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Abstract—In this paper, we introduce Mayflower, a new dis-
tributed filesystem that is co-designed from the ground up to
work together with a network control plane. In addition to the
standard distributed filesystem components, Mayflower includes
a flow monitor and manager running alongside a software-defined
networking controller. This tight coupling with the network
controller enables Mayflower to make intelligent replica selection
and flow scheduling decisions based on both filesystem and net-
work information. Mayflower can perform global optimizations
that are unavailable to conventional network-aware distributed
filesystems and network control planes. Our evaluation results
from both simulations and a prototype implementation show that
Mayflower reduces average read completion time by more than
25% compared to current state-of-the-art distributed filesystems
with an independent network flow scheduler, and more than 75%
compared to HDFS with ECMP.

Index Terms—Distributed filesystems; Network flow schedul-
ing; Replica selection; Software-defined networks

I. INTRODUCTION

Many data-intensive distributed applications rely heavily on a
shared distributed filesystem to exchange data and state between
nodes. As a result, distributed filesystems are often the primary
bandwidth consumers for datacenter networks, and file place-
ment and replica selection decisions can significantly affect the
amount and location of network congestion. Similarly, with
oversubscribed network architectures and high-performance
SSDs in the datacenter, it is becoming increasingly common
for the datacenter network to be the performance bottleneck
for large-scale distributed filesystems.

However, despite their close performance relationship,
current distributed filesystems and network control planes
are designed independently and communicate over narrow
interfaces that expose only their basic functionalities. Most
network-aware distributed filesystems only use static network
information in making their filesystem decisions and are not
reciprocally involved in making network decisions that affect
filesystem performance. Therefore, they are only marginally
effective at avoiding network bottlenecks.

An example of a widely used network-aware distributed
filesystem is HDFS [1], which makes use of static network
topology information to perform replica selection based on
network distance. However, network distance does not capture
dynamic resource contention or network congestion. Moreover,
in a typical deployment with thousands of storage servers and
a replication factor of just three [2], it is highly likely that
a random client will be equally distant to all of the replica

hosts. In this scenario, HDFS is effectively performing random
replica selection for the vast majority of requests.

The poor performance of remote reads has led to the
adoption of distributed data processing frameworks, such as
MapReduce, that move computation to the data. Although this
approach is effective for many workloads, there is a large
class of workloads, such as large-scale sorts, distributed joins,
and matrix operations [3], [4], that require data movement.
Even for workloads where moving computation to the data is
possible, improving the performance of remote reads can still
greatly simplify job scheduling as computational nodes can be
decoupled from storage nodes.

Sinbad [5] is the first system to leverage replica placement
flexibility in distributed filesystems to avoid congested links
for their write operations. It monitors end-host information,
such as the bandwidth utilization of each server, and uses this
information together with the network topology to estimate the
bottleneck link for each write request. Sinbad is a significant
improvement over random or static replica placement strategies,
but by working independently of the network control plane, it
has a number of limitations. For example, by not accounting for
the bandwidth of individual flows and the total number of flows
in each link, Sinbad cannot accurately estimate path bandwidths,
which can sometimes lead to poor replica placement decisions.
Bandwidth estimation errors would be even more problematic if
a Sinbad-like approach was used for read operations since, with
only a small number of replicas to choose from, selecting the
second best replica instead of the best replica can significantly
reduce read performance.

In this paper, we introduce Mayflower, a novel distributed
filesystem co-designed from ground up with a Software-Defined
Networking (SDN) control plane. Mayflower consists of three
main components: Dataservers that perform reads from and
appends to file chunks, a Nameserver that manages the file
to chunk mappings, and a Flowserver running alongside the
SDN controller that monitors the bandwidth utilization at the
network edge, models the path bandwidth of the elephant flows
in the network, and performs both replica and network path
selection for client requests. In addition to Mayflower read
requests, the Flowserver can perform path selection for other
applications, such as selecting a machine for task scheduling,
through a public interface.

The main advantage of using an SDN/filesystem co-design
approach is that it enables both filesystem and network
decisions to be made collaboratively by the filesystem and



network control plane. For example, when performing a read
operation, instead of first selecting a replica based on network
information and then choosing a network path connecting the
client and the replica host, Mayflower can evaluate all possible
paths between the client and all of the replica hosts.

Furthermore, Mayflower’s tight integration with the network
control plane enables it to directly minimize average request
completion time. Unlike optimizing for the bandwidth metrics
used in previous systems [5], minimizing average request
completion time requires accounting for both the expected
completion time of the pending request, and the expected
increase in completion time of other in-flight requests. This is
significantly more difficult for a filesystem or flow scheduler
to do independently, and we show in our evaluation that this
is critically important for achieving good read performance.

Finally, Mayflower can also use flow bandwidth estimates
to determine if reading concurrently from multiple replica
hosts will improve performance, and what fraction of the file
should be read from each replica to maximize the performance
gain. This allows Mayflower to choose paths that individually
have low bandwidth, but together provide higher aggregate
bandwidth than other path combinations.

II. BACKGROUND AND RELATED WORK

In this section, we outline past work on distributed filesys-
tems, replica selection, and network path selection. We also
describe the results of previous studies on datacenter network
traffic and explain how they relate to distributed filesystem
design.

A. Distributed Filesystems

Big-data applications rely heavily on distributed filesystems
for storing and retrieving large datasets. Several large-scale
distributed filesystems have been developed including Google
File System (GFS) [2], Hadoop Distributed File System
(HDFS) [1], Quantacast File System [6], Colossus [7], and
SpringFS [8]. Many of these filesystems are network-aware
and can take advantage of network topology information to
select the closest replica to service a read request. Mayflower’s
basic filesystem design is similar to these existing distributed
filesystems. However, instead of simply being network aware,
Mayflower is co-designed from the ground up with a software-
defined network. This allows it to take advantage of additional
cross-layer optimization opportunities.

B. Network Traffic Characteristics

A study using Facebook and Microsoft datacenter traces [5]
reports that distributed filesystems contribute from 54% to
85% of the total datacenter network traffic. Therefore, with
such a significant network requirement, the performance of
a distributed filesystem can be very sensitive to network
conditions. Specifically, in oversubscribed networks, the over-
subscribed portions of the network often become performance
bottlenecks [9].

Most distributed filesystems address network bottlenecks by
taking advantage of network locality, which reduces the need to

service requests from distant parts of the network. Alternatively,
a full-bisection bandwidth network can be used to avoid
these bottlenecks [3]. However, oversubscribed hierarchical
topologies are still prevalent, as reported in several network
measurement studies [9], [5], [10], [11], [12], [4]. Moreover,
the increasing popularity of SSDs and in-memory applications
suggest that the network will remain the primary bottleneck
for many distributed datacenter applications.

C. Leveraging Data Locality

Placing data consumers close to the data can reduce the
network footprint of file read operations. For example, in
MapReduce, the Map tasks are typically scheduled on the
same machine as where the data is located. This may lead to
poor performance if the machine is a straggler because it is
overloaded or occupied with a different MapReduce job. This
problem can be partially addressed by selectively increasing
the replication factor of popular data [13], or by modifying
the job scheduler to limit resource contention [14]. However,
these approaches either require additional resources, or is only
effective when there is a queue of jobs that are waiting to run.

Many computational tasks, such as data sorting, distributed
joins, and matrix operations, are solved using specialized
computational frameworks and require data movement over
network as part of the computation [3]. Moving consumers to
the data is only partially effective for these tasks. A previous
study [5] has found that, even by taking advantage of data
locality, 14% of Facebook traffic and 31% of Microsoft traffic
are from remote distributed filesystem read operations.

D. Replica Placement

Most distributed filesystems place replicas across multiple
fault domains in the network for fault tolerance. By having
multiple replicas in different parts of the network, a filesystem
client can reduce the use of oversubscribed links by issuing
read requests to its closest replica.

Sinbad [5] recognizes that there is significant flexibility in
selecting replica locations. It improves write performance by
selecting replica locations that avoid network congestion while
meeting fault tolerance requirements. Sinbad relies on end-point
network information to infer in-network link utilization.

E. Network Traffic Engineering

In order to take advantage of path diversity in a datacenter
network, protocols such as ECMP [15] randomly select a
path from the available shortest paths for each flow. This
approach works well for short unpredictable flows, but may
lead to persistent congestion on some links for elephant flows.
Hedera [16] and MicroTE [17] address this problem by making
centralized path selection decisions using global network
information. In these systems, elephant flows or predictable
short flows are identified and moved to non-conflicting paths
to reduce network congestion. Alternatively, decentralized
protocols, such as MPTCP [18] and LocalFlow [19], use only
local information to make path selection decisions. Mayflower
introduces a centralized multipath scheduling algorithm where,
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Fig. 1. Mayflower system components and their interaction in a file-read
operation.

for a read request, the data source can be any one of the
available replicas instead of a single pre-selected replica.

III. DESIGN OVERVIEW

In this section, we first describe our assumptions regarding
the typical usage model for Mayflower and detail the properties
of Mayflower’s target workload. We then provide the details
of its system architecture.

A. Assumptions

Our design assumptions are heavily influenced by the
reported usage models of Google filesystem (GFS) and HDFS.
Mayflower assumes the following workload properties:
• The system only stores a modest number of files (on the

order of tens of millions). File sizes typically range from
hundreds of megabytes to terabytes. The metadata for the
entire filesystem can be stored in memory on a single
high-end server.

• Most reads are large and sequential, and clients often
fetch entire files. This is representative of applications that
partition work at the file granularity. In these applications,
clients fetch and process files one at a time, and the file
access pattern is often determined by the file contents.

• File writes are primarily large sequential appends to files;
random writes are very rare. Applications mutate data by
either extending it through appends, or by creating new
versions of it in the application layer and then overwriting
the old version using a move operation.

• The workloads are heavily read-dominant. Read requests
come from both local and remote clients.

• The network is the bottleneck resource due to a combi-
nation of high performance SSDs, efficient in-memory
caching, and oversubscription in datacenter networks.

B. Architecture

Mayflower’s basic system architecture consists of three main
components: Dataserver, Nameserver, and Flowserver. The
design principles of Dataserver and Nameserver are the same
as their counterparts in GFS and HDFS. Therefore, we leave
out their details and only discuss them briefly in this section.
Dataserver: The Dataserver stores actual file data. Each file is
partitioned into chunks of configurable size. The chunk size

is a system-wide parameter that is typically equal to or larger
than 128 MB. Each file is represented as a directory in the
Dataserver’s local filesystem. The file-chunks are stored as
individual files along with other metadata information in the
file’s directory. Each file has a primary Dataserver, which is
responsible for ordering all of the append requests for the file.
The primary Dataserver relays append requests to the other
replica hosts while servicing the request locally. In order to
support atomic append requests, the Dataserver only services
one append request at a time for each file.

Nameserver: Nameserver stores the metadata of the filesystem,
including the file-to-chunks and file-to-Dataservers mappings.
Clients contact the Nameserver when they need to create
or delete a file, or lookup the size of a file, and cache the
results for a Nameserver-specified amount of time to reduce
lookup traffic. The mappings in the Nameserver are stored in
a persistent database to speed up Nameserver restarts after a
graceful shutdown. After an unexpected restart, instead of
reading from the possibly stale database, the Nameserver
rebuilds the mappings by scanning the files stored at the
Dataservers.

For replica placement decisions, Nameserver takes into
account system-wide fault-tolerance constraints, such as the
replication factor and the number of fault domains. Currently,
the Nameserver makes replica placement decisions using only
static network topology information. This is because the focus
of this work is on improving read performance for read-
dominant workloads.

Nameserver is designed as a logically centralized service.
We can improve its fault-tolerance by replicating its state across
multiple nodes using a state machine replication system such
as Paxos [20].

Flowserver: The Flowserver’s primary task is to select both
the replica and the network path for the Mayflower read
operations. The Flowserver models the whole network and
make its selections based on the estimated current network
state. It builds its network model by tracking the network
paths assigned to the read and write requests, and estimating
the network utilization of each flow. The Flowserver can work
together with existing network managers, such as DIFANE [21]
and DevoFlow [22], to identify non-Mayflower-related elephant
flows and estimate their bandwidth utilization. Using this model,
the Flowserver can select a replica and path combination that
minimizes the average completion time of all non-mice flows
in the network, including existing network flows.

As the Flowserver does not explicitly control the bandwidth
usage of each flow through bandwidth reservations, the network
utilization estimates are often inaccurate. To avoid error
propagation and reduce the effect of inaccuracy, the Flowserver
periodically fetches the flow-stats from the edge switches. The
flow-stats give the recent byte-counts for the flows. As the
flow-stats are not collected very frequently, these byte-counts
translate to the approximate bandwidth usage of the flows
and their remaining size. These approximations reduces the
inaccuracy in our estimations during replica and path selection.



In between measurements, the Flowserver tracks flow add
and drop requests for the read jobs, and recomputes an estimate
of the path bandwidth of each affected flow after each request.
This ensures that completion time estimates are accurate, and
also reduces the need to poll the switches at short intervals. The
polling interval defaults to three seconds in our implementation.
The Flowserver can be implemented as an integrated application
in an existing SDN controller or as a standalone application
that interacts with the SDN controller to perform path setup
and to retrieve flow-stats information.
File read operation: Figure 1 illustrates Mayflower components
and their interactions with a client in a file-read operation.
In this example, the file reader contacts the Nameserver
to determine the replica locations of its requested file and
then contacts the Flowserver to determine which replicas to
read from. The Flowserver executes its replica-path selection
algorithm (§ IV-B) for replica and path selection. In addition
to selecting replicas, the Flowserver also installs the flow path
for the request in the OpenFlow switches. Finally, the client
contacts the Dataservers to retrieve the file.
Append-only semantics: Mayflower provides file-specific tun-
able consistency to its clients. In order to reduce reader/writer
contention and consistency-related overhead, Mayflower does
not support random writes. Instead, files can only be modified
using atomic append operations. Random writes can be
emulated in the application layer by creating and modifying a
new copy of the file and using a move operation to overwrite
the original file.

C. Consistency

By default, Mayflower provides sequential consistency for
each file where clients see the same interleaving of operations.
This requires that all append requests are sent and ordered
by a file’s primary replica host. Upon receiving an append
request, the primary replica host relays the request to the
other replica hosts while performing the append locally,
and the append completes once the primary receives an
acknowledgment from all of the replica hosts. Clients can
however send read requests to any replica host and coordination
between hosts is not required to service the read request.

Alternatively, Mayflower can be configured to provide
linearizability with respect to read and append requests. The
traditional approach to ensure strong consistency is to order
all requests by the file’s primary replica. However, Mayflower
leverages its append-only semantics to only require sending
the last chunk’s read requests to the primary replica host.
All other chunk requests can be sent to any of the replica
hosts since every chunk except the last one are essentially
immutable. Therefore, for large multi-gigabyte files, the vast
majority of chunks can be serviced by any replica host while
still maintaining strong consistency. The only limitation to this
approach is that it cannot provide strong consistency when
read and append requests are interleaved with delete
requests. Files that are deleted can temporarily appear readable
due to client-side caching of the file-to-Dataserver mapping.
However, we believe that this is a reasonable tradeoff for

improving read performance given that delete requests are
relatively rare.

Providing linearizability with interleaving delete requests
can be achieved in the following way: When the Nameserver
receives a delete request, it marks the file for deletion, but
delays the delete for T time, where T is the maximum
expiration period for the client-side file-to-Dataserver cache.
During the delay period, if a client contacts the Nameserver
for the file-to-Dataserver mapping, the Nameserver returns the
result with a cache timeout equal to the remaining delay period.
After T time, the Nameserver performs the delete operation.
In this way, all the clients see the same interleaving of delete
requests and cannot read the file from any replica after deletion.
The performance impact is small for workloads where delete
requests are rare.

IV. REPLICA AND PATH SELECTION

When a Flowserver receives a replica selection request from
a client, it executes our replica-path selection algorithm (§ IV-B)
to select a replica host and the network path for the request. The
replica-path selection process is based on estimated network
state that is built using bandwidth estimations and remaining
flow size approximations.
Target performance metrics: Our target performance metric is
the average job completion times. If we assume the network is
the bottleneck for a read operation, the job completion time
for the read request can be minimized by maximizing the
max-min bandwidth share of the job’s flows. Unlike other
flow scheduling systems [16], [5] that are based on link
utilization measurements, Mayflower maximizes the max-min
bandwidth share because, in addition to link capacity, the max-
min calculations also capture the number of existing flows and
their bandwidth share in each link. In contrast, absolute link
utilization only provides information on available link capacity.

Even though the path with the most bandwidth share is a
good choice, it is not always the best choice in highly dynamic
settings. This is because new flows affect the path selection
for already scheduled flows. We must therefore account for
the effect on existing flows when selecting the replica and the
network path for a new request.

A. Problem Statement

Informally, our optimization goal is to select the replica and
network path, among the paths from all replicas to the client,
that minimizes the average completion time of Mayflower read
jobs. In other words, our goal is to select the network path that
minimizes the completion time of both the new flow as well
as existing flows, including the previously existing elephant
flows belonging to other applications. Our replica and path
selection algorithm considers the following criteria: The paths
of existing flows, the capacity of each link, the data size of
each request, the estimated bandwidth shares of existing flows,
and the remaining untransferred data size of existing flows.

A formal description of our problem, which resembles a
minimum-cost flow problem, is as follows: Let G be the graph
representing the paths from source to destination. Let ci, j be



the cost of impact on existing flows on link (i, j). Let bi, j be
the bottleneck bandwidth on the paths containing link (i, j).
Let di, j be the data flowing on link (i, j). Let Ii, j be a binary
indicator that a flow is assigned to link (i, j). Let s be the
supersource, connected to all replicas with 0-cost paths. Let t
be a sink node and x be the data size. Given G, as well as ci, j
and bi, j ∀ (i, j) ∈ G, we have:

min
di, j ,Ii, j

∑
(i, j)∈G

di, j

bi, j
+ Ii, jci, j

subject to:

∑
j:(i, j)∈G

di, j = ∑
j:( j,i)∈G

d j,i,∀i 6= s, t, i ∈ G

∑
i:(s,i)∈G

ds,i = ∑
i:(i,t)∈G

di,t = x

0≤ di, j ≤ xIi, j

The objective function is formulated such that, in the optimal
solution, the cost will be minimized if the binary variable
Ii, j = 1, i.e., if and only if the link (i, j) is on the path used
by the flow.

This formulation assumes that the bandwidth of flows along
each link in a path is equal to the bottleneck bandwidth in
that path. However, a link may be part of multiple paths, and
the bandwidth of that link can depend on the path taken by
the flow. To accommodate this, we construct a graph G′ to
be a tree with the sink node (client) as the root, and all the
possible paths from a replica encoded as source nodes, i.e.,
one link per path from a replica to the client. The cost of
using each link in G′ is the aggregate cost of using all the
links on the corresponding path in G, with the bandwidth set
to the bottleneck bandwidth of that path. If paths and costs
are precomputed, we can find the least-cost path for the flow
by calculating the cost of the links and choosing the link in
G′, i.e., the path in G, with lowest cost. This serves as the
basis of our replica-path selection algorithm. The next section
discusses the replica-path selection algorithm and the method
of calculating the cost of a path.

B. Replica-Path Selection Process

Mayflower’s replica-path selection algorithm evaluates all
the paths from each replica to the client and selects the path
which has minimum cost:

Pathmin(P) = argmin
∀p∈P

Cost(p) (1)

where P is the set of all distinct paths between the data reader
and the replica sources. We restrict to selecting from only the
shortest paths between two endpoints.

The cost of each path p ∈ P is the completion time of the
new read job j, and the increase in completion time of the
existing jobs in each link along that path:

Cost(p) =
d j

b j
+ ∑
∀ f∈Fp

[
r f

b′f
−

r f

b f

]
(2)

where d j is the requested data size and b j is the estimated
bandwidth share of a new flow on path p. The first portion of
equation 2 estimates the cost of the new flow, while the second
portion estimates the impact of the flow on existing flows Fp
in path p. The cost of an existing flow f ∈ Fp is the estimated
increase in completion time to download its remaining data r f
when the current bandwidth b f is decreased to b′f due to the
addition of the new flow in the path. The current bandwidth
share and remaining sizes of the existing flows are measured
through flow-stats collected from the edge switches.

The bandwidth share of the new flow and the change in
bandwidth share of the existing flows are estimated through
max-min fair share calculations. For each link, given a set of
flows that use the link and their bandwidth demands, we equally
divide the bandwidth across each flow up to the flow’s demand
while remaining within the link’s capacity. The demand for the
existing flows is set to their current bandwidth share whereas
the demand of the new flow is set to the link’s capacity. The
estimated bandwidth b j of the new flow is its bandwidth in
the bottleneck link in the path. The new bandwidth estimate of
the existing flows is their bandwidth share when a new flow
with bandwidth demand b j is added to the links in the path.
The total number of max-min fair share calculations needed
to determine the bandwidth share of the new flow is bounded
by the shortest path length between the client and the replica,
which is usually small in a datacenter.

Background traffic: Mayflower can include information about
elephant flows generated by other applications, which we
refer to as background flows, to improve the accuracy of its
bandwidth utilization estimates. Several existing systems have
been proposed to detect elephant flows [16], [21], [23]. We
assume an existing system performs elephant flow detection
and informs the path taken by these flows to the Flowserver.
The Flowserver adds these flows in its network view which
allows correct bandwidth estimates for replica-path selection.

Unknown flow size: Occasionally, the size of a flow is not
known (as is the case with background flows), or the provided
information is inaccurate. Flow size information is not critical
when estimating the cost of a new flow because, as shown in
equation 2, the variation in the cost of a new flow derives from
its estimated bandwidth. The flow size is used in the estimation
of completion time increase for existing flows. If the flow size
information is unknown during replica-path selection, then the
average elephant flow size is used as an estimate.

Slack in updating bandwidth utilization: When a path is selected
by the Flowserver using the replica-path selection algorithm,
the bandwidth utilization for the new flow is set to its estimated
bandwidth share. The bandwidth share of the existing flows
in the selected path are updated with their new estimated
values. To avoid a herd effect, these flows are then placed
in an update-freeze state for a second. Flows take time to
converge, and because their stats are collected periodically, the
first update can coincide with a flow’s unstable starting time.
This incorrect bandwidth usage information can cause a large
number of flows to be assigned to the same path, congesting



the network. Therefore, the bandwidth usage of the flows in
the update-freeze state is not updated. However, the remaining
flow size information is allowed to be updated.

Simplifying bandwidth estimations: The reduction in bandwidth
share of flows in a path may result in the increase in bandwidth
share of flows in other paths. This can indirectly affect nearly
all flows in the system. To accurately measure the impact of
adding a new flow on a path, we need to not only update the
state of the flows on the selected path but also identify and
update changes in the bandwidth utilization of flows on other
paths. This greatly increases the cost of bandwidth estimation.

For simplicity, we ignore the secondary effects of changes
in bandwidth, and only estimate and update the bandwidth
share of flows in the paths between replicas and the client.
Estimation errors do not accumulate because we periodically
update our bandwidth estimates from the edge switches’ flow-
stats. We also use the flow stat information to update the
bandwidth utilization of the remaining flows in the network.
This significantly reduces the complexity of the problem while
still providing good bandwidth utilization approximations.

However, polling the switches to collect flow-stats incurs
additional overhead on the switches and the Flowserver.
Mayflower reduces the overhead of stats collection by polling
only the edge switches. Stats collection for non-edge switches
is unnecessary because their link utilizations can be inferred by
combining flow path information with flow stats from the edge
switches. The stats collection period can be relatively large
without affecting Mayflower’s performance. This is because
flow stats are primarily used to reduce small approximation
errors in our network model. Mayflower uses a one second stats
collection interval by default, and our experimental results are
unaffected when we increase the interval period from one to
five seconds. Finally, polling across edge switches is staggered
to further reduce the impact of stats collection on the network.

An illustrative example: Consider an example where a client
reads 9Mb data from a replica source, illustrated in Figure
2. The Figure shows two edge switches connected to two
aggregate switches through 10Mbps links. There are two equal
length paths between the reader and the data source. Both
paths have three flows on the second link, which connects the
edge switch to the aggregate switch, and one flow on the third
link, which connects the aggregate switch to the edge switch.

We first evaluate the first path, shown in Figure 2b. The
second link is the bottleneck link for a new flow because it gives
a 3Mbps share to the new flow, compared to a 5Mbps share on
the third link. Therefore, the new flow will have a 3Mbps share
on the first path and the read job will take 9/3 = 3 seconds
to complete. According to the max-min fair share calculations,
the existing flow with 6Mbps share in the second link will
be reduced to 3Mbps, and the 10Mbps-flow on the third link
will be reduced to 7Mbps. As a result, the completion time
of the flows will be increased by [(6 / 3)− (6 / 6)] = 1 and
[(6/7)− (6/10)] = 0.25 seconds respectively, assuming the
flows’ remaining sizes to be 6Mb. Therefore, the estimated
cost of the first path, which is a measure of the increase in

Fig. 2. An example of cost calculation for replica-path selection: (a) Existing
flows’ bandwidth share along two paths (10Mbps links). (b) Bandwidth share
of the flows if a new flow is added on the first path where C1 is the cost
of adding the new flow on the path. New flow’s size is 9Mb whereas the
remaining size of the existing flows is 6Mb. (c) Bandwidth share of the flows
if the new flow is added on the second path and its corresponding cost is C2.

total completion time, is 3+ 1+ 0.25 = 4.25. Similarly, the
cost of the second path would be 3.6, and therefore the second
path will be selected for the read operation.

In this example, the bandwidth share of the new flow is
the same for both paths. The difference in cost is due to the
increase in completion time of the existing flows. The second
path has an increase of 0.6 seconds in the completion time of
the existing flows, compared to 1.4 seconds for the first path.

C. Reading from Multiple Replicas

Mayflower reads from multiple replicas in parallel if doing
so results in a reduction of the completion time. A read job
is split into two subflows if the combined cost of the two
subflows is smaller than the cost of reading from only one
replica. The cost function remains the same as in equation 2.
The bandwidth estimate for the two subflows is adjusted as if
two new flows are being added in the system.

After selecting the network paths for the subflows and
estimating their bandwidth shares, the data read size for each
subflow is divided such that the subflows finish at the same
time. The subflows are assigned different replicas to avoid
encountering the same network bottlenecks.
Multiple replicas selection process: First, a replica-path p1 is
selected for the first subflow f1 using the replica-path selection
algorithm (§ IV-B). Assume that the estimated bandwidth share
of f1 is b1 and its cost is c1. A temporary flow is then added
in the selected path to update the bandwidth estimates of
the existing flows in that path. Then another replica-path p2
is selected for the second subflow f2, which has estimated
bandwidth share b2 and cost c2. As p1 and p2 may have



common links in their paths, f2 may reduce the bandwidth
share of f1. Therefore, the bandwidth share and cost of f1
are adjusted to b′1 and c′1 according to the reduction in b1.
If the combined cost, ct = c′1 + c2, of the two subflows is
smaller than c1, which is the cost of using only one flow for
the read job, the replica-paths p1 and p2 are selected for the
subflows. Otherwise, the temporary changes done by adding a
temporary flow in p1 are rolled back, and only p1 is selected
by the Flowserver. If two subflows are selected, the flow size
Si for each subflow is adjusted proportionally to its estimated
bandwidth share: Si = d ∗bi/b, where d is the requested data
size and b = b′1 +b2.

The Flowserver returns the replica-paths and the associated
data sizes to the client. The client concurrently downloads from
the given replicas in chunks of K MB, where K is a tunable
parameter that we set to be 32 MB for 128 MB block sizes.
If one of the flows finish earlier, it starts downloading the
remaining chunks of the other flow, including the last chunk.

Our results show that reading from multiple replicas further
reduces the completion time of read jobs by 10% on average.
Moreover, the average difference in completion times between
the two subflows of a read job is less than one second when
reading a 128 MB block.

V. IMPLEMENTATION

We implemented Mayflower in C++, with the exception
of the Flowserver which runs as an application in the Java-
based Floodlight controller. Our prototype consists of 7,500
lines of C++ code and 3,700 lines of Java code. The replica-
path selection function in the Flowserver is exposed as an
RPC service. The Flowserver is implemented as a stand alone
service and can be integrated with any distributed application
through its RPC framework.

The Nameserver stores the filesystem information in a
LevelDB [24] key-value store. Files are divided in 128 MB
chunks and replicated on three servers. The default replica
placement strategy follows an HDFS’s placement approach:
Two replicas are placed in the same rack as the client, and the
third replica is placed in another randomly selected rack.

VI. EVALUATION

We evaluate the effectiveness of Mayflower’s replica-path
selection using micro-benchmarks that compare it with several
other replica-path selection schemes. We also compare the
performance of our prototype with HDFS.

A. Experimental Setup

We conducted our experiments by emulating a 3-tier dat-
acenter network topology using Mininet [25]. As emulating
a complete datacenter network in a single machine imposes
network size and bandwidth limitations, we partitioned our
virtual network into several slices, and distributed these slices
across a cluster of 13 machines. This allowed us to emulate a
network with 1 Gbps edge links. Each machine in our cluster
consists of a 64 GB RAM, a 200 GB Intel S3700 SSD, and
two Intel Xeon E5-2620 processors having a total of 12 cores

running at 2.1 GHz. The machines are connected through a
Mellanox SX6012 switch via 10 Gbps links.

Our testbed consists of 64 virtual hosts distributed across four
pods. In our topology, a pod consists of four racks connected
to two common aggregation switches. Each pod is emulated
using three physical machines. Two machines emulate the
hosts and the top-of-rack switches while the third machine
emulates the aggregation switches belonging to that pod. The
pods are connected through two core switches that are emulated
in a separate dedicated machine. We stitched these network
slices together through IP and MAC address translation. Our
emulated network has 1 Gbps edge links, and oversubscription
is achieved by varying the capacity of higher tier links.
Traffic Matrix: We evaluate Mayflower’s performance using
several synthetic workloads. Our workloads have the following
properties: (1) job arrival follows the Poisson distribution, (2)
file read popularity follows the Zipf distribution [13] with the
skewness parameter ρ = 1.1, and (3) the clients are placed on
virtual hosts based on the staggered probability described by
Hedera [16]; a client is placed in the same rack as the primary
replica with probability R, in another rack but in the same
pod with probability P, and in a different pod with probability
O = 1−R−P. The replica placement follows conventional
constraints of fault tolerance domains. The primary replica is
placed in a randomly selected server, the second replica is
placed in the same pod as the primary, and the third replica is
placed in a different pod.

B. Selection Schemes
We compared Mayflower’s replica-path selection with four

other schemes that are a combination of static and dynamic
replica selection with various network load balancing methods:
Nearest with ECMP: In this scheme, the closest replica to the
client is selected, and the flows are spread across redundant
links using ECMP. This represents the schemes where only
static information is used for both replica selection and network
load balancing.
Sinbad-R with ECMP: In this scheme, a replica is selected
based on the current network state by using our read-variant
implementation of Sinbad [5], which we call Sinbad-R. Sinbad
was originally designed for dynamic replica selection for file
write operations. It collects end-hosts’ network load information
to estimate the network utilization for higher tier links.

In order to support file-read operations, Sinbad-R estimates
the link utilization for traffic travelling up the network hierarchy
(i.e., from edge to core) instead of down the hierarchy, which
is the case for the original Sinbad scheme. This modification
is necessary because file-reads and file-writes have opposing
data-flow directions.
Dynamic path selection: To evaluate the effectiveness of Nearest
and Sinbad-R replica selection combined with dynamic network
load balancing, we coupled them with Mayflower’s network
flow scheduler. However, unlike Mayflower’s combined replica
and path selection, the optimization space is limited to the
pre-selected replica source for these schemes. We refer to these
methods as Nearest-MF and Sinbad-R-MF in our results.
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Fig. 3. Average job completion times of different replica and path selection
methods.

Mayflower replica-path selection: Mayflower has two replica se-
lection methods: Mayflower-B and Mayflower-P. In Mayflower-
B, the Flowserver selects one replica, where as in Mayflower-
P, it selects up to two replicas for each request. The client
downloads from the selected replicas concurrently.

C. Replica-Path Selection Performance

We first evaluate the performance of Mayflower’s replica-
path selection using micro-benchmarks. In these experiments,
we run a simple client/server application to emulate read jobs.
For each read job, a client contacts the Flowserver for replica
selection and path setup. The client then downloads 128 MB
from the server selected by the Flowserver. Following the
design described in Section IV-C, the client further breaks
down the 128 MB block into 32 MB chunks, and downloads
chunks from the selected replicas concurrently. When it finishes
downloading a chunk from a replica, it will issue a request
for the next chunk from the same replica until all four chunks
have been downloaded. To avoid disk bottlenecks in these
experiments, the data is stored in memory.

Figure 3 shows the performance of Mayflower’s replica-path
selection in comparison with the other methods (§VI-B). The
bars show the mean completion time of the read requests and
the error bars represent 95% confidence intervals. Mayflower’s
completion time also includes the query latency to the
Flowserver for replica-path selection, which is approximately
4 ms in our experiments. The parameters for this experimental
workload consists of λ = 0.1, ρ = 1.1, and a client locality
distribution of (R = 0.5, P = 0.3, O = 0.2). The results show
that Nearest-ECMP, which is commonly used in current
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Fig. 4. Average job completion times with different client locality distributions.

deployments, has more than 2.3x the average completion
time compared to Mayflower-P. It also shows that replacing
ECMP with a dynamic path selection scheme (Nearest-M) only
provides marginal improvements over ECMP.

The Nearest replica selection-based approaches perform
poorly because the replica selection is static and oblivious
to the network state. As half of the clients are in the same rack
as the primary replica, the clients have only one replica and
path option. Therefore, the edge link of the primary replica
can become congested, resulting in higher completion time.

Sinbad-R-M and Sinbad-R ECMP illustrate that dynamic
replica selection can reduce average completion time compared
to static replica selection. However, because they select the
replicas and paths independently, the Sinbad-based schemes
still have an average completion time of more than 1.3x of
Mayflower-P. Finally, by intelligently downloading from up to
two replicas in parallel, Mayflower-P has 14% lower average
completion time than Mayflower-B.

Figure 3(b) shows the CDF of job completion time for
the same experiment. It illustrates that Mayflower-P has
a significantly shorter tail completion time than the other
schemes. Its 95th percentile job completion time is 2.81 seconds
compared to 3.21 seconds for Mayflower-B and 3.82 seconds
for Sinbad-R-M. These results suggest that, in the case where
the paths to all replicas are partially congested, Mayflower-P
can still achieve a low job completion time by reading from
two replicas over two paths with different bottleneck links.

D. Impact of Client Locality

Figure 4 shows the effectiveness of Mayflower’s replica-path
selection with different client locality distributions. The bars
are grouped according to the probability distributions (R, P, O)
of the clients being in the same rack R, in the same pod P and
in another pod O relative to the location of the primary replica.
The bar groups in the Figure have the probability distributions
(0.5, 0.3, 0.2), (0.3, 0.5, 0.2), (0.2, 0.3, 0.5) and (0.33, 0.33,
0.33) from left to right. As Mayflower-P consistently performs
between 10 to 15% better than Mayflower-B, we omit the
results of Mayflower-B from the remaining graphs in this
paper to improve their readability.

The results show that as we reduce client locality from
(0.5, 0.3, 0.2) to (0.3, 0.5, 0.2) causing a larger portion of the
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traffic to leave the rack, the nearest replica selection schemes
surprisingly show a reduction in their average completion time.
This is due to a greater dispersion of traffic between replicas,
because a client is equally distant from its two closest replicas
for a larger percentage of its requests. For the other schemes,
this reduction in client locality causes a small increase in
average completion time, with the Sinbad and Nearest-based
schemes having an average completion time of more than 1.36x
compared to Mayflower-P.

Further reducing the client locality to (0.2, 0.3, 0.5) results
in significant increase in average completion time for both
Sinbad and Nearest-based approaches. Moreover, the average
completion time of ECMP-based approaches increases by nearly
2.27x with this reduction in locality. This is because, with poor
client locality, a larger fraction of the requests must traverse the
heavily utilized core links. Therefore, efficient load balancing
of the core links through dynamic path selection becomes far
more important.

Finally, the last bar group shows that, in the case where a
client distribution is (0.33, 0.33, 0.33), the result is in between
the results from (0.3, 0.5, 0.2) and (0.2, 0.3, 0.5).

E. Impact of Job Rate

In this experiment, we vary the job rate to determine the
impact of system load on the completion time of the different
replica and path selection methods. Job arrival is modelled as
a Poisson process and the job arrival rate (λ ) specifies the rate
for each server. Thus the job arrival rate of 0.08 means that
on average 6 new read jobs are started every second in a 64
node system.

Figure 5 shows the results for the common scenario in which
a majority of the clients are situated in the same rack as the
primary replica of the requested file. We find that, all the
methods perform equally well at lower job rate because of the
light burden on the system. At higher job rates, links become
congested and the performance degrades quickly for all the
methods. However, Mayflower has a slower growth in the
completion time.

The relatively small increase in completion time of
Mayflower at higher job rates suggests that Mayflower is more
effective at avoiding congestion points in the network than the
other methods.
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F. Impact of Oversubscription

The experiments from the previous sections were conducted
with an 8:1 oversubscription ratio. Figure 6 shows the perfor-
mance of Mayflower with other network oversubscription ratios.
There is no oversubscription within a rack in all of our tested
configurations. Due to limitations in our test infrastructure, we
are unable to experiment with lower oversubscription while
maintaining a 1 Gbps edge link capacity. In this and subsequent
Figures, we only show the results for Mayflower and Sinbad-
R-M as those are the best among all the different methods.

Higher oversubscription increases the chances for network
congestion. Both Mayflower and Sinbad-R-M have a higher
average completion time in more oversubscribed networks.
However, Mayflower performs better under higher oversub-
scription than Sinbad-R-M, difference of 2.4x, as it has more
replica and path options.

G. Effect on Background Traffic

In this experiment, we evaluate the performance of
Mayflower-B and Mayflower-P in the presence of other flows
in the network. We also evaluate the effect of Mayflower
flows on background flows. To generate the background
traffic, we run another client/server application in which the
clients download data from a server selected randomly using
the locality distribution of (0.2, 0.3, 0.5). The size of the
background flows are based on a truncated normal distribution
with the parameters N(96,64) and with a lower and upper
limit of [32, 256]. We use the job arrival rate λ = 0.08 for the
background flows and vary the arrival rate of Mayflower file
read requests, shown by the different bar groups in Figure 7.

Figure 7(a) shows the completion time of Mayflower read
requests. The first bar, background unaware (BG-unaware)
Mayflower-B, shows the completion time when Mayflower-B
runs while being oblivious to the background flows. The second
bar, background aware (BG-aware) Mayflower-B, shows the
completion time when Mayflower-B is aware of the background
flows. Without background flow awareness, Mayflower-B’s
bandwidth estimates are inaccurate, which can result in
selecting paths that are congested with background flows.
When Mayflower-B is aware of the background flows, it can
accurately model the utilization of each link, which allows it
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Fig. 7. The performance of both Mayflower requests and background traffic.

to avoid congested links and reduce average read completion
time compared to BG-unaware Mayflower-B. Compared to
Mayflower-B, Mayflower-P is more effective at avoiding
congested links by dispersing the load across two partially
congested paths with different bottleneck links.

Figure 7(b) shows the completion time of the background
flows. The Figure highlights the importance of better replica
and path selection as it affects the performance of both the
background flows and the file read operations. Poor path
selection hurts all the elephant flows in the network. This
is due to the interdependence between the network and the
applications, suggesting the need for increased coordination
between the endpoint applications and the network control
plane. By making Mayflower aware of the background flows,
our results show that we can reduce the completion of both
Mayflower request and background flows compared to using
background-unaware Mayflower.

H. Effect of Data Size

Figure 8 shows the performance of Mayflower-P with
different block size and data rate combinations. Mayflower-P
performs consistently better for both small and large block sizes.
For smaller block sizes, the average completion time is shorter
than the stats collection intervals. Therefore, Mayflower relies
primarily on bandwidth utilization estimates to determine flow
durations, which is in turn used to determine which replica-path
it selects. As a result, for smaller block sizes, there is a smaller
performance gap between Mayflower-P and the other methods
because of its higher reliance on bandwidth estimates.
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I. Comparison With HDFS

Figure 9 shows the performance of our Mayflower prototype
compared with HDFS. We used the same network setup and
traffic matrix that were used for our replica-path selection
evaluation. In this experiment, we use a block size of 256
MB, a client locality distribution of (0.5, 0.3, 0.2) and job
arrival rates from λ = 0.06 to λ = 0.08. Instead of running a
client/server application that only simulates file reads and writes,
this experiment uses our Mayflower prototype implementation.
We configured HDFS to use rack awareness for replica selection
– HDFS selects the replica in the same rack where the
client is located, if any such replica exists. For network flow
scheduling, we performed HDFS experiments with both ECMP
and Mayflower flow scheduling. For file placement, we use the
same primary replica location for both Mayflower and HDFS.

Mayflower’s experimental results are consistent with our
simulation results. Mayflower shows a small increase in the
completion time as the job arrival rate increases. In contrast,
the completion times for HDFS grow rapidly with an increase
in the job rate.



VII. CONCLUSIONS

We presented Mayflower, a new distributed filesystem that
follows a network/filesystem co-design approach to improving
read performance. Mayflower’s novel replica and network
path selection algorithm can directly optimize for average job
completion time using network measurement statistics collected
by the SDN. We evaluated Mayflower using both simulations
and a deployment on an emulated network using a fully
functional prototype. Our results showed that existing systems
require 1.3x the completion time compared to Mayflower using
common datacenter workloads.
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