
d (t)
Tu

− P
i, j
net (s, t) − G(s, t ;σ )

)
(40)

It can be shown that Y i, j,t (σ ) can be expressed, recursively, by

Y i, j,1(σ ) = u1
Tu

(P i, jd (1) − E[Pd (1)]) − (P i, jnet (1) − E[Pnet (1)]) − σ

(41)

Y i, j,t (σ ) = u1
Tu

(P i, jd (t) − E[Pd (t)]) − (P i, jnet (t) − E[Pnet (t)])

+max
(
Y i, j,t−1(σ ) − u1

Tu
(P i, jd (t − 1) − E[Pd (t − 1)]), −σ

)
(42)

Step 4: Compute pII and λII: Using Y i, j,t (σ ) from the previous
step, pII is the likelihood of Y i, j,t , being positive, or

pII =

∑m
i=1

∑n
j=1

∑T
t=1 I

(
Y i, j,t (σ ) > 0

)
mnT

(43)

and λII can be obtained as the exponent of fitting an exponential
distribution to the following set

λII ∼ Exponential
({
Y i, j,t (σ ) | Y i, j,t (σ ) > 0

})
(44)

Step 5:Update LOLP:ComputeLOLP II, according to Equation (38).
Set if LOLP > LOLP II, update it to LOLP = LOLP II.
Step 6: Vary σ and iterate: Increment σ . If σ < v2−v1

Tu B then, go
back to Step 3. Otherwise, terminate.

5.3.3 Computational complexity. There is a single free parame-
ter σ over which we minimize the LOLP bound. Define s to be the
number of σ values we test. Each test requires O(T ) time to con-
struct the set Y and calculate the parameters of LOLP I and LOLP I I
for each of themn trace combinations. This needs to be repeated
over all combinations of battery and PV panel sizes, hence the total
complexity is O(mnbcsT ).

6 NUMERICAL EVALUATION
For concreteness, we numerically evaluate our approaches using
four years of data collected from a number of homes in the Pecan
Street Dataport [1], and present the results for one typical home in
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Table 1: Battery model parameters

Parameter αc αd u1 u2 v1 v2 ηc ηd
Value 1 1 0.053 -0.125 0 1 0.99 1.11∗
∗includes inverter inefficiencies of ∼10%

the dataset. To evaluate the cost of a particular sizing, we set πC ,
the installed cost of solar panels, to be USD 2.50/W and πB , the cost
of storage, to be USD 460/kWh9, with battery parameters corre-
sponding to a Lithium-Nickel-Manganese-Cobalt battery chemistry
[13, 24] as summarized in Table 1. The battery model is Model 1* in
Reference [23] and we use the simple operating policy of charging
the battery when solar generation exceeds the load, and discharging
the battery when load exceeds solar generation.

Due to the small size of the trace data set (four years of data,
yielding 16 trace pairs), we find the sizing to be quite loose (we
discuss this further in Section 6.3). In order to synthetically increase
the number of available traces, we use the following boosting pro-
cedure: we find the best-fit Gaussian Mixture Model using up to
four components, evaluated using the Bayesian Information Crite-
rion, for each hour of trace data for each season, giving us 24*4 PV
generation and 48*4 load models. We then generate 10 solar and 10
load synthetic traces from these models, giving us 100 trace pairs.

6.1 Convergence
Recall that when using either simulations or optimization, the rec-
ommended sizing is based on a statistical measure (i.e., the Cheby-
shev bound) on the underlying sample of computed sizings. Hence,
it is progressively refined as we evaluate more scenarios (trace
pairs). In contrast, when using SNC, we compute a single envelope
on the entire ensemble of scenarios. Nevertheless, as we add more
scenarios to the ensemble, this results in a convergence of the sizing
determined by the envelope computed from this ensemble.

We illustrate this convergence by showing the mean sizing of
storage B and PV generation C , as a function of the number of sce-
narios, for ϵ = 0.1 in Figure 2. We find that in all three approaches,
mean B (blue) and C (orange) values converge after about 25 sce-
narios. For smaller ϵ , more scenarios are required for convergence.
In the rest of our evaluation we compute results using 25 scenarios.

6.2 Sizing
We now compare the sizing that results from the three approaches
in Figure 3. For the simulation and optimization approaches, we
show the Chebyshev bounds both for the 25 samples that we use to
compute the bound (the outer ellipsoid) and the asymptotic limit
(the inner green ellipsoid). The black dot in the ellipsoid (pointed
to by an arrow) is the least-cost sizing that lies on the upper-right
quadrant of the bounding ellipsoid, and is the sizing recommended
by that approach. The sizing obtained using SNC is a single point,
not a Chebyshev bound, since it uses an envelope that is already
robust to perturbations in the trace.

We see that sizing obtained using optimization is always much
smaller than with the other two approaches. This is not surprising,
given that the optimization approach chooses the optimal oper-
ating strategy, rather than the naïve strategy used by the other
9Source: https://www.tesla.com/powerwall
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Figure 2: Convergence of mean B and C for different ap-
proaches.

approaches. It is also clear that as the LOLP target decreases, the
least-cost sizing increases. Again, this is to be expected. Finally, the
sizing using SNC is comparable, though with a higher value of C ,
than that obtained with simulations.

The gap between the two ellipsoids can be viewed as the gains
from increasing the number of scenarios being evaluated. The gap
is fairly small for high values of ϵ . The gap increases as ϵ decreases,
indicating a higher variability in the sizing and hence a larger
number of traces needed to find a better sizing.

6.3 Robustness
Although our approach to optimization-based sizing is robust, in
that it is insensitive to small perturbations in the input trace, it
is often not possible to use optimization-based sizing in real life,
because it relies on optimal operation of the storage system, using a
policy that cannot be determined in advance. Thus, we only evaluate
robustness of our sizing for the simulation and SNC approaches. To
do so, we first compute the B,C sizing using each of the approaches
and using three years of traces, then test if the fourth year meets the
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Figure 3: Comparing the three approaches for a single house-
hold for three values of ϵ . SNC results are shown as a purple
square. Optimization and simulation results are shown as
red and blue asterisks, respectively, and the ellipsoids repre-
sent sample (outer) and analytical (inner, green) Chebyshev
95% confidence bounds [31]. The black dot on each ellipsoid
represents the lowest-cost system size in the upper-right el-
lipsoid quadrant.

Table 2: Mean computation time (Linux user time)

Method Mean CPU time per scenario (m:s)
Simulation 1:50
Optimization 357:21

SNC 5:28

bound (‘leave-one-out’ analysis). Note that we do not use boosting
in this evaluation, to be as realistic as possible. We summarize the
results of this evaluation in Table 3.

Note that in all cases, the bound of ϵ = 0.1 is met. However,
the sizing is much higher than with boosting (compare these sizes
with the arrows in Figure 3). This is because with fewer scenarios
to evaluate, the Chebyshev bound as well as the SNC envelope, is
quite loose. The sizing can be reduced by increasing the number of
traces in the input trace set (by collecting more data).

Note also that each of the four sizings obtained using a subset of
three years of data results in a substantially different sizing. Even
though this sizing does not result in a violation of the ϵ bound, this
indicates that solar generation and load is highly variable, and also
that many pairs of B, C values are equally effective in meeting the
desired bound.

Though we do not have space to show the results, we find that
with our larger set of synthetic traces, and a similar leave-one-out-
analysis, the sizing computed using SNC or simulations does not
result in any violations of the ϵ bound, further indicating that these
approaches are robust.

6.4 Computation time
Recall that the asymptotic complexity of the optimization approach
is lower bounded byO(mnT 5.5loдT ). The computational complexity
of simulation isO(mnbcT ) and of SNC isO(smnbcT ). Thus, for large
values of T , which is typical, the best approach is simulation.

To determine the impact of asymptotic complexity on typical
computation times, in Table 2 shows themean computation time per
scenario using the three approaches on a 2.7GHz Intel Xeon CPU.
It is clear that simulations take the least time, with optimization
taking two orders of magnitude more.

7 DISCUSSION
7.1 Comparison of the three approaches
Ourwork evaluates three distinct approaches to robust and practical
sizing of solar and storage systems. Over and above the numerical
comparison in Section 6, we now make some qualitative observa-
tions about their relative merits.

Unlike some prior work [14, 16, 21] which solve the joint problem
of optimal sizing and optimal operation, in this work, we study
only sizing. However, with optimization, the operation rules are a
free variable, in that the output of the optimization program is also
the optimal charge/discharge schedule. Note that these operation
rules cannot be used in practice, because the rules depend in detail
on the traces, and the future is unknown. Moreover, the sizing
obtained from optimization may be unrealistically small. If we
could encode operation rules into the optimization program, we
would be able to come up with a sizing that did not have this
coupling. Unfortunately, it is non-trivial, perhaps impossible, to
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Table 3: Leave-one-out analysis

Leave out: Year 1 Year 2 Year 3 Year 4
B C ϵ B C ϵ B C ϵ B C ϵ

SNC 44.6 23 0.021 48.8 21.1 0.017 45.136 22 0.024 45.8 21.2 0.033
Sim. 66.1 14 0.041 75.8 13.9 0.051 41 19.7 0.053 96 13.8 0.042

encode arbitrary operation rules in an optimization program. For
instance, consider the operation rule “Charge the store from the grid
if the SoC is below 0.3 and the grid price is lower than $0.12/kWh."
This couples Pc to the SoC, not just complicating the program but
also making it non-linear, making it difficult to solve efficiently.

There is a similar problem with stochastic network calculus,
where encoding complex charge/discharge operations rules into
Equations (18) and (19) may result in greatly complicating the sub-
sequent analysis. In contrast, the simulation approach is not only
the one with the least time complexity (O(mnbc) vs. O(smnbc) and
O(mnT 5.5)), and also the least running time per scenario, it can be
used with any operating strategy. Thus, from a qualitative perspec-
tive, the simulation approach is perhaps the best one, especially
when combined with a post hoc Chebyshev bound.

7.2 Contributions of our work
Our work makes multiple contributions. To begin with, it is the
first work, to our knowledge, that provides robust and practical
advice on sizing by comparing multiple approaches.

Second, our use of a multivariate Chebyshev bound in combina-
tion with optimal sizing for multiple trace pairs is innovative, and
can be generalized to other robust optimization problems.

Third, the LOLP formulation using SNC in Section 5.3 consid-
erably advances the state-of-the-art in SNC analysis of battery-
equipped systems, such as in References [17, 18]. This is because
the battery model we use in this work is more realistic (and more
complicated). Additionally, we take a different approach in charac-
terizing energy profiles, by modelling net energy demand directly
instead of modelling supply and demand separately. Finally, we use
a bi-variate sample path envelope in this work instead a uni-variate
function as used in Reference [17]. While this may seem like a
small change, a uni-variate sample path identifies any time inter-
val only by the length of the interval, while a bi-variate function
indexes each time interval both by its beginning and ending point.
For stochastic processes with substantial seasonality, such as solar
power, a bi-variate function is a more accurate choice, as it captures
properties that vary over time intervals that have the same size,
but occur at a different time of the day or in different seasons.

7.3 Limitations and future work
Our work suffers from some limitations, as discussed next.

First, we did not consider unmet load as an optimization cri-
terion. It is straightforward to characterize the unmet load using
simulations. Moreover, the optimization problem for unmet load
is a linear program, that is easily obtained as follows: Let δ be the
fraction that we can tolerate, and constrain γ (t) by

T∑
t=1

γ (t) ≤
T∑
t=1

D(t)δ . (45)

This constraint, when added to Equations (1)-(8), results in the
computation of the optimal sizing assuming optimal operation, with
the goal of minimizing the unmet load. However, using stochastic
network calculus to compute a sizing under the constraint that the
probability of unmet load is bounded is quite complex. Hence, we
defer it to future work.

Second, we have assumed that the load is not under our control.
In some cases, it is possible to ask the energy consumers to modify
their behaviour, using a control signal. Thus, for example, a home
owner may be asked to defer a heavy load if the state of charge of
the storage was particularly low. In this situation, it is obvious that
the system sizing can be much smaller. However, sizing a system in
the presence of load control is a much more complex problem, in
that it requires jointly optimizing the storage operation as well as
the load control actions. We intend to explore this in future work.

Third, the computation times presented in this paper are only in-
dicative. For example, both simulations and the stochastic network
calculus algorithm can be tuned, or re-coded in a more efficient
high-level language to improve computation times. Similarly, it is
well known that choice of optimization meta-parameters can also
significantly impact the computation time. Nevertheless, given the
substantial differences in performance, we believe our results are
representative of expected outcomes in practical scenarios.

Fourth, our approach to generating data traces can be improved.
For example, trends in historical solar irradiation can be found
in NREL’s NSRDB [15], and historical weather data on related
variables such as cloud cover could be integrated to refine the
generated values. A model-free approach such as a Generative
Adversarial Network [11] is another alternative to data generation.
Refining the generation of future load and solar power traces will
improve the accuracy of our two-step sizing approach.

Finally, due to reasons of space, we have presented results only
from a single home and from a single location. We will present
more extensive evaluations in an extended version of this paper.

8 CONCLUSION
We evaluate and compare three state-of-the-art approaches to size
solar generation and storage in a realistic setting. Unlike prior
work, which evaluates a single approach and does not evaluate
the robustness of the resulting solution, we compare the sizing
results from these approaches on identical inputs, permitting a fair
comparison. We find that, due to both qualitative and quantitative
reasons, simulation appears to be the best tool for sizing in a realistic
setting. In carrying out our work, we have made contributions to
the state of the art both in the area of stochastic network calculus
and in the use of multivariate Chebyshev bounds to obtain a novel
technique for robust optimization and simulation.
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