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Sizing Solar Panels and Storage for Multiple Roofs
Anonymous Author(s)

ABSTRACT
Choosing the number of solar panels and the amount of storage
needed to meet a certain fraction of the load in a microgrid setting
is a difficult problem that needs to balance the competing objec-
tives of efficiency, robustness, and cost. Prior work in this area
makes the unrealistic assumption that solar panels are to be in-
stalled on a single roof that is capable of supporting all the panels
required. In reality, we may need to deploy solar panels on sev-
eral roof segments, each of limited size, and each with its own tilt,
orientation and installation cost. This paper presents an algorithm
for sizing solar panels and storage in this context. We evaluate the
robustness of our approach using traces derived from the Pecan
Street Dataport dataset and demonstrate the value of our approach
by using it to size a hypothetical installation on the British Antarc-
tic Survey’s research base in Antarctica.

ACM Reference Format:
Anonymous Author(s). 2021. Sizing Solar Panels and Storage for Multiple
Roofs. In Proceedings of . ACM, New York, NY, USA, 11 pages. https://doi.
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1 INTRODUCTION
With the rapid decline in the cost of both solar photovoltaic (PV)
generation and storage, solar and storage systems are increasingly
adopted to provide carbon-free renewable energy throughout the
day [11]. However, PV systems and storage are still quite expensive
in absolute terms, so it is necessary to find the smallest possible size
of the system that meets electricity load needs [14]. Specifically,
given a solar profile, the typical hourly solar generation from a unit
solar panel, and the load profile, typically characterized as hourly
demand for a year or more, we would like to choose the number
of solar panels and the amount of storage (a sizing) so that the
load profile is met with a certain quality of service (QoS). We call
a sizing that meets the desired QoS criterion a feasible sizing.

Choosing a feasible sizing is complex because it needs to balance
multiple objectives, including:
• Pareto efficiency: It should not be possible to simultaneously

reduce both the number of solar panels and the size of the
storage without violating the QoS criterion.
• Robustness: Feasibility should not be violated due to small

variations in solar energy and load in the future. Note that
robustness and efficiency cannot be simultaneously satis-
fied.
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
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and/or a fee. Request permissions from permissions@acm.org.
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N

Figure 1: A rooftop with six roof segments.

• Cost: The cost should be as low as possible, taking into ac-
count the cost of panels and storage, the installation cost,
and the need for robustness.

This important and practical problem has been studied in the lit-
erature using approaches ranging from optimization and stochas-
tic network calculus to simulation [14]. However, priorworkmakes
the simplifying assumption that solar panels are to be installed on
a single site, typically a rooftop, and that the rooftop is capable of
supporting as many solar panels as desired. Moreover, all portions
of the roof are assumed to have the same tilt and orientation. In
reality, we may wish to deploy solar PV on several roof segments1,
as in Figure 1, each of limited size, and each with its own tilt, ori-
entation and installation cost. While this may appear to be a trivial
change, the problem of sizing solar and storage, even for a system
with only two roof segments, is far more complex.

Intuitively, the reason for this complexity is that some roof seg-
ments may have a higher potential for solar energy production or
may better match the load profile, but also have higher installation
costs or smaller panel capacity. In contrast, others may have lower
installation costs and larger capacity, but have a poor solar pro-
duction potential. Choosing the number of panels to place on each
roof segment to produce sufficient energy to meet the QoS crite-
rion at the least overall cost is a complex problem and the focus of
our work. Specifically, our contributions are:
• We formally state the problem of sizing solar PV and storage

on a set of roof segments with different orientations and
installation costs and present an algorithm to solve it.
• We implement the algorithm and evaluate its correctness on

realistic solar and load traces.
• We use our approach to size a hypothetical solar PV and

storage for the British Antarctic Survey’s research base in
Antarctica, based on real data.

1For uniformity of notation, we use ‘roof segment’ to mean either the entire roof or
a part of it, on one building or several.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

, , Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

2 RELATEDWORK
A person looking to install a rooftop solar PV and battery system
wants to know the least-cost sizing that meets their system per-
formance target, e.g. meeting 50% of their load. The optimal sizing
depends on the location, tilt, and orientation of each roof segment,
as well as the building’s load profile and the fixed and marginal
costs of system components and installation. In practice, the sizing
of solar PV and battery systems has often been done using a “rule-
of-thumb”; for example, Tesla [2, 3] takes into account a location,
roof layout, and a proxy for load, such as the monthly electricity
bill, to calculate a system sizing. Such methods are imprecise, since
they rely on aggregate PV generation and load metrics.

In the literature, the sizing of PV and storage systems has been
studied in several contexts, including micro-grids [7, 8, 10] and
building-scale systems [14, 18, 19]. At a high level, the strategy
used by existing work is to assume the availability of load and PV
generation measurements for one or more years, which in recent
years have become more readily available for consumers [4, 16],
and use them to compute a sizing that would be optimal over the
given data. Recent work takes into account the stochastic nature
of PV generation and load profiles, and proposes a method based
for computing the cheapest robust PV panel and battery sizes that
meet target performance with a specified level of statistical con-
fidence; this work relies on the assumption that solar panels are
installed on a single roof segment, and cannot be applied to multi-
roof problems [13, 14]. In this paper, we look at computing a robust
sizing that considers multiple roof segments.

3 PROBLEM FORMULATION
This section presents our model for the sizing problem.We assume
that a user, such as a prospective system owner, can obtain (a) a set
of solar traces corresponding to the generation from a single panel
placed on each roof segment and (b) a representative load trace.We
also assume that the solar panels are connected to the same storage
unit and that there is no loss of power on these connections. Our
goal is to find a feasible, robust sizing that is Pareto efficient, and
therefore has the least cost. Table 1 shows the notation used in the
remainder of the paper. Using this notation, we can make this goal
more precise, as follows.

Goal:Given𝑁,𝑇 , 𝜀, 𝑐
𝑓
𝑖 , 𝑐

𝑚
𝑖 , 𝑐𝑏 , 𝑎𝑚𝑎𝑥

𝑖 , 𝑏𝑚𝑎𝑥 ,𝑁 solar tracesS𝑖 , and
the load trace L, find A and 𝑏 such that
• It is feasible, i.e. for all time 𝑡 , with probability greater than

1-𝛾
𝑢 (A, 𝑏, 𝑡, 𝑡 +𝑇 )
|L[𝑡, 𝑡 +𝑇 ] | ≤ 𝜀 (1)

• It minimizes the cost function

𝐶 (A, 𝑏) =
∑

𝑖 |𝑎𝑖≠0
(𝑐 𝑓𝑖 + 𝑐

𝑚
𝑖 ∗ 𝑎𝑖 ) + (𝑐

𝑏 ∗ 𝑏) (2)

where the bound is robust, that is, holds for future loads that are sta-
tistically the same as in the past. Note that, for any non-zero load
profile, a sizing with a sufficiently small number of solar panels is
always infeasible.

Symbol Meaning (units)
𝑁 Number of roof segments
𝑖 Index of roof segment
𝑇 Time period over which the which QoS criterion is

computed (days)
𝛾 confidence level for robustness
𝜀 the target upper bound on unmet energy as a frac-

tion of overall load |L|
𝑐
𝑓
𝑖 Cost of installing a panel on the 𝑖𝑡ℎ roof segment

($)
𝑐𝑚𝑖 Marginal cost of installing a panel on the 𝑖𝑡ℎ roof

segment ($)
𝑐𝑏 Marginal cost of storage ($/kWh)
𝑎𝑚𝑎𝑥
𝑖 Largest possible number of panels on the 𝑖𝑡ℎ roof

segment
𝑏𝑚𝑎𝑥 Largest possible battery size (kWh)
𝑛 Total number of hours provided in each solar/load

trace
S𝑖 An hourly solar power generation trace for one

panel on the 𝑖𝑡ℎ roof segment; |S𝑖 | = 𝑛
S A vector of hourly solar power generation trace for

panels on each roof segment; S = {S1, . . . ,S𝑁 }
S𝑖 [𝑡1, 𝑡2] A subset of the 𝑖th solar trace from time step 𝑡1 to

time step 𝑡2 (kW)
|S𝑖 [𝑡1, 𝑡2] | Total energy produced by panels allocated in the

𝑖𝑡ℎ segment from time step 𝑡1 to time step 𝑡2 (kWh)
L An hourly load trace (kW); |L| = 𝑛
L[𝑡1, 𝑡2] A subset of the load trace from time step 𝑡1 to time

step 𝑡2 (kW)
|L[𝑡1, 𝑡2] | Total energy used in the load trace from time step

𝑡1 to time step 𝑡2 (kWh)
𝑎𝑖 Number of panels, as computed by the algorithm,

allocated to 𝑖𝑡ℎ roof segment; 0 ≤ 𝑎𝑖 ≤ A𝑚𝑎𝑥
𝑖

A The sizing, a vector of allocations 𝑎1, 𝑎2, …, 𝑎𝑁
𝑏 Size of battery, as computed by the algorithm; 0 ≤

𝑏 ≤ 𝑏𝑚𝑎𝑥 (kWh)
𝑢 Unmet energy for a given allocation vector, battery

size, load trace, and solar trace (kWh)

Table 1: Table of notation. Note that A, 𝑏, and 𝑢 are outputs
of the algorithm and depend on the trace pair (S𝑖 ,L), but,
for clarity of notation, this dependency is not explicitly de-
noted.

4 SOLUTION APPROACH
Our solution extends priorwork by Kazhamiaka et. al. [14].The key
idea in their work is to simulate the behaviour of an ensemble of
historical load and solar traces to construct a distribution of feasible
and efficient sizings; this distribution is analyzed to identify the
sizing with the lowest cost that will meet the QoS with a given
confidence.

Specifically, their sizing algorithm first computes the feasible
Pareto frontier of solar and storage (a, b) sizing tuples correspond-
ing to each solar and load trace pair. By definition, decreasing the
number of panels in a sizing on this frontier necessarily increases
the storage capacity and vice versa. To compute the first point on
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the frontier, they start at the maximum number of panels and use
simulations to compute the amount of unmet load as they progres-
sively increase the battery size from 0.This finds the minimum bat-
tery size needed to ensure that the QoS target is met (so that the
sizing is both feasible and efficient). They then reduce the amount
of solar generation by removing one panel and recompute the min-
imum battery size to find the next point on the frontier.

By following this process, they compute the minimum amount
of storage required for each choice of number of panels to meet the
QoS target, for each solar/load trace pair. Given a set of such curves,
they compute a Chebyshev bound on the set of Pareto frontiers.
The least-cost point on this bound is a feasible, robust sizing that
also meets the QoS target (it is not Pareto efficient, but no Pareto
efficient sizing is robust, by definition).

4.1 Complications
We cannot directly use the algorithm from Kazhamiaka et. al. [14]
because at each step of their sizing algorithm, they compute the
next step in the frontier after reducing the number of panels by
one. However, when there are 𝑁 roof segments, it is not obvious
which roof segment to select for reduction, since the removal of a
panel from different roof segments impacts the net cost differently.

To fix ideas, consider a site with two roof segments, labelled 1
and 2. Each segment has its own fixed and marginal costs for in-
stalling a panel, 𝑐 𝑓𝑖 and 𝑐𝑚𝑖 . Moreover, each has its own energy gen-
eration capacity because of differences in tilt and orientation. Re-
moving a panel on one of the roof segments decreases themarginal
installation cost, but potentially leads to an infeasible sizing, de-
pending on the shape of the load profile, complicating the choice.

4.1.1 A greedy approach is sub-optimal. Can we use a greedy ap-
proach, that is reducing the number of panels by one on the roof
segment that maximally reduces the overall cost? Unfortunately,
the following counterexample proves that a greedy approach is
sub-optimal.

Consider two roof segments A and B with identical solar pro-
duction. Let the installation cost of 𝑝 panels on A be 0, if 𝑝=0, and
1+2𝑝 otherwise and on B be 0 if 𝑝=0, and 5+𝑝 otherwise. At initial-
ization time, the sizing algorithm allocates the maximum number
of panels to each roof segment, i.e. 3 panels on A and 2 on B (de-
noted (3,2)) for total cost of 1+2*3 + 5+2*1 = 14 units (Table 2). The
choices taken by a greedy algorithm, as shown, would result in a
least cost allocation of 10. However, if we were to reduce B by two
panels, with an allocation of (3, 0), the cost would only be 7 units,
so the greedy approach is not optimal.

We can avoid having to consider both fixed and marginal costs
by amortizing the fixed cost to define 𝑐𝑎𝑖 the amortized cost of in-
stalling one panel on roof segment 𝑖 as

𝑐𝑎𝑖 ≜ 𝑐𝑚𝑖 +
𝑐
𝑓
𝑖

𝑠𝑖
(3)

thus reducing fixed costs to zero. However, as we show next, this
does not solve the problem.

4.1.2 The impact of unmet load. We now show, using a counterex-
ample that, even with zero fixed costs, a greedy approach is not
optimal.

Greedy Optimal
Allocation Cost Allocation Cost

Initialize (3,2) 14 (3,2) 14
Step 1 (2,2) 12 (3,1) 13
Step 2 (1,2) 10 (3,0) 7

Table 2: Counterexample showing that a greedy choice is
suboptimal.

Consider, again, a system with two roof segments. Given an ar-
bitrary load profile L, let the solar generation from one panel on
roof segment 1 be L + 0.25 + 𝜖 and from one panel on roof seg-
ment 2 be L + 0.50 + 𝜖 . Also, assume that each roof segment only
supports 2 panels. Finally, let the amortized cost per panel for the
first roof segment be 10 units and the amortized cost for the sec-
ond roof segment be 100 units. Thus, if we wanted to maximally
reduce installation costs, we would choose to reduce the number
of panels on the second roof segment.

When we start with the maximum allocation, which is two pan-
els on both roof segments, denoted (2,2), the total production is
L + 1.5 + 4𝜖 , so there is no unmet load and no need for a battery,
so the only costs are the PV costs, in total 2*10 + 2*100 = $220.

Now, to reduce the costs the most, we should reduce the number
of panels on the second roof segment by 1, leading to the allocation
(2,1). Again this has a total solar production at time 𝑡 of L + 1+ 3𝜖 ,
so there would be no unmet load, and no battery, and the total cost
would be 2*10 + 1*100 = $120. If we nowwish to reduce the number
of panels by one again, the way to reduce installation costs would
be to remove the second panel on the second roof segment, leading
to the allocation (2,0). But this will lead to an unmet load of approx-
imately 0.5 units during each time step, i.e., infeasibility. Instead,
we are better off with the allocation (0,2), that is, removing both
panels from the first roof segment and using two on the second,
since the cost here is $200 and there is no unmet load. But this al-
location (0,2) cannot be obtained from the prior greedy allocation
(2,1). Hence, in this example, the greedy approach doesn’t work.

Taken together, the two counterexamples show that a greedy
choice in reducing the number of panels is sub-optimal. However,
there is no other obvious way to make this choice. Thus, as de-
scribed in the next section, we use a stochastic gradient descent
approach to adjust the allocation of roof segments.

5 SIZING ALGORITHM
This section provides a detailed description, pseudocode, and visu-
alization of the algorithm, including the generation of solar and
load traces, the system simulation and stochastic gradient descent
process, the statistical bound, and how to extract a robust sizing.

5.1 Algorithm Overview
Before diving into the technical details of our algorithm, we give
an overview of our solution with reference to later subsections.
Additional notation used in this section can be found in Table 3.

At a high level, the process of computing a sizing consists of the
following three steps:

(1) Acquire PV generation traces for each roof segment and
load traces covering a span of at least one year and with
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Symbol Meaning (units)
𝜂 Number of subintervals sampled, one of each a

least-cost sizing is found. Calculated at the begin-
ning of the algorithm as detailed in Section 5.5.

𝜁 AdaDelta hyperparameter. Fudge factor for numer-
ical stability. Default 0.1. Refer to Algorithm 2.

𝜌 AdaDelta hyperparameter. Decay rate used in cal-
culating exponentially moving average for gradi-
ents. Default 0.9. Refer to Algorithm 2.

𝜉 A PV-battery sizing pair (A, 𝑏).
𝜇𝜂 The empirical mean of all 𝜂 least-cost sizings.
Σ𝜂 The empirical covariance of all 𝜂 least-cost sizings.
Ξ A set of Chebyshev upper-bounded sizings, found

in Section 5.4.
𝜉∗ The output of the algorithm, the minimum-cost siz-

ing on boundary Ξ.
Λ2 The “practicality sizing” factor. Determines the dis-

tance between 𝜉∗ and 𝜇𝜂 .
𝛽 Hyperparameter to strike a balance between 𝜂 and

Λ2. Default 0.1. For details see Section 5.5.

Table 3: Table of additional notation for the sizing algo-
rithm.

a granularity of at most one hour. These can be from on-
site measurements or synthetically generated. Sample 𝜂 in-
tervals from these traces to form an ensemble of (possibly
overlapping) PV generation and load trace tuples (S𝑖 , L).

(2) For each trace tuple, find the sizing that meets the target
performance criterion; this results in a set of sizings.

(3) Compute a statistical bound on the set of sizings, and select
a sizing from those found along the bound.

The number of trace tuples, 𝜂, represents a trade-off between
algorithm runtime and the tightness of the statistical bound on
the sizing. The runtime scales linearly with 𝜂, and the bound gets
asymptotically tighter with more samples; the precise relationship
is described in Section 5.5.

Our approach to finding the least-cost sizing in the search space
is to adapt a stochastic gradient descent algorithm. We focus our
search on the Pareto-optimal sizing subspace, which consists of
sizings that have two properties: 1) the sizing is feasible, i.e., satis-
fies the unmet load target, and 2) no sizing that is smaller in every
dimension is feasible. The unmet load of a sizing is calculated by
simulating the operation of the system over the given data. The
cost function for computing the gradient to guide the direction of
the search is the total system cost. The simulation and stochastic
gradient descent process are detailed in Section 5.3.

We find the least-cost sizing for every data sub-sample, creating
a set of such sizings. We compute the statistical bound on the dis-
tribution of sizings represented by the set. As in Reference [13], an
empirical multivariate Chebyshev bound [20] is used to calculate
a hyper-ellipsoid bound that is centered at the mean the sizings
set and scaled according to the desired confidence 𝛾 . Finally, we
generate a set of sizings that lie on the upper portion of the bound
and select the lowest-cost sizing from this set as our output. The
process of finding the Chebyshev bound is detailed in Section 5.4.

5.2 Obtaining Solar and Load Traces
The algorithm relies on hourly PV generation (one per roof seg-
ment) and load traces (S𝑖 ,L). The user may have access to load
data if they own a smart electricity meter, although it is possible
to obtain both load and per-roof-segment PV generation traces us-
ing proxy techniques, which we describe next.

5.2.1 Solar Traces. In the United States, hourly solar traces can
be generated through tools such as NREL’s PVWatts calculator [6].
The calculator requires parameters that are more easily obtained,
including the geographical location of the roof segments, and, for
each roof segment, its tilt from level, orientation from true north,
and an estimated performance loss percentage due to soiling/snow,
wiring and connection losses, and inverter inefficiency, typically
14% of the total solar radiation received. It then calculates the solar
traces based on previously stored solar radiation data measured
near that location in a typical year.

Alternatively, if hourly horizontal solar irradiance is measured
through a pyranometer, then in-plane irradiance can be calculated
using the equations in [9] using a roof segment’s location, tilt, ori-
entation, and the estimated performance loss percentage.

5.2.2 Load Traces. Generating synthetic load traces is more chal-
lenging than generating solar traces as electricity usage pattern,
unlike solar activity, depends on less-predictable human behaviours.
Recent work has shown that an ARMA model for generating load
traces, when trained on load patterns from neighbouring houses
where data is available, generates traces that can be used for siz-
ing [21]. Using a load profile database like the one provided by
EERE [1] its often possible to find a load dataset that closelymatches
the monthly aggregate load values of the target site, which are typ-
ically available.

5.3 Finding Minimum-Cost Sizings
Given the PV generation and load traces for several years, we sam-
ple 𝜂 sub-intervals from each trace using a sliding window ap-
proach to ensure equal representation in all years and seasons.This
creates an ensemble of shorter PV generation and load traces, with
the length of each trace𝑇 as specified by the user. For each PV-load
pair in the ensemble, we want to compute a sizing that meets the
target performance at a minimum cost. A naive way to do this is
to exhaustively try all sizing combinations and simulate the oper-
ation of each system to check if it meets the target performance
for the given trace pair. As in [13], system operation can be simu-
lated to obtain the unmet load, denoted as 𝑢 (A, 𝑏, 𝑡1, 𝑡2) over the
time interval [𝑡1, 𝑡2], given the corresponding solar and load traces
and solar/load allocation (A, 𝑏). However, the space of all possible
sizings is very large and makes an exhaustive search impractical.

A more refined search algorithm, such as stochastic gradient
descent, could be used to quickly find the minimum-cost sizing if
the search space is convex and differentiable, which does not hold
at the edges where the A𝑖 goes from 0 to 1 due to fixed per-roof-
segment installation costs. To get around this problem, we split the
search space into several convex search spaces where fixed costs
are ignored: one for each combination of roof segments. For exam-
ple, if the search space has three roof segments A, B, C, then we
have seven sub-spaces: A, B, C, AB, AC, BC, ABC. We then use
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a stochastic gradient descent algorithm to efficiently search each
space and find least-cost sizing across all of search spaces taking
into account fixed costs post hoc. This mechanism, along with se-
lecting the sub-intervals, are demostrated later in Algorithm 4 un-
der Section 5.6.

Stochastic gradient descent requires a starting point, i.e., a sizing
on the Pareto frontier, and a cost function. To find an initial Pareto-
optimal sizing, we maximize the number of panels on each roof
segment and calculate the minimum storage size 𝑏∗ that leads to a
feasible sizing through binary search. The cost function is simply
the cost of the system: 𝐶 (A∗) = 𝐶 (A∗, 𝑏∗) via Equation (2). The
pseudocode for generating a cost for such a solar allocation A∗ is
specified in Algorithm 1.

Algorithm 1 Cost Function for a Solar Allocation

1: function C(A)
2: 𝑏∗←𝑚𝑖𝑛0≤𝑏≤𝑏𝑚𝑎𝑥 𝑠 .𝑡 .𝑢 (A,𝑏,𝑡1,𝑡2)

|L [𝑡1,𝑡2 ] | ≤ 𝜀, via binary search
3: if 𝑏∗ does not exist then
4: return∞
5: end if
6: return 𝐶 (A, 𝑏∗) = ∑

𝑖 |𝑎𝑖≠0 (𝑐
𝑓
𝑖 + 𝑐

𝑚
𝑖 ∗ 𝑎𝑖 ) + (𝑐

𝑏 ∗ 𝑏∗)
7: end function

Given the cost function for a solar allocation, we then adjustA∗
via an iteration of a stochastic gradient descent algorithm, with
cost function 𝐶 and a finite difference approximation of gradient,
i.e.

𝜕𝐶

𝜕𝑎𝑖
A∗ ≈ 𝐶 ({𝑎1, . . . , 𝑎𝑖 + 1, . . . , 𝑎𝑛}) −𝐶 (A∗) (4)

In our implementation, we experimented with several different
stochastic gradient descent algorithms and settled onAdaDelta [23].
Its exponentially decaying gradientmechanism eliminates the need
of setting an initial learning rate and we empirically found that
it works consistently well with different orders of magnitudes of
solar/load traces and search spaces. Other algorithms such as RM-
SProp [22] andAdaGrad [12] work equally well but requiremanual
adjustment of learning rate to be effective. In our implementation,
we set AdaDelta’s two hyperparameters, 𝜌 and 𝜁 , to 0.9 and 0.1 re-
spectively.The first hyperparameter represents the decay rate used
to calculate an exponentially decaying running average for gradi-
ents and the objective function, and the second is used in a division
to maintain numerical stability. In each iteration adjustingA∗, we
add a multivariate normal random perturbation of zero mean and
one unit of variance to avoid search paths being trapped in local
minima or saddle points. The stopping condition of the algorithm
is when the cost C(A∗) exceeds𝑚, the decaying average of the cost
function for previous iterations. The pseudocode for this process
is described in Algorithm 2.

Figure 2 shows a typical search path of AdaDelta in two dimen-
sions of PVs.The background color gradient shows the cost at each
PV sizing computed via grid search.The cost value starts high near
A𝑚𝑎𝑥 and gradually decreases as allocations from both roof seg-
ments decrease, and the gradient stays relatively constant. How-
ever, at pv1=3 the cost starts to increase with a unit decrease of
pv1, and the search path changes direction to trade-off fewer allo-
cations of pv2 and replace it with more allocations of pv1, keeping

Algorithm 2 Find the least-cost sizing through system simulation
and stochastic gradient descent

1: function find_sizing(𝑡1, 𝑡2, subsets)
2: A∗← {A𝑚𝑎𝑥

𝑖 : 𝑖 ∈ subsets}
3: search_path← empty list
4: 𝑆 ←

⃗⃗
0 ⊲ 𝑆,Δ are AdaDelta intermediate variables

5: Δ←
⃗⃗
0

6: 𝑚← C(A∗)
7: while C(A∗) ≤ 𝑚 do
8: search_path.add(A∗)
9: ∇𝐶 (A∗) ← { 𝜕𝐶𝜕𝑎𝑖A

∗ : 𝑖 ∈ subsets}
10: ⊲ Approximation by equation (4)
11: 𝑆 ← 𝜌𝑆 + (1 − 𝜌)∇𝐶 (A∗)2

12: 𝐺 ←
√
Δ + 𝜁
√
𝑆 + 𝜁

◦ ∇𝐶 (A∗) ⊲ Element-wise product

13: A∗←A∗ −𝐺 + 𝑁 (0, 1)
14: Δ← 𝜌Δ + (1 − 𝜌)𝐺2

15: 𝑚← 𝜌𝑚 + (1 − 𝜌) C(A∗)
16: end while
17: return 𝑎𝑟𝑔𝑚𝑖𝑛A∈search_path C(A) ∪ {0 : 𝑖 ∉ subsets}
18: end function

Figure 2: Search path for a typical AdaDelta run. The X
marks the optimal (min-cost) sizing.

in mind cost efficiency. Ultimately the search terminates near the
true minimum in the search space, denoted by the X mark.

5.4 Chebyshev Bound
As in Reference [13], we rely on amultivariate concentration bound,
based on Theorem 1 in Reference [20] to find a robust sizing by
treating the set of points on the Pareto frontier as i.i.d. samples
from an unknown distribution. The bound is parameterized by the
covariancematrix of the set of sizings, themean of each dimension,
and the desired confidence 𝛾 .

We denote each of the 𝜂 sizing pairsA [𝑡,𝑡+𝑇 ] , 𝑏 [𝑡,𝑡+𝑇 ] as an 𝑁 +
1-dimensional sizing 𝜉 (𝑘) ≜ (𝑎 [𝑡,𝑡+𝑇 ]1 , 𝑎

[𝑡,𝑡+𝑇 ]
2 , . . . , 𝑎

[𝑡,𝑡+𝑇 ]
𝑁 , 𝑏 [𝑡,𝑡+𝑇 ] ).

Then, the unbiased empirical covariance Σ𝜂 is defined by

Σ𝜂 ≜ 1

𝜂 − 1

𝜂∑
𝑘=1

(𝜉 (𝑘) − 𝜇𝜂 ) (𝜉 (𝑘) − 𝜇𝜂 )T (5)

where

𝜇𝜂 ≜ 1

𝜂

𝜂∑
𝑘=1

𝜉 (𝑘) (6)

5



669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

, , Anon.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

is the empirical mean. Note that Σ𝜂 is required to be non-singular
(invertible) for subsequent computations. When it is not, it implies
that there is no variability in one or more dimension 𝑖 for all least-
cost sizings simulated. In practice, this can happen when a roof
segment is not used in any of the min-cost sizings, hence 𝜉

(𝑘)
𝑖 =

0∀𝑘 . Alternatively, it can be that the number of PV panels on roof
segment 𝑖 are always maximized, i.e., 𝜉 (𝑘)𝑖 = 𝑎𝑚𝑎𝑥

𝑖 ∀𝑘 . In either
case, the matrix becomes invertible if we remove the 𝑖𝑡ℎ dimension
from subsequent calculation (the 𝑖𝑡ℎ row and column of Σ𝜂 ) and
lock in 𝜇𝜂,𝑖 as final sizing for that dimension. We can repeat this
operation until Σ𝜂 is non-singular.

The multivariate Chebyshev bound is expressed as an (𝑁 + 1)
dimensional hyper-ellipsoid of sizings Ξ that bounds the 𝛾 proba-
bility density mass of the empirical distribution. Since we are in-
terested in the upper-bound of each dimension, we also specify
that any point in Ξ must be non-dominated by other points inside
the hyper-ellipsoid, i.e. if 𝜉 ∈ Ξ, then no sizings inside the hyper-
ellipsoid (which may not satisfy our robustness requirement) can
be strictly larger than 𝜉 . We denote this in equation (8).

To define Ξ, we first denote

𝐿(𝜉) ≜ (𝜉 − 𝜇𝜂 )𝑇 Σ−1𝜂 (𝜉 − 𝜇𝜂 ) (7)

for any sizing 𝜉 . 𝐿 represents the distance between 𝜉 and 𝜇𝜂 . Then
we have

Ξ = {𝜉 : 𝐿(𝜉) = Λ2;∄𝜉
′
> 𝜉, 𝐿(𝜉 ′) < Λ2 .} (8)

where Λ2 satisfies the following equation:

(𝑁 + 1) (𝜂2 − 1 + 𝜂Λ2)
𝜂2Λ2

= (1 − 𝛾) . (9)

Finally, the output of the algorithm (𝜉∗) is the cheapest sizing in Ξ,

𝜉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 (A,𝑏)=𝜉 ∈Ξ𝐶 (A, 𝑏) (10)

Given the equation 𝐿 of the hyper-ellipsoid, we want to find the
boundary through Tabu search, using function 𝐿 to determine if
a point is inside or outside the boundary. We shall start at sizing
𝜇𝜂 and for each dimension 𝑖 , using binary search to determine the
least-cost point outside the boundary as the starting point of the
search, as implemented on and after line 10.

We then perform a queued breadth-first Tabu search starting
with these sizings. For each sizing in the search queue, we examine
its (𝑁 +1) neighbor points - higher-by-one neighbors for points in-
side and lower-by-one neighbors for points outside. We admit into
the Chebyshev bound Ξ points that are outside or on the bound-
ary with its lower-by-one neighbors inside of the boundary. This
guarantees that for each sizing admitted, there cannot be a strictly
larger sizing inside the hyper-ellipsoid, given its convexity. Algo-
rithm 3 describes the computation of the bound on lines 2-17, and
the search for the cheapest system on the bound on lines 18-33.

In practice, the algorithm is implemented in addition to a hashmap
to cache the previously searched sizings to improve performance,
and boundary limits to prune unrealistic sizings. See Figure 3 for
an example of a three-dimensional (two roof segments and one
storage), non-dominating partial hyper-ellipsoid Ξ that represents
a particular sizing set.

Algorithm 3 Chebyshev Bound-Finding Algorithm

1: function find_bound(Λ2, 𝜉 (1) , . . . , 𝜉 (𝑘) )
2: 𝜇𝜂 ← 1

𝜂

∑𝜂
𝑘=1 𝜉

(𝑘)

3: Σ𝜂 ← 1
𝜂−1

∑𝜂
𝑘=1 (𝜉

(𝑘) − 𝜇𝜂 )(𝜉 (𝑘) − 𝜇𝜂 )T
4: singular_dimensions← empty list
5: while Σ𝜂 is singular do
6: Find 𝑖 such that Σ𝜂𝑖 = 0
7: singular_dimensions.add(𝑖, 𝜇𝜂𝑖 )
8: Remove 𝑖𝑡ℎ row and column for Σ𝜂 , remove 𝜇𝜂𝑖
9: end while

10: search_queue← empty queue
11: for 𝑖 ∈ {1, . . . , }\ singular_dimensions do
12: 𝜉∗← 𝜇𝜂
13: 𝜉∗𝑖 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝜇𝜂𝑖 ≤𝜉𝑖 ≤𝑎

𝑚𝑎𝑥
𝑖

𝐿({𝜇𝜂1, . . . , 𝜉𝑖 , . . . , 𝜇𝜂𝑁 })
14: if 𝜉∗𝑖 exists then
15: search_queue.enqueue(𝜉∗)
16: end if
17: end for
18: Ξ← empty set
19: while search_queue is not empty do
20: 𝜉∗← search_queue.dequeue()
21: dir← 𝐿(𝜉∗) ≥ Λ2 ? 1 : −1
22: all_inside?← true
23: for 𝑖 ∈ {1, . . . , }\ singular_dimensions do
24: 𝜉neighbor← {𝜉∗1, . . . , 𝜉

∗
𝑖 + dir, . . . , 𝜉

∗
𝑁 }

25: if 𝐿(𝜉neighbor) ≥ Λ2 then
26: all_inside?← false
27: end if
28: search_queue.enqueue(𝜉neighbor)
29: end for
30: if 𝐿(𝜉∗) ≥ Λ2 and all_inside? then
31: Ξ← Ξ ∪ 𝜉∗
32: end if
33: end while
34: return {𝜉 ∪ {𝜇𝜂𝑖 : 𝑖 ∈ singular_dimensions} : 𝜉 ∈ Ξ}
35: end function

Figure 3: A typical three-dimensional Chebyshev boundΞ as
shown on the upper yellow “dome”.The points below are 132
least-cost feasible sizings computed for each data subsam-
ple. Warmer colors represent higher total sizing cost. The X
marks the least-cost sizing found on the Chebyshev bound.6
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5.5 Computing 𝜂, the Number of Samples
Wenowdiscuss how to compute𝜂, the number of data sub-samples.
Recall from equation (9) that given fixed 𝑁 , 𝛾 , and 𝜂, we compute
Λ2 which determines how close the Chebyshev bound is to 𝜇𝜂 . 𝜂
and Λ2 are inversely related; the larger 𝜂 is, the smaller Λ2. In
other words, using more samples can get us a cheaper system with
the same robustness guarantee. FromTheorem 2 in Reference [20],
when 𝜂 →∞, Λ2 approaches

Λ2∗ =
𝑁 + 1
(1 − 𝛾) (11)

from above. This is the lower limit of the gap between the center
of the ellipse (at 𝜇𝜂 ) and the bound.

Since we can obtain many samples from a large enough PV gen-
eration and load dataset, and the bound only gets asymptotically
tighter with more samples, we need to decide how many samples
is enough. We want to find an 𝜂 that balances the runtime and sys-
tem cost. The trade-off can be controlled by introducing a parame-
ter 𝛽 > 0 and setting Λ2 = (1 + 𝛽)Λ2∗. For example, if 𝛽 = 0.1, we
get aΛ2 that is a factor 1.1 greater than theminimumΛ2∗ achieved
when 𝜂 →∞. From equation (9), this reduces to

𝜂2𝛽 − 𝜂Λ2 + 1 = 0, (12)

which forms a quadratic equation that has one real solution greater
than 1, giving us the number of samples corresponding to 𝛽 :

𝜂 =
Λ2 +

√
Λ4 − 4𝛽
2𝛽

. (13)

In practice, we find that setting 𝛽 = 0.1 gives a reasonable
trade-off, requiring 220 simulations for 85% confidence level and
660 for 95% confidence level over two roof segments, and perform-
ing within 1% cost of the sizing result for a lower 𝛽 value such as
0.01, which requires 10 times more computation.

5.6 Putting it Together
Recall that the algorithm consists of three parts: sampling 𝜂 sub-
intervals from a PV generation and load dataset, running simu-
lations and gradient descent to find the minimum cost sizing for
each data sample 𝜉 (1) , . . . , 𝜉 (𝜂) over each separated convex search
space, and computing the Chebyshev bound Ξ. Algorithm 4 pro-
vides pseudocode that composes the algorithms described in this
section to computer a min-cost robust sizing.

6 EVALUATION
We evaluate our multi-roof sizing algorithm using two datasets.
The first dataset is extracted from the Pecan Street Dataport [5] and
has four years of PV and residential load data. Here, we combine
data from multiple homes to synthesize a multi-roof sizing prob-
lem.The second is a pyranometer and load dataset from the British
Antarctic Survey’s Rothera Antarctic research station, where solar
PV can be deployed on up to five roof segments.

6.1 Evaluating Robustness on Residential Load
We evaluate the robustness of our algorithm using four years of
residential load and PV generation data measured at 49 homes in
Austin, Texas [5]. We run leave-one-year-out experiments, where

Algorithm 4 Robust Sizing Algorithm

1: function sizing(𝑁,𝑛,𝑇 , 𝜀, 𝑐
𝑓
𝑖 , 𝑐

𝑚
𝑖 , 𝑐𝑏 , 𝑎𝑚𝑎𝑥

𝑖 , 𝑏𝑚𝑎𝑥 , S𝑖 , L)

2: Λ2← (1 + 𝛽) 𝑁 + 1(1 − 𝛾)

3: 𝜂 ← Λ2 +
√
Λ4 − 4𝛽
2𝛽

4: Ξ∗← empty set
5: for subsets ∈ 𝑃 ({1, . . . , 𝑁 }) \∅ do
6: ⊲ Use power set to separate convex search spaces
7: for 𝑖 ∈ 1..𝜂 do

8: 𝑡 ← 𝑖 ⌊𝑛 −𝑇
𝜂
⌋ ⊲ sample with sliding window

9: 𝜉 (𝑘) ← find_sizing(𝑡, 𝑡 +𝑇, subsets)
10: end for
11: Ξ← find_bound(Λ2, 𝜉 (1) , . . . , 𝜉 (𝜂) )
12: 𝜉∗← 𝑎𝑟𝑔𝑚𝑖𝑛 (A,𝑏) ∈Ξ C(A, 𝑏)
13: Ξ∗← Ξ∗ ∪ 𝜉∗
14: end for
15: return 𝑎𝑟𝑔𝑚𝑖𝑛 (A,𝑏) ∈Ξ∗ C(A, 𝑏)
16: end function

3 years of data are used as input to the sizing algorithm, and the
final year is used as a validation year to check whether the sizing
met the unmet load and confidence targets. Given a confidence 𝛾 ,
we expect that the computed sizing will have at most 1-𝛾 fraction
of the tests exceed the unmet load target 𝜀.

To create a multi-roof sizing scenario, we use PV generation
data from two homes to represent two roof segments, dubbed pv1
and pv2, that have noticeably different PV generation profiles, one
peaking in the morning hours and one in the afternoon, as shown
in Figure 4. In addition, we found that each home in the dataset has
a distinct load pattern. Hence, to compare the sizings according to
the shape of each home’s load profile rather than its magnitude,
we rescale the data so that on average, across four years, each solar
panel generates 0.2 kW and the mean load is 2kW. We assume that
each home can install up to 60 panels on each roof segment, and
up to 120 kWh of storage. We have also assumed a fixed cost of
$2000 for each roof segment, a variable cost of $500 per panel [17],
and a battery cost of $500 per kWh, similar to the current cost of a
Tesla Powerwall [2].

Figure 4: Average hourly solar generation for two roof seg-
ments in the Pecan Street dataset. Note that pv1 peaks in the
morning hours and pv2 peaks in the afternoon hours.
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We evaluate our sizing method for two QoS targets, 𝜀 = 0.1
and 𝜀 = 0.5. The first target represents a scenario where the home-
owner wishes to achieve near-total grid independence, while the
second represents a more fiscally-prudent scenario where solar PV
primarily meets loads by day and the grid is used to meet load
at night. We also evaluate two confidence levels, 𝛾 = 0.85 and
𝛾 = 0.95, with the former level expected to produce a cheaper al-
beit less-robust sizing.

Figure 5 shows the aggregate results of 196 tests consisting of 4
leave-one-year-out experiments across 49 homes. Note that as the
target validation loss increases from 10% to 50%, the distribution
visibly shifts to the right, as expected. Moreover, when the target
loss is 10% (𝜀 = 0.1), only 4.1% of the tests exceeded the loss at 85%
confidence level, and 1% of tests at 95% confidence level. Similar
results are seenwith a loss target of 50% (𝜀 = 0.5), with 2.5% of tests
exceeding the loss target at 85% confidence level, and 2% at 95%
confidence level. These results empirically demonstrate that the
sizings computed by our algorithm are feasible and robust. They
are also reasonably tight, as seen by the increase in the density
of the loss distribution left of the loss target indicated by the red
line in each figure, though the sizing is somewhat conservative for
𝜖 = 0.5, 𝛾 = 0.85.

Figure 5: Aggregated leave-one-year-out test results on 49
houses. Percentage of tests that land within the unmet load
target for 𝜀 = 0.1 and 0.5, with the red vertical line indicating
target unmet load levels.

Figure 6 shows the average sizing results across all homes and
years given different unmet load target and confidence level com-
binations. Notably, pv2 is slightly more favored than pv1. This can
be explained by observation that the majority of houses have load
peaks in the evening, and storage costs are reduced when more
panels are allocated to pv2. Also, there is a 4-5× increase in bat-
tery and 2-3× increase in PV allocation when 𝜀 goes from 0.5 to
0.1. This is because meeting the more stringent loss target requires
the system to generate and store PV generation by day for use at
night.

Figure 6: Average sizing results across all houses and years,
including PV allocation for the two roof segments, battery
amount and total cost of the system.

Figure 7: Two typical residential load patterns. House 5615
shows load more concentrated in the evening and its siz-
ing contains only pv2. House 1792’s load is more evenly dis-
tributed and its sizing contains both roof segments.

We also found that the sizing for the majority of the homes in-
cludes panels on both pv1 and pv2, despite each having enough
space to hold all the allocated panels. We hypothesize that the dif-
fering peaking times for the two roof segments cause PV genera-
tion to be more spread out over the course of the day, which re-
duces the need for storage. To confirm this, we studied, in more
detail, the two load patterns shown in Figure 7. Note that the first
house has a more pronounced evening load peak, which better
matches the generation profile from pv2. Indeed, for this home,
our algorithm suggests a sizing that uses only pv2. In contrast, the
sizing for the second home uses both roof segments. This confirms
our intuition that the optimal sizing attempts to match PV genera-
tion profiles to load profiles.

To sum up, our experiments using the Pecan Street Dataport
dataset confirm that our algorithm produces feasible sizings that
are robust to variations in the solar and load profiles.
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Figure 8: Satellite picture of the Rothera research station. For each building with a usable roof segment, we annotate the
building name, the number of 1 m2 panels that it can support, the average PV generation (kW/panel), the orientation angle
from true north, and the tilt angle to the ground plane.

Figure 9: Solar patterns averaged by hour for the five roof segments in the Rothera Station, with the three peak hours empha-
sized in red. Note that the Admirals and Bonner buildings receive more sunlight, on average, compared to the others.

6.2 Decarbonizing the BAS Rothera Station in
Antarctica

We have applied our sizing algorithm to the use case of partly de-
carbonizing the British Antarctic Survey’s (BAS) Rothera research
station, based on real traces. The average load of the station is 95
kW, with a peak of 130 kW. So far, the station has been powered
by diesel power generators that use 60𝑚3 of fuel per month on av-
erage, which is carbon-intensive and expensive to deliver to such a
remote location. Through its current modernization program, the
BAS aims to decarbonize the station by 2030. We study how the
station might hypothetically install a solar+storage system to con-
tribute to decarbonization.

The BAS provided us with six years of hourly horizontal solar
irradiance as measured through a pyranometer, and one year of
representative hourly load data from 2015, which was before the
initiation of the modernization program. At present, five buildings

in the station have been identified as suitable for solar PV instal-
lation, as shown in Figure 8. We therefore use the irradiance trace
to compute five separate PV generation traces, according to the
tilt and orientation of each potentially-suitable roof segment as
suggested in Reference [9]; the resulting set of daily average PV
generation profiles is shown in Figure 9. Note that the Admirals
and Bonner have higher solar generation potential than the other
three and are therefore the best candidates for PV panels. However,
the roof segment on Bonner is relatively small. Three other roof
segments are less desirable, with Hanger having a slightly larger
average radiation and the largest available area. Collectively, the
five roof segments can support up to 450 kWp of PV generation.

We also trained an ARMA model on the load data to create syn-
thetic load traces spanning six years, using the process described
in Reference [21].

The costs used in this study are a £5000 fixed cost for equipping
each roof, £1.18/Wp marginal PV cost (equivalent to £188 per𝑚2

9



1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

, , Anon.

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

Figure 10: Results of sizing, including number of solar pan-
els, kWh of batteries, and cost for different confidence lev-
els and target unmet load. Note that allocation for less-
efficient roof segments NBH and Giants are 0 across all
tested loss/confidence combinations.

panel which is assumed to be 160 Wp), and £670/kWh for batteries.
This data was used to compute the sizing for several system perfor-
mance targets, with 𝜀 ranging from 0.35 (meeting 65% of load) to
0.65 (meeting 35% of load), and confidence level 𝛾 at 0.85 and 0.95.

The results of the sizing are summarized in Figure 10, which in-
cludes the per-roof segment panel allocation, battery size, and total
cost. No feasible sizing existed for 𝜀 = 0.35, due to the fact that very
little sunlight is seen inAntarctica betweenMay andAugust. Other
𝜀 targets resulted in varied systems sizings: with 𝜀 = 0.65, the siz-
ing requires very little battery capacity andmost of the solar panels
are on a single roof segment, while for 𝜀 = 0.45 the sizing was split
more equally across two of the roof segments and required roughly
500-1000 kWhof storage tomeet night-time load, depending on the
desired confidence level. Notably, for 𝜀 = 0.45 and 𝛾 = 0.95, the
preferred roof segments are not always those which receive the
most radiation (Admirals and Bonner), but a combination of those
that spread out PV generation over the course of a full day (Ad-
mirals and Hangar). This is in contrast to a naive greedy approach
that would have placed panels on the most efficient available roof
segment, as discussed in Section 4.1.

Note that because we only had access to only one year of load
data, we were unable to carry out a leave-one-out analysis to eval-
uate the robustness of our sizing.

7 DISCUSSION AND CONCLUSION
In this work, we present an algorithm for choosing the number
of solar panels and the amount of storage needed to meet a cer-
tain fraction of the load in a microgrid setting. Unlike prior work,

which assumes that the desired number of panels can always be
accommodated on a rooftop, we take into account the pragmatic
issue that roofs typically incorporate multiple roof segments, each
with its own panel capacity, tilt, and orientation.This unexpectedly
leads to a muchmore complex sizing problem. Our solution, which
is based on stochastic gradient descent, allows us to compute siz-
ings despite the non-linear nature of the problem.We demonstrate
the robustness of our approach using a leave-one-out analysis and
the Pecan Street dataset. We also use our approach to compute the
sizing needed for different levels of decarbonization of the British
Antarctic Survey station in Rothera.

Our approach deals with non-linearity by using stochastic gra-
dient descent to find least-cost, feasible sizings over repeated tri-
als and the computation of a Chebyshev bound over the results of
these trials. Unfortunately, this approach has some limitations, as
discussed next.

First, when using solar and load traces from multiple years, one
of the years may have atypically low PV generation or high load.
A sizing computed using an atypical year tends to be more conser-
vative, as is a Chebyshev bound that includes this sizing. Unfortu-
nately, there does not appear any systematic approach to identify
anomalous traces in a fairly small set of traces.

Second, to make our search more efficient, we partition the non-
linear search space into a set of convex sub-spaces. This is reason-
able for a small number of roof segments (for example, in Rothera,
we used this approach with 5 roof segments). However, this ap-
proach does not scale well with the number of roof segments due
to a combinatorial explosion.

Third, we compute the Chebyshev bound using a multidimen-
sional breath-first Tabu search. This turns out to be memory inten-
sive, especiallywhen searching a large𝑁 -dimensional spacewhere
each point has 𝑁 neighbours.

Fourth, a Chebyshev bound sometimes leads to unintuitive re-
sults, an example being the recommendation of a handful of pan-
els on the Bonner building in Rothera. This is because the Bonner
building is part of a least-cost sizing for some runs of the stochas-
tic gradient descent algorithm and not others. When computing a
Chebyshev bound, however, this results in a small number of pan-
els being allocated to this building, a counter-intuitive result.

Finally, on an unrelatedmatter, we note that our sizing approach
assumes a microgrid setting, that is, with no payments for over-
generation from the grid using net-metering or feed-in-tariff. If
such payments are introduced, then the sizing problem becomes
far more complex, since the storage operation policy depends in
detail upon the nature of the grid payment scheme [15]. We defer
analysis of this more complex scenario, as well as to overcome the
limitations listed above, to future work.
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