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Abstract—Motivated by the increase in small-scale solar in-
stallations used for powering homes and small businesses, we
consider the design of rule-based strategies for operating an
energy storage device connected to a self-use solar generation
system to minimize payments to the grid. This problem is inher-
ently challenging, since strategies depend greatly on the choice
of the tariff structure and forecasts of future generation and
load. We propose an optimization framework for finding optimal
operation strategies and use it to evaluate the performance of an
existing operating strategy that we modified to not use forecasts,
in the context of differential pricing. We also use our framework
to propose a new practical operating strategy for peak-demand
pricing. We simulate the two rule-based strategies using real data
for solar generation and building load, and find that they are able
to achieve near-optimal performance without requiring forecasts.

I. INTRODUCTION

Given the proliferation of photovoltaic (PV) systems and
storage devices and the widespread use of differential grid
tariffs, the use of storage to minimize the payments made by
a home or business owner to the grid is likely to be common
in the near future. In this work, we study practical schemes to
operate storage, that is, decide when to charge or discharge it,
in the context of a home or business owner who would like
to reduce their electricity bill by installing a small-scale solar
PV system.

Three pricing trends are driving the evolution of such
systems towards self-use: 1) the reduction of Feed-in Tariff
(FIT) rates, sometimes below the cost of grid electricity [19]
due to the decline in PV prices; 2) an increase in the cost of
grid electricity (in several jurisdictions) [19], [2]; 3) a decrease
in the price of Lithium-ion batteries [15].

Designing practical strategies for storage operation is a
complex task [20]. An operating strategy has to decide whether
loads should be met from storage or the grid, and when
to make purchases from the grid to top up storage at just
the right times, depending on the expected future loads, the
expected PV generation, and the tariff structure to minimize
the electricity bill of the system owner. PV generation could
also be sold to the grid for profit, reducing the total electricity
bill, and the amount sold would depend on the price and
structure of the FIT.

Although some approaches for storage operation that bal-
ance these conflicting requirements exist today (these are
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discussed in detail in Section 2), they often depend on fine-
grained predictions of future load and PV generation. Fur-
thermore, they have not been rigorously evaluated, making
it difficult to ascertain if better strategies are needed. We
therefore propose an offline optimal oracle that can be used
as a benchmark to evaluate online operating strategies. Specif-
ically, given the pricing scheme and the past measured data
for load and PV generation, the oracle algorithm can compute
the minimum overall electricity bill the system owner could
have paid, as well as the corresponding non-causal optimal
storage operation strategy yielding that bill. This oracle can
be used to evaluate existing operating strategies or to design
new practical (causal) and efficient operation strategies.

We have used this oracle approach to analyze an existing
strategy for storage operation to reduce electricity costs with
time-of-use tariffs [20] and find that it exhibits near-optimal
performance. We have also used our approach to propose a
practical operating strategy for a tariff structure based on peak
demands.

Our contributions are:
• The formulation and solution of an offline optimal integer

linear program for the operation of a PV system with a
storage device in the context of self-use that can find
the non-causal optimal operation strategy for two very
generic pricing schemes.

• A performance evaluation of the operating strategy for
time-of-use pricing proposed by Zhu et al. [20] that we
modified to avoid using forecasts.

• The design and evaluation of a practical operating strat-
egy for peak-demand pricing.

• An investigation into the need for forecasting to obtain
efficient operating strategies for time-of-use and peak-
demand pricing.

II. RELATED WORK

While there is some work on the operation of storage in the
context of a renewable generation system for micro-grids and
localized production systems, almost all work has presented
various optimization-based strategies that require fine-grained
predictions of load and renewable generation.

Ross et al. [16] consider a stand-alone micro-grid with
wind turbine and diesel generator energy sources. They use
hour-ahead predictions for wind and load to optimize the
operation of storage over these predictions for the purpose
of reducing the cost of running the diesel generator. Stand-
alone systems are very different from the system that we
consider. The biggest difference is that there is no pricing
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strategy associated with the alternative sources that are used
to make up for deficits in renewable generation, since the cost
of running a diesel generator is treated as a constant per unit
of energy produced. As a result, storage operation strategies
suited for stand-alone systems are not easily extendable to
grid-connected systems where pricing is a major factor.

Optimal operation of storage typically takes advantage of
price differences in order to minimize the cost paid to the
grid. Chen et al. [5] propose an energy management system
that optimizes the economic operation of a micro-grid. They
propose a day-ahead power forecasting module as well as a
genetic algorithm optimization module to take advantage of
these forecasts and grid price structures. When their fore-
casting module fails to produce an accurate forecast, the
performance of their system can suffer greatly. Li and Dong
[12], [13] consider a system very similar to ours, and tackle the
problem of minimizing the user’s electricity payments. They
consider the cost associated with charging/discharging the
battery, with arbitrary grid pricing structures. They formulate
an optimization problem, and apply Lyapunov optimization
techniques in an online control policy that relies on predictions
of future generation and load. Banos et al. [3] provide a review
of optimization for renewable energy systems.

Dusonchet et al. [10] consider an optimal strategy for
storage operation in the context of differential pricing with
a renewable energy source. They come up with a strategy
that takes advantage of the scheduled pricing and do energy
arbitrage, but do not consider the effects of selling solar power
to the grid and treat renewable generation as “negative load”
rather than a source of power that can be stored in the battery.
Zhu, Mishra et al. [20] also consider operating a PV system
with storage under differential pricing to reduce the users grid
payment. They propose a rule-based control algorithm that
uses aggregate predictions for load and PV generation, which
in practice are more accurate than predicting the load and PV
curves, and evaluate this operating strategy using a number of
real-world data sets, although they have no notion on a lower
bound on grid payments with which to compare their strategy.
In our work, we evaluate their strategy.

Our work differs from the existing research in that we
present an approach for designing efficient rule-based operat-
ing strategies with a focus on avoiding the need for forecasts,
rather than relying on more complex operating methods such
as stochastic model predictive control [8]. This allows us to
avoid additional costs, and makes the system operation very
predictable for the user. We demonstrate our approach on two
pricing schemes, show that there exists an efficient practical
strategy for differential pricing, and design a new strategy for
peak-demand pricing.

III. SYSTEM DESCRIPTION AND MATHEMATICAL MODEL

We consider a typical small solar installation consisting of
(a) a set of PV panels along with associated inverters and
power electronics; the PV output is assumed large enough to
significantly reduce grid use, (b) a Lithium-ion energy storage
device (ESD) along with an associated battery management
system that can either store energy or discharge it, (c) a bi-
directional grid connection that allows load to be met from
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Fig. 1: System model

the grid, the ESD to be charged from it, and for power to be
sold to it, (d) a control component that operates the system in
real time. A Lithium-ion ESD has desirable properties such as
low maintenance and high energy/power density [6], making
it a good fit for the application at hand. Figure 1 illustrates
our system.

The PV system and ESD are assumed to be owned and
operated by a home or small-business owner. The grid is
assumed to charge for any electricity that is supplied, with
the price depending on the pricing scheme being considered.
The grid also purchases any electricity that the system sells.
Importantly, we assume that the cost of buying from the grid
is always higher than the payment for selling to the grid.

TABLE I: Notation

Name Description (units)
System parameters and variables
p′(t) Price per unit of energy sold at time t ($/kWh)
PS(t) Power generated by solar panels at time t (kW)
PL(t) Load at time t (kW)
B Capacity of ESD (kWh)

MD,MC ESD maximum discharge and charge fractions
αc(αd) Charge (discharge) rate limits per unit of storage

(kW/kWh)
ηc(ηd) Charge (discharge) efficiency. Both are ≤ 1
Pg(t) Power drawn from the grid at time t (kW)
Psell(t) Power sold to the grid at time t (kW)
Pc(t) Power used to charge the ESD at time t (kW)
Pdir(t) Power flowing directly from PV and grid to meet the

load or be sold at time t (kW)
Pd(t) Power from the ESD at time t (kW)

EESD(t) Energy content of the ESD at time t (kWh)
Tu, Th Time slot duration, time horizon (hours)

Differential pricing variables
p(t) Price per unit of energy purchased at time t ($/kWh)

Peak-demand pricing variables
Γ Threshold above which the demand price is paid (kW)
πb Base price per unit of energy purchased ($/kWh)
πd Demand price penalty per unit of energy purchased

with power demand exceeding Γ ($/kWh)

We assume a discrete time model, with Tu being the length
of each time slot. For simplicity, we define t to represent the
time interval [t×Tu, (t+1)×Tu), and use the phrase ‘at time
t’ to mean ‘during the time interval [t×Tu, (t+1)×Tu)’. All
the variables are assumed to be constant within a time slot.
The available output power of the PV panels at time t is equal
to PS(t). The PV output power may be used to meet the load
directly, to charge the ESD provided that there is room, or it
can be sold to the grid. The grid can also be used to meet
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the load and/or charge the ESD, with Pg(t) being the power
bought from the grid at time t. The load at time t is equal
to PL(t), and can be met using a combination of PV, grid,
and ESD output. The power sold by the system is denoted
as Psell(t).1 Pdir(t) is the constant power from PV and grid
sources that is used to meet the load directly or sold to the grid
at time t, Pc(t) is the power from the sources used to charge
the ESD, and Pd(t) is the power from the ESD used to serve
the load at time t. The system is subject to some constraints
that we discuss next.

There are some natural constraints on the flow of power
through the system. We require the load to be met at all times,
and the energy being sold comes from either the battery or the
direct link from the grid and PV sources. Thus

Pdir(t) + Pd(t) = PL(t) + Psell(t),∀t ∈ [1, Th]. (1)

In addition, Pc(t) and Pdir(t) cannot exceed the input power
of the system, therefore

0 ≤ Pc(t) + Pdir(t) ≤ PS(t) + Pg(t),∀t ∈ [1, Th]. (2)

We consider the ESD to be a Lithium-Ion battery, with
imperfections modeled as in [7]. The charging and discharging
power for each unit of ESD capacity cannot exceed limits αc
and αd kW/kWh respectively. These limits scale linearly with
the size of the battery. Another constraint is that the battery
must not be charged and discharged at the same time, so we
add a binary variable I(t) to ensure that this constraint is met:

0 ≤ Pc(t) ≤ I(t)Bαc,∀t ∈ [1, Th] (3)
0 ≤ Pd(t) ≤ (1− I(t))Bαd,∀t ∈ [1, Th] (4)

I(t) ∈ {0, 1},∀t ∈ [1, Th] (5)

where B is the capacity of the ESD. In order to prolong the
lifetime of the ESD, maximum discharge and charge limits
MD and MC are enforced:

B ·MD ≤ EESD(t) ≤ B ·MC, ∀t ∈ [1, Th], (6)

where EESD(t) is the energy content of the ESD at the
beginning of interval t. MD and MC are interpreted as
fractions of the total capacity. The ESD loses a fraction of
charging/discharging power due to energy conversion losses,
with the efficiency of the charging/discharging process denoted
as ηc and 1/ηd respectively. 2 If Pc(t)Tu kWh is used to charge
the battery, only a fraction ηc is stored and the rest is lost.
Likewise, to supply Pd(t)Tu kWh to the load, the amount of
energy that must be removed from the battery is Pd(t)Tu/ηd.
The resulting recursive equation expresses the state of charge:

EESD(1) = U (7)

EESD(t+ 1) = EESD(t) + ηcPc(t)Tu −
Pd(t)

ηd
Tu, (8)

where U is the initial energy content.

1The system does not prohibit the immediate selling of power bought from
the grid. In our work, we assume that the pricing structure prevents this from
being a profitable operation, i.e., the cost of buying from the grid is assumed
to always be greater than the cost of selling to the grid.

2In general, ηc and ηd are not equal [9].

A simple operating strategy is to charge the ESD if there is
an excess in PV energy (PS(t) > PL(t)) and discharge it when
there is not enough PV to meet the load (PS(t) < PL(t)).
This strategy was used to maximize self-consumption of PV
generation in [4], and we use it as a simple benchmark below.
Note that this strategy ignores pricing.

We denote p′(t) to be the cost per unit of energy sold to
the grid at time t. We consider the electricity payment to be
the sum of grid payments minus the sum of the Feed-in Tariff
we receive from the grid for selling energy.

We consider two pricing schemes:
Differential Pricing (also called real-time pricing): Let p(t)
be the cost per unit of grid energy at time t. The electricity
payment over the time horizon is thus

Th∑
t=1

(p(t)Pg(t)− p′(t)Psell(t))Tu, (9)

Peak-demand Pricing: The price increases if we are pur-
chasing more than some power threshold Γ from the grid; the
grid charges πb for every unit of energy purchased, with an
additional πd demand price for the power demand that exceeds
Γ. We denote Pover(t) to be the purchased power that exceeds
Γ at time t, thus

Pover(t) = max(0, Pg(t)− Γ) (10)

The electricity payment over the time horizon is then

Th∑
t=1

(πbPg(t) + πdPover(t)− p′(t)Psell(t))Tu (11)

In the next section, we formulate the problem of minimizing
the payment made by the system. We will use the results to
determine if the simple strategy suffices.

IV. PROBLEM FORMULATIONS AND OPTIMAL OPERATION

A. Problem Formulation

In order to obtain the offline optimal operational strategy
(i.e., the oracle), we first assume that our system has complete
knowledge of load and PV generation over the entire time
horizon. This is done only to obtain a benchmark against
which we measure realistic (online) operating strategies. Note
that the oracle does not take the price of the system into
consideration, and focuses only on optimizing the operation
of a given system.

Combining our system constraints, we formulate the prob-
lem of minimizing the electricity payment of the system owner
as an integer linear program (ILP) for the two pricing schemes.

Differential Pricing: Given (PS(t)), (PL(t)), B, MD,
MC, αc, αd, ηc, ηd, U , (p(t)), (p′(t)), Tu, Th:

min
Pdir(t),Pc(t),Pd(t),
Pg(t),Psell(t),I(t)

Th∑
t=1

(p(t)Pg(t)− p′(t)Psell(t))Tu (12)

subject to



4

0 ≤ Pg(t), Pdir(t), Psell(t) ∀t (13)
Pdir(t) + Pd(t) = PL(t) + Psell(t) ∀t (14)
EESD(1) = U (15)

EESD(t+ 1) = EESD(t) + ηcPc(t)Tu −
Pd(t)

ηd
Tu ∀t (16)

0 ≤ Pc(t) + Pdir(t) ≤ PS(t) + Pg(t) ∀t (17)
0 ≤ Pc(t) ≤ I(t)Bαc ∀t (18)

0 ≤ Pd(t) ≤ (1− I(t))Bαd ∀t (19)
I(t) ∈ {0, 1} ∀t (20)
B ·MD ≤ EESD(t) ≤ B ·MC ∀t (21)

Peak-demand Pricing: Given (PS(t)), (PL(t)), B, MD,
MC, αc, αd, ηc, ηd, U , πb, πd, Γ, Tu, Th:

min
Pdir(t),Pc(t),
Pd(t),Pg(t),

Psell(t),Pover(t),
I(t)

Th∑
t=1

(πbPg(t) + πdPover(t)− p′(t)Psell(t))Tu

(22)
subject to
Constraints (13-21)
0 ≤ Pover(t) ∀t (23)
Pg(t)− Γ ≤ Pover(t) ∀t (24)

Note that we do not define Pover(t) to be the equality in
Eq. 10, and instead use two linear constraints to get the same
effect.

B. Parameter values

We solve the ILPs using the following values for the
parameters. PS(t) and PL(t) are real traces from Hochschule
Landshut University of Applied Sciences in Germany for nine
months, April through December in 2014, with measurements
every five minutes (Tu = 1/12 hours). The maximum ob-
served load is ≈24kW, while the maximum observed PV
output is ≈25kW. The ESD is set to mimic a Lithium-Ion
battery with MD = 0.1, MC = 0.9, αc = 0.33, αd = 1.67,
ηc = 0.85, and ηd = 1 [18]. We assume that the battery has
minimal charge at t = 0, i.e., U = B ·MD. The capacity of
the battery B ranges from 10 to 100kWh.

To mimic the fixed-rate contracts for buying solar power
that are seen in practice, we set the selling price p′(t) to be a
constant p’ equal to $0.12 per kWh, the approximate FIT in
Germany as of August 2015.

Differential Pricing: Our formulation obtains the optimal
strategy for any real-time pricing scheme. For the numerical
results, we consider a common type of differential pricing
called time-of-use (ToU) pricing. We set a high price p1 during
the day [8am, 8pm) and low price p2 during the night [8pm,
8am), resulting in a pricing that follows the typical demand
shape for user electricity load. We fix p2 to be $0.25 per kWh,
a typical spot-price in Germany during the night [14], and vary
p1 from $0.375 to $0.75.

Peak-demand Pricing: We set Γ = 9.06kW , correspond-
ing to the 80th percentile of load measurements over the nine
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Fig. 2: Cost reduction percentage from using the optimal
strategy over the simple strategy.

month period. The base price πb is set to $0.25, and the
demand price πd is varied from $1.50 to $2.50.

Note that for both pricing schemes, the lowest price for
purchasing power from the grid is less than the payment
obtained by selling power to the grid, effectively preventing
grid arbitrage.

C. Optimal Operation
In Figure 2, we compare the cost savings from using the

optimal strategy instead of using the simple strategy, which
we simulated on our system using the same inputs that were
used to solve the ILP. We see significant cost savings when
the optimal strategy is used, indicating the need for a better
operating strategy than the simple price-agnostic one. These
savings increase with increasing the pricing free variable, and
increasing battery size, although there is a critical battery size
beyond which we see no increase in cost reduction for a finite
time horizon.

To realize these gains, the optimal strategy takes advantage
of the precise knowledge of the future, both in terms of load
and PV generation. We are aware that a deployment of this
optimal approach on a real system would require accurate
forecasts, and it is unclear how forecasting errors affect the
performance of the system. However, the non-causal optimal
strategy provides us valuable insights on which to base the
design of a practical strategy.

D. Insights
To gain insights into the operation of the ILP, we visual-

ize the optimal charging and discharging patterns over time
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Fig. 3: Visualization of the optimal strategy for peak-demand
pricing over three days. PV, Load, and battery SoC are shown.
Selling, charging, and discharging events (but not quantities)
are also depicted.

against the PV generation, load, ESD state of charge (SoC),
and grid price curves. In the interest of space, in the rest of
the paper we discuss peak-demand pricing results in greater
detail than differential pricing results. Figure 3 is an example
for three days with the peak-demand pricing scheme. Some
key observations from visualizing the strategy in this way are:

Observation 1: If there is an upcoming period where PV
output is not enough to meet the load and the difference
between them is greater than Γ, then the battery discharged
only to make up for the remaining load so that grid use does
not exceed Γ. If there is no such period in the near future, then
the battery is discharged whenever PV output is not enough to
meet the entire load, with the grid being used as a last resort.

Observation 2: The grid is used to charge the battery on
some days if PV output in the near future is going to be low
and the battery does not have enough charge to keep grid use
from exceeding Γ during that time. The charge level depends
on the severity of the PV deficit in the high-price period; less
PV generation or more load increases the amount of charging
that is done. If the grid is used to charge the battery, it is done
when the resulting grid use would not exceed Γ.

Observation 3: The system sells power to the grid only
when the storage is full and load has been met. Only PV power
is sold, since it is not profitable to sell grid power because of
the negative price difference, and discharging the ESD to sell
power is also non-optimal due to efficiency losses incurred
when the ESD is charged again. This means that the selling
price has no effect on the optimal strategy, as long as it is less
than the low grid price.

Observation 4: The optimal strategy is the same as long
as the grid price ratio (p1/p2) is above a threshold where grid
charging is profitable, which is determined by the round-trip
efficiency of the battery. This is not evident from Figure 3,
and was discovered by varying the price ratio and comparing
optimal strategies for each ratio.

In effect, the optimal strategy for peak-demand pricing is

trying to balance two competing risks:
1) The risk of grid use exceeding Γ. We can avoid paying

the high demand price by using the battery as a back-up
to keep the grid usage below Γ. This risk is minimized
if the ESD is charged fully at all times except for when
it is needed to prevent grid use from exceeding Γ

2) The risk of wasting PV output. If PV generation
exceeds the load and the ESD is fully charged, then the
excess generation is sold to the grid for a low price rather
than being stored and used to offset. purchasing grid
power at a later time. This can be avoided by discharging
the battery whenever PV generation is not enough to meet
the load, in order to make room for storing excess PV
generation in the future. This risk is minimized by having
the ESD be empty as often as possible.

A similar visualization of the optimal strategy can be
used for the ToU pricing scheme. After doing so, we have
observed that the optimal strategy for ToU pricing balances
two competing risks that are similar to the ones observed for
peak-demand pricing. They are:

1) The risk of using the grid during the day. We can avoid
paying high prices during the day by charging the ESD
from the grid at night when prices are low, and using that
energy during the day. This risk is minimized if the ESD
is charged fully at the start of the high-price period.

2) The risk of wasting PV output during the day. This can
be avoided by discharging the battery at night (to meet
the load at night) to make room for excess PV generation
during the day. This risk is minimized by having the ESD
be empty at the start of the high-price period.

Using these insights, we next look at practical strategies that
improve on the simple strategy.

V. OPERATING STRATEGIES

We assume that the system control knows at time t, PS(t),
PL(t), and EESD(t), and is responsible for computing Pg(t),
Pc(t), and Pd(t). It also has knowledge of the pricing scheme.
Our goal is to come up with an algorithm, i.e., a set of rules
for the controller that uses the available limited information
to reduce the grid payments of the PV and storage system
owner. A practical strategy decides the operation of the system
at any time by relying on easily-obtained information to make
decisions. The algorithms that we describe in this section rely
on measurements and (possibly) predictions, make feasible
control decisions, and have very low time complexity; thus
they can be easily implemented on a real system. In the
following, we describe an existing strategy [20] for two-period
ToU pricing that makes decisions based on a parameter Xj ,
that refers to the amount of energy in the ESD at the start of
the jth high-price period. We also present a new strategy for
the peak-demand pricing case which uses a single parameter Y
that refers to the amount of energy in the ESD that we maintain
to use as a back-up to avoid paying the demand price.

A. Strategy for ToU Pricing

We interpret the pseudo-code given by Zhu et al. [20] and
apply it to our system with some minor modifications as
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Algorithm 1. We use the notation [z]+ to represent max(0, z).
In a nutshell, their algorithm has two main cases, depending on
the price period. During the high price period, the algorithm
behaves like the simple strategy, charging only with excess
solar and discharging whenever needed to avoid using the
grid. During the low price period, the algorithm is effectively
preparing to avoid using the grid in the next high price period.
The battery is charged if its energy content is below Xj , and
allowed to be discharged if it is above Xj . The modifications
are:

Modification 1: The algorithm in [20] was not designed to
consider the opportunity to sell power to the grid, and instead
curtails the PV power if it cannot be used or stored. In the
optimal strategy, only the excess solar power is sold, so we
modify the algorithm to do the same, i.e., Psell(t) = [PS(t)−
PL(t)− Pc(t)]+.

Modification 2: The algorithm in [20] charges the battery
(if needed) as soon as possible using PV and grid sources
once a decision is made for it to be charged, in order to
have enough energy to meet the demands of the upcoming
high-price period. We modify the algorithm to charge at the
latest possible time, i.e., right before the start of the high-price
period. This is done to give the battery a chance to be charged
with excess PV power before the high-price period starts in
order to minimize grid use.

Algorithm 1 Storage operation at any time t

if t is in a low-price period then
if EESD(t) < Xj and tjstart − t ≤ Xj−EESD(t)

Bαcηc
then

Pc(t) = min
(
Xj−EESD(t)

ηcTu
, Bαc

)
,

Pd(t) = 0,
Pg(t) = [PL(t)− PS(t) + Pc(t)]+

else
Pc(t) = min

(
[PS(t)− PL(t)]+, Bαc,

BMC−EESD(t)
ηcTu

)
,

Pd(t) = min
(

(EESD(t)−Xj)ηd
Tu

, Bαd, [PL(t)−

PS(t)]+

)
,

Pg(t) = [PL(t)− PS(t)− Pd(t)]+
end if

else if t is in a high-price period then
Pc(t) = min

(
[PS(t)− PL(t)]+, Bαc,

BMC−EESD(t)
ηcTu

)
,

Pd(t) = min
(
EESD(t)ηd

Tu
, Bαd, [PL(t)− PS(t)]+

)
,

Pg(t) = [PL(t)− PS(t)− Pd(t)]+,
end if
Psell(t) = [PS(t)− PL(t)− Pc(t)]+

The algorithm is critically dependent on the parameters Xj .
A well chosen Xj value balances the risks of having to sell PV
generation for a low selling price and using the grid during the
high-price period that were discussed in the previous section.
Zhu et al. propose that Xj should be dynamic, with the
controller predicting the PV generation and load for the high-
price period of the upcoming day and setting Xj to be the

difference, i.e.:

Xj = min(B ·MD,

max
(
B ·MC,

tjend∑
t=tjstart

((PL(t)− PS(t))Tu

)
(25)

where tjstart and tjend are the start and end times of the
high-price period of day j. We will refer to this as the ‘day-
ahead X’ strategy, and consider this to be a practical approach
because the required predictions are only for aggregate values,
rather than fine-grained load and PV generation curves. As
it turns out, this method of choosing Xj is very close to
what is done in the optimal strategy, as shown in Figure 4.
In the case where predictions for day-ahead PV and load are
unavailable or unreliable, or if we wish to avoid predictions
altogether, we propose to simplify the problem of selecting
the Xj’s by forcing Xj = X for all j’s. We will refer to this
as the ‘static X’ strategy. Note that, in practice, the controller
would choose the value of X based on data sets measured in
the past at the premises and use the best value of X for the
given grid prices and the given battery size. It is possible that
the best X for a given location, grid prices, and ESD size is
seasonally dependent; we defer this analysis to future work.
In our evaluation, we evaluate the performance of the static
and day-ahead X strategies separately.

B. Strategy for Peak-demand Pricing

Our operating strategy for peak-demand pricing is devel-
oped using our observations on the optimal strategy. Our
strategy uses a static parameter Y , which is the amount of
energy we try to have stored to act as a backup when the
load exceeds Γ. We will refer to this strategy as ‘static Y ’.
The strategy is split into two operating modes, depending on
whether the energy content of the battery is above or below Y
kWh. The mathematical expressions for defining each mode
are more complex than those in Algorithm 1, so instead we
describe the strategy as a sequence of priorities for the flow
of power through the system:

Mode 1: if EESD(t) ≤ Y
1) PV power is used first to meet the load that exceeds

Γ, then to charge the battery to Y . PV is then used to
meet the rest of the load, and then to charge the battery
if all the load has been met; remaining power is sold.

2) The battery is then discharged only if needed to meet
the load that exceeds Γ.

3) The grid is used to meet the remaining load, and then
to charge the battery to Y as long as grid use does not
exceed Γ.

Mode 2: if EESD(t) > Y
1) PV power is used to meet the load, then to charge the

battery. The remaining power is sold.
2) The battery is discharged to meet any load that exceeds

Γ. The battery can then be further discharged, provided
that the battery energy content doesn’t go below Y .

3) The grid is used to meet any remaining load.
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Fig. 4: Optimal Xj plotted against the day-ahead difference in load and PV generation. The line represents the choice of
day-ahead Xj as proposed by Zhu et al. [20].

Just like the static X strategy, the Y value does not require
forecasting and can be chosen by training the algorithm
on historical data. In our numerical examples, we compare
all these strategies and observe their performance through a
simulation campaign of the system.

VI. RESULTS AND DISCUSSION

We simulate our system with a Lithium-Ion battery using
our proposed operating strategies, as well as with the simple
strategy for comparison. Our performance metric is the cost
increase relative to the grid payments with the optimal strategy.
Given a non-optimal strategy S, the relative cost increase is

Cost(S)− Cost∗

Cost∗
(26)

where Cost∗ is the cost given by the oracle. The battery size
varies between 10 and 100kWh, which is a realistic range for
the given PV and load traces. We look at differential (ToU) and
peak-demand pricing with the same prices as in Section IV-B.
For determining the X and Y parameters, we incorporate a
training and test set. We use data from April, June, August,
October, and December to learn the best static X and Y , and
use them to test on May, July, September, and November data.

A. Differential Pricing Results

Figure 5 shows the cost reduction potential for each strategy.
The day-ahead X strategy performs near-optimally for all the
tested battery sizes and grid price values as long as we are
able to perfectly predict the aggregate PV and load for the
next high-price period. The static X strategy also provides
significant improvement, and works best when the relative
difference in day/night grid prices is large and/or battery size
is small. A smaller battery benefits little from prediction,
partly because there is less flexibility to decrease the electricity
payments. Altogether, one might interpret these results as
saying that there is no need for forecasting. The effects of
varying the selling price were tested and were minimal because
with our traces, very little energy is sold in all the strategies we
consider. Indeed, our strategies are designed to use or store as
much PV power as possible, with selling used as a last resort.

In order to test the robustness of the day-ahead strategy
to prediction errors, we introduce errors into our simulation.

Battery Size
(kWh)       
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0.8
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Fig. 5: Cost increase across different battery sizes and p1
values for the three strategies for TOU pricing.
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Fig. 6: The effect of prediction error on the day-ahead strategy
performance. p1 = 0.50, p2 = 0.25.
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Fig. 7: Cost increase across different battery sizes and πd
values with peak-demand pricing of simple, static Y , and back-
up strategies. πb = $0.25

Prediction errors, as a percentage of the actual value, are
introduced by sampling a normal distribution with a mean
of zero and applying it to the actual aggregate PV genera-
tion calculated for each day’s high price period. This is a
reasonable prediction error distribution according to results
from [17]. Similarly, we apply errors to the aggregate load
predictions. The standard deviation σ of the error distribution
is the same for the two distributions, and is varied between
10% and 30%. We simulate the system with these prediction
error distributions 5000 times to obtain an average grid cost
of the system over the time horizon for each σ. Figure 6
shows the effect of error on the day-ahead strategy. Prediction
errors further the conclusion that the day-ahead strategy is
only marginally better than our static strategy. With substantial
prediction errors (σ = 30%) for both load and PV, the average
performance is almost identical to the static strategy for all the
battery sizes and price ratios we tested.

B. Peak-demand Pricing

For peak-demand pricing, a second existing operational
strategy, in addition to what we refer to as the simple strategy,
is currently in commercial use, for example by Stem [1],
a company that provides energy storage and management
services. This strategy is designed for peak-demand pricing
but does not consider a PV power source. It aims to use
storage solely to prevent grid use from exceeding the demand
threshold. We refer to this strategy as the ‘back-up’ strategy
(because it is used as a back-up power source), and model it
as always being in Mode 1 of our static Y strategy, i.e., set
Y = B ·MC, the upper limit on the battery capacity.

In Figure 7, we compare the relative cost increase of the
simple, static Y , and back-up strategies. Our static Y strategy
exhibits near-optimal performance. The back-up strategy also
exhibits a noticeable improvement over the simple strategy,
though not as good as the static Y strategy. This is not
surprising, since the back-up strategy is a special case of the
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25
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0
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Fig. 8: Cost increase with varying selling price and battery
size. πb = $0.25 and πd = $2.00.

static Y strategy. The back-up strategy performance degrades
when the selling price is decreased, as shown in Figure 8.
This is because the battery is almost always kept full, and
is unable to store excess PV generation. Once again, these
results suggest that forecasting might not be necessary, as the
potential decrease in grid payments is less than 5%.

C. Insights

Our work provides three key insights.
First, the role of storage in this system is two-fold. On the

one hand, it is used to store energy during low-price periods to
reduce grid use during high-price periods or periods of high
demand. On the other hand, it is used to store excess solar
production (over demand) to reduce grid use during times of
low (or zero) solar production. These two roles are sometimes
mutually opposed, where under some circumstances, it is
better to have the store fully charged, whereas under other
circumstances, it is best to have it fully discharged. This is
why our heuristic strategies focus on Xj and Y as the critical
tuning parameters, in an effort to find the best balance between
the two uses.

Second, our design approach is based on two steps. In the
first, we assume perfect knowledge of the future to find the
offline optimal control strategy. Then, we use insights gained
from this strategy to create online near-optimal strategies. We
believe that this general approach can be used in many other
problem domains.

Third, we proposed rule-based strategies that do not rely
on forecasting. In the ToU pricing case, we found that adding
some aggregate forecasting can result in slightly better per-
formance, and it is questionable if this benefit is worth the
cost of the additional complexity, given that our static strate-
gies already exhibit near-optimal performance when trained
on representative data. Our approach to designing operating
strategies, with a focus on avoiding complexity (i.e., forecast-
ing, online optimization), has shown promising results.
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D. Limitations

Although our work has made what we believe to be signif-
icant contributions, it is not without its limitations, the main
one being that our analysis does not consider the amortized
cost of using the battery, which ought to be a cost applied to
the discharge process of the battery. In our defence, Lithium-
Ion batteries have a long lifetime, rated up to 15,000 charge-
discharge cycles [11], and go through roughly only about 1.5
cycles per day on average3 if the battery and PV system are
sized to meet a significant portion of the load (as we do).
This translates to a battery cycle lifetime of up to 30 years, so
incorporating this into our analysis is not likely to significantly
change the results.

Our operating strategies could also be augmented to take
into account seasonal variations in PV production and load,
which may result in additional performance improvements.
Addressing these limitations opens up several interesting av-
enues for future work.

VII. CONCLUSION

Lower PV prices and the impending widespread deployment
of Lithium-Ion storage, combined with rising utility prices
and the reduction of Feed-in Tariffs, are likely to make self-
use of PV generation much more widespread in the near
future. We focus on evaluating and demonstrating how to
come up with strategies of storage operation for a system
with PV generation, using jurisdictions with differential or
peak-demand prices as our examples. We have modified an
existing algorithm for differential pricing and developed a
novel algorithm for peak-pricing, both of which do not rely on
forecasts to achieve near-optimal performance in real operating
scenarios.
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