
Solving Large-Scale Granular Resource Allocation
Problems Efficiently with POP

Deepak Narayanan
★
, Fiodar Kazhamiaka

★
, Firas Abuzaid

★
, Peter Kraft

★
, Akshay Agrawal

★
,

Srikanth Kandula
†
, Stephen Boyd

★
, Matei Zaharia

★

★Stanford University †Microsoft Research

Abstract
Resource allocation problems in many computer systems

can be formulated as mathematical optimization problems.

However, finding exact solutions to these problems using off-

the-shelf solvers is often intractable for large problem sizes

with tight SLAs, leading system designers to rely on cheap,

heuristic algorithms. We observe, however, that many allo-

cation problems are granular : they consist of a large number

of clients and resources, each client requests a small fraction

of the total number of resources, and clients can interchange-

ably use different resources. For these problems, we propose

an alternative approach that reuses the original optimization

problem formulation and leads to better allocations than

domain-specific heuristics. Our technique, Partitioned Opti-

mization Problems (POP), randomly splits the problem into

smaller problems (with a subset of the clients and resources

in the system) and coalesces the resulting sub-allocations

into a global allocation for all clients. We provide theoretical

and empirical evidence as to why random partitioning works

well. In our experiments, POP achieves allocations within

1.5% of the optimal with orders-of-magnitude improvements

in runtime compared to existing systems for cluster schedul-

ing, traffic engineering, and load balancing.

CCS Concepts. • Networks → Traffic engineering algo-
rithms; Network resources allocation; • Computer systems
organization → Cloud computing; • Theory of compu-
tation → Scheduling algorithms.

Keywords. Resource scheduling, optimization problems in

computer systems, cluster scheduling, traffic engineering,

load balancing.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00

https://doi.org/10.1145/3477132.3483588

Runtime

Al
lo

ca
tio

n
qu

al
ity

Mathematical
programming

Ex
is

tin
g

he
ur

is
tic

s

Partitio
ned Optimization

Problems (POP)
Ideal

Better &
faster

Figure 1. Tradeoff space between allocation quality (objective-

dependent) and runtime. Our proposed technique (POP) is faster

than directly solving mathematical programs, and computes better

allocations than existing heuristic algorithms.

1 Introduction
As workloads become more computationally expensive and

computer systems become larger, it has become common

for systems to be shared among multiple users. As a result,

deciding how resources (e.g., GPUs, links, servers) should be

shared amongst various clients while optimizing for many

macro-objectives is important across a number of domains

(e.g., cluster scheduling, traffic engineering, load balancing).

Resource allocation problems can often be formulated as

mathematical optimization programs [5, 19, 27, 29, 32, 33, 38,

40, 45]; the output of these programs is the allocation of re-

sources (e.g., accelerators, servers, or network links) to each

client (e.g., jobs, data shards, or traffic commodities). Unfortu-

nately, solving thesemathematical programs can be computa-

tionally expensive (Figure 1). The worst-case complexity for

linear programs is approximately 𝑂 (𝑛2.373) [11, 28], where
𝑛 is the number of problem variables (even though LPs can

often be solved faster depending on problem structure), and

integer-linear programs are even more expensive. Mathe-

matical programs for resource allocation can have millions

of variables (e.g., one variable for every <client, resource>

pair) for large-scale systems, leading to long solution times

depending on the numerical solver used (e.g., 8 minutes for a

cluster with 1000 jobs using SCS [34, 35]). Moreover, alloca-

tions often need to be recomputed frequently to keep up with

dynamic changes in the system. Consequently, production

systems such as B4 and BwE [23, 27] for traffic engineering,

the Accordion load balancer [42] for distributed databases,

and the Gavel job scheduler [32], hit performance bottle-

necks when the numbers of clients and resources increase.

521

https://doi.org/10.1145/3477132.3483588
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

101 102

Runtime (seconds)

0.00
0.25
0.50
0.75
1.00

Al
lo

ca
tio

n
qu

al
ity

Exact sol.POP-2
POP-4

POP-8

Gandiva
Better

Figure 2. Comparison of Gavel’s fair-sharing policy compared to

its POP variants and Gandiva [49] on a GPU cluster. The scatterplot

shows runtimes and mean allocation quality across 2048 jobs on a

cluster with 1536 GPUs. POP-𝑘 uses 𝑘 sub-problems.

Thus, the conventional wisdom in the systems community

is that solving these programs directly often takes too long.

Instead, production systems and researchers frequently use

heuristics that are cheaper to compute. It is common to see

some version of the following statement in a paper:

“Since these algorithms take a long time, they

are not practical for real-world deployments. In-

stead, they provide a baseline with which to com-

pare faster approximation algorithms.” – Taft [45].

The partition-placement algorithm in E-Store [45], the space-

sharing-aware policy in Gandiva [49], and cluster manage-

ment policies to allocate resources to containers in systems

like Kubernetes [2], DRS [22], and OpenShift [3] all rely on

heuristics. However, prior work shows that these heuristics

are hard tomaintain as problems scale and inputs change [44],

are far from optimal (Figures 2, 9, and 13), and often do not

extend to slightly modified objectives.

Although it seems that large optimization problems are

too expensive to solve directly, we observe that many alloca-

tion problems in computer systems share several exploitable

properties: the number of clients and resources is large, each

client requests a small fraction of the total number of re-

sources, and resources are fungible or substitutable (i.e., a job

can make similar progress using different resources). For any
such granular allocation problem, we propose POP, which

stands for Partitioned Optimization Problems: a method for

quickly computing allocations by reusing the original opti-

mization problem formulation on subsets of the input. On

several granular optimization problems, we found that POP

can give close-to-optimal results with orders-of-magnitude

faster runtimes than the full formulations. Importantly, since

POP reuses the original problem formulations, it can be im-

plemented in only a few lines of code.

The simplest way to apply POP is to divide clients and

resources among 𝑘 identical copies of the given optimization

problem (each with a subset of the clients and resources).

Each sub-problem has fewer equations and variables, lead-

ing to a super-linear runtime speedup. The sub-problems

can also be executed in parallel. The overall allocation is a

union of the allocations from the individual sub-problems.

Our results show that randomly and evenly dividing clients

and resources among sub-problems works well when clients

are numerous and individually use only a small fraction of

all resources. Empirically, we show that POP’s resource allo-

cations are nearly optimal on several optimization problems,

including using real-world inputs. We also prove that the

probability of a large optimality gap is small given an al-

location problem with certain simple properties. POP has

structural similarity with the first step of “primal decompo-

sition” in convex optimization [10], but can be applied to a

broader set of problems than those amenable to primal de-

composition (separable objective, coupled constraints). We

note that there can be other ways to POP an optimization

problem, but these are beyond the scope of this paper.

In thewild, allocation problems do not always fit the defini-

tion of granular as presented above, e.g., a traffic engineering

problem could have “large” clients (commodities) with sub-

stantial bandwidth demand, or a client might have to use a

particular resource (e.g., link between two sites). Fortunately,

in some such cases, we can transform the problem into a gran-

ular problem using two granularization techniques: client
splitting and resource splitting. The “large” clients, which in-

dividually require a sizable fraction of total resources, can

be split into multiple virtual clients who each receive partial

allocations from multiple sub-problems. Since the number

of “large” clients is small, by definition, POP’s sub-problems

remain small and still achieve a sizable runtime speedup. Sim-

ilarly, resources can be split into multiple virtual resources,

each with a fraction of the full resource’s capacity.

POP cannot be applied to every allocation problem in

systems because some problems are not granular or require

a non-trivial partitioning into sub-problems (e.g., due to

constraints). We discuss examples of such problems in §4.4.

Nevertheless, we found that POP is effective on a wide

range of important problems in recent computer systems re-

search. We evaluated POP on 6 different allocation objectives

across three domains (cluster scheduling, traffic engineer-

ing, and load balancing). POP achieves empirical runtime

improvements of up to 100× compared to the original op-

timization problem formulations while staying within 1.5%

of optimal, and even up to 20× faster and 1.9× higher qual-

ity than heuristics. We integrated POP into real systems

like Gavel, and found that downstream metrics like average

job completion time and makespan are unaffected by using

POP. We also found granularization useful in using POP to

compute high-quality allocations for initially non-granular

problems, like traffic engineering problems with a few large

flows and links between specific sites. Our implementation

is available at https://github.com/stanford-futuredata/POP.

2 Granular Allocation Problems
Computer systems are often shared among clients from mul-

tiple users (e.g., jobs in a cluster scheduler, commodities in

a Wide Area Network). These clients might then request

522

https://github.com/stanford-futuredata/POP

resources (e.g., GPUs or link capacity) from a central resource

allocator, which determines how to map resources to clients.

Resource allocation problems have three main components:

• Search Space ofAllocations:Allocations specify how
resources should be shared between clients. In cluster

scheduling, an allocation can specify the fraction of

wall-clock time each active job should spend on dif-

ferent types of resources (e.g., types of GPUs like K80,

P100, V100, A100). In traffic engineering, an allocation

can specify the flow each commodity should receive

on different links. Allocations can also reason through

the interactions between clients on different resources

(e.g., the time fractions pairs of jobs should spend on

various resources [32, 49]).

• Objectives: The objective that an optimization prob-

lem maximizes or minimizes is a function over the

allocation, and specifies the metric (e.g., dollar cost,

total flow) that needs to be optimized in solving the

allocation problem. We observe that these functions

are typically amax or sum over functions of per-client

allocations, but can be other arbitrary functions as well.

Convex functions are generally easier to optimize.

• Constraints: Most allocation problems also specify

constraints to ensure that both clients and resources

are not over-allocated (e.g., the total time fraction

given to a single job across resource types cannot ex-

ceed 1.0) and that various invariants are maintained.

These are specified as functions over the allocation 𝐴.

The goal of a resource allocation problem is to find the

allocation value that is feasible (respects the provided con-

straints) and optimizes the provided objective.

We can then say an allocation problem is granular if:

• Condition 1: The number of clients and resources is

large (on the order of 100s or more).

• Condition 2: Each client requests an insignificant

fraction (e.g., < 1%) of the total available resources.

• Condition 3: Resources are fungible or substitutable.
In other words, if a client 𝑐 is given resource 𝑟 as part

of an allocation 𝐴, there are multiple other resources

𝑟 ′ ≠ 𝑟 such that switching 𝑐 to 𝑟 ′ gives an allocation

𝐴′ with similar objective value (𝑓 (𝐴) ≈ 𝑓 (𝐴′)).
• Condition 4: If the resource allocation problem con-

siders interactions between multiple clients (e.g., two

jobs on the same server), then client combinations

should be fungible or substitutable too.

As we show in §4, resource allocation problems in a num-

ber of different domains like cluster scheduling, traffic engi-

neering, and load balancing, are granular. Furthermore, in

certain cases, problems that violate some of these conditions

can be made granular through granularization transforma-

tions (client and resource splitting in §3.3).

For example, in Gavel [32], a cluster scheduler for machine

learning training workloads on clusters of GPUs, each job

(client) requests a prescribed number of a resource (e.g., a spe-

cific kind of GPU) tomake progress. Each job requests a small

fraction of the total number of GPUs available in the cluster,

and can be run on different types of GPUs with varying effi-

ciencies. Additionally, when used with space sharing [32, 49],

each job can be runwithmany other jobs (again with varying

efficiencies). We assume that dependencies that specify when

jobs are runnable are handled by a separate DAG scheduler.

This is standard in systems such as Spark and Hadoop [50].

Such cross-job “when can job 𝑋 run” dependencies are not

under the purview of the resource schedulers considered in

this paper, which try to determine how resources should be

shared among already runnable jobs only.
In traffic engineering setups such as those considered in

NCFlow [5], the clients are commodities, each resource is a

network link between two sites in the Wide Area Network,

and each commodity typically requests a small fraction of

the total available capacity.

In load balancing, the clients are data shards, the resources

are servers, and each shard can be handled by a small fraction

of the total number of servers available in the system.

3 Partitioned Optimization Problems
Granular resource allocation problems can be split into sub-

problems, where each sub-problem has a subset of the clients

and resources in the full allocation problem. We leverage

the large number of clients and resources to randomly par-

tition clients and resources into sub-problems; this proce-

dure yields high-quality allocations due to the law of large

numbers. We call this technique Partitioned Optimization

Problems (or POP for short). In the rest of this section, we

describe the intuition, procedure, and benefits of POP.

3.1 Intuition
Optimization problems for large systems take a long time to

solve in part because they have many variables. For example,

consider an optimization problem that involves scheduling

𝑛 jobs on𝑚 cloud VMs. Each VM has varying amounts of

resources (e.g., CPU cores, GPUs, and RAM). To express the

possibility of any job being assigned to any VM, an 𝑛 ×𝑚
matrix of variables would be needed; for 10

4
jobs and 10

4

VMs, the problem has 10
8
variables. Contemporary solvers

often take hours to solve such problems, although the exact

runtime depends on problem properties such as sparsity [48].

We can achieve much faster allocation computation times

by decomposing the problem; for example, the problem of

scheduling 10
3
jobs on 10

3
VMs (100× fewer variables) is

much more tractable. This procedure of breaking up the

larger problem into sub-problems reduces the search space
explored by the solver, since interactions between all com-

binations of clients and resources are no longer considered.

523

Algorithm 1 POP Procedure.

Input: Clients and their attributes 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], re-
sources and their attributes 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑚], function
to compute allocations get_allocation : (𝑋,𝑌) → 𝐴,

number of partitions 𝑘 , (optional) splitting attribute 𝑠 , (op-

tional) ratio of extra virtual clients allowed 𝑡 .

Return: Allocation for all 𝑛 clients, 𝐴.

// Optional: make the problem granular if it is not already.
𝑋 ′ = split_clients(𝑋, 𝑠, 𝑡), 𝑌 ′ = split_resources(𝑌)

// This is the partition step.
[𝑋 ′

1
, 𝑋 ′

2
, . . . , 𝑋 ′

𝑘
], [𝑌 ′

1
, 𝑌 ′

2
, . . . , 𝑌 ′

𝑘
] = partition(𝑋 ′, 𝑌 ′, 𝑘)

// This is the map step, can be performed in parallel.
for 𝑖 in range(𝑘) do
𝐴𝑖 = get_allocation(𝑋 ′𝑖 , 𝑌 ′𝑖)

end for

// This is the reduce step; allocations 𝐴𝑖 are combined.
𝐴 = coalesce([𝐴1, 𝐴2, . . . , 𝐴𝑘])

Instead, only combinations of subsets of clients and resources
are considered, which reduces runtime but also can reduce

the quality of the allocation. In light of this, the interaction

between clients and resources needs to be considered care-

fully to take into account the many global constraints in

the original problem, as well as the objective (e.g., fairness).

We find that on large granular resource allocation problems,

splitting clients randomly and assigning an equal number

of resources among sub-problems reduces the search space

of feasible solutions that needs to be considered by solvers,

while still ensuring that some high-quality feasible points are
in the explored search space. This is the main intuition that

allows POP to be effective, returning allocations of similar

quality as the original formulation but faster.

3.2 Procedure for Granular Problems
The first step of POP is to partition larger allocation

problems into smaller allocation sub-problems. The type of

partitioning allowed is dependent on the objective and con-

straints of the allocation problem, and has implications on the

runtime speedups and quality of the returned allocation. We

can then re-use the map-reduce API [14, 50] (or divide-and-

conquer): each of these sub-problems can be solved in parallel

(map step), and then allocations from the sub-problems can

be reconciled into a larger allocation for the entire problem

(reduce step). We show pseudocode for this in Algorithm 1.

The partitioning step affects the runtime, the reconcil-

iation complexity, and ultimately the quality of the final

allocation. One straightforward approach that we explore in

this paper is to divide both clients (e.g., jobs, shards, flows)

and resources (e.g., servers, links) randomly into sub-systems,

𝑛 clients

𝑚 resources
Split into 𝑘

sub-systems

𝑛/𝑘

𝑚/𝑘

𝑛	×	𝑚
variables

System

Optimization Problem 𝑛/𝑘 ×(𝑚/𝑘)	
variables

Split into 𝑘
sub-problems

Figure 3. POP partitions the system to reduce the number of opti-

mization problem variables. For a problem where the number of

variables is the number of clients times the number of resources, di-

viding clients and resources evenly among 𝑘 sub-problems reduces

the number of variables in each sub-problem by 𝑘2.

as shown in the top half of Figure 3. We find that this parti-

tioning scheme is effective even when clients have attributes

with skew (e.g., jobs in a shared cluster with various priority

levels, or data shards in query load balancing with different

loads). Low-quality allocations can also result from clients

having vastly different utilities with different resources. For

example, a resource could be a network link between two

sites in a Wide Area Network (WAN). A commodity might

have to use this link to send traffic between these two sites.

This paper shows how client and resource splitting (§3.3)

can be used to transform some of these “hard” problems into

a form that is then amenable to random partitioning. Other
broad partitioning strategies can also be used depending

on problem structure (e.g., assign all “geographically close”

clients and resources to the same sub-problem), but these are

out of the scope of this paper. With random partitioning, the

reduce step is cheap, as simply concatenating sub-system al-

locations yields a feasible allocation to the original problem.

3.3 Transformations to Granularize Problems
In some cases, it might not be possible to either return an

allocation that is feasible or high quality by merely assigning

each client and resource to sub-problems at random when

using the POP procedure. Skewed workloads with heavy

tails are common in practice [46]. As an example, consider a

query load balancing problem where we try to assign shards

containing various keys to compute servers: our goal is to

spread load evenly amongst the available servers, which

can be formulated as a mixed-integer linear program (§4.3).

In such a setting, it is common for single shards to be hot:
for example, Taylor Swift’s Twitter account receives much

more request traffic compared to the average Twitter user.

In light of these hot shards, it might not be possible to assign

shards to individual sub-problems and obtain sub-problems

with input distributions similar to the original problem (and

consequently leading to either an infeasible or poor-quality

allocation). Similarly, in the traffic engineering problem, it is

common for a small number of commodities to have large

524

Split large
client

Distribute virtual clients across
sub-problems

[𝒙𝟏𝟏, 𝒙𝟏𝟐, 𝒙𝟏𝒔] [𝒙𝒏𝟏, 𝒙𝒏𝟐, 𝒙𝒏𝒔]
𝒙𝒏% =	[𝒙𝒏𝟏, 𝒙𝒏𝟐, 𝒙𝒏𝒔/4]

Clients

Splitting attribute: 𝒔

[𝒙𝟐𝟏, 𝒙𝟐𝟐, 𝒙𝟐𝒔]
𝒙𝒏&𝟑% =	[𝒙𝒏𝟏, 𝒙𝒏𝟐, 𝒙𝒏𝒔/4]

Figure 4. Client splitting, where we granularize non-granular prob-
lems by splitting clients based on a splitting attribute 𝑠 .

Algorithm 2 Client Splitting Algorithm.

Input: Inputs 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], splitting attributes 𝑠 ,

ratio of extra virtual clients 𝑡 allowed.

Return:Mapping from real to virtual clients {𝑥𝑖 → [𝑥 ′𝑗]}.

Initialize queue← max_heap(), mapping← {}.
For all 𝑖 ∈ {1, 2, . . . , 𝑛}, queue.push(𝑥𝑖 .𝑠, 𝑥𝑖).

while len(queue) ≤ (1 + 𝑡) · 𝑛 do
𝑥max = queue.pop()
Split 𝑥max by attribute 𝑠 into two copies 𝑥1

max
and 𝑥2

max

(𝑥1
max

.𝑠, 𝑥2
max

.𝑠 = 𝑥max.𝑠/2).

update_mapping(𝑥max, [𝑥1max
, 𝑥2

max
])

queue.push(𝑥1
max

.𝑠, 𝑥1
max
), queue.push(𝑥2

max
.𝑠, 𝑥2

max
)

end while

demands [5]. Multiple such commodities in a sub-problem

would lead to sub-optimal total flow. To transform these into

granular problems, we propose an algorithm to split variables
for clients and resources across several sub-problems.

Client Splitting. We require the user to specify the client

attribute that specifies resource demand and can be split

across several sub-problems; all other attributes are copied

over without change. In the load balancing example, where

clients are data shards and attributes include shard load and

memory size, the splitting attribute is the shard load. In the

traffic engineering example, the splitting attribute is the com-

modity’s traffic demand. Given this splitting attribute, we

then construct a priority queue (heap) of the correspond-

ing attribute values for all clients. Given a threshold 𝑡 (𝑡 is

typically a number less than 1) on the maximum number of

extra virtual clients allowed, we pop and split variables off

the queue, and then push the new variables back into the

queue. Each split reduces the value of the splitting attribute

of the popped variable by a factor of 2. Importantly, each split

maintains the feasibility invariant: the coalesced allocation

across virtual clients will still be feasible (since the total sum

of splitting attribute values remains the same). By reducing

the value of the splitting attribute, client splitting breaks

down large clients into a collection of smaller clients with

equivalent total demand. The runtime of this algorithm is

𝑂 (𝑛 log𝑛), where 𝑛 is the number of clients, which is cheap

compared to the runtime of allocation computation in each

sub-problem. Algorithm 2 shows pseudocode, and the pro-

cedure is illustrated in Figure 4. Empirically, we found that

most problems are granular enough for POP to work well

with 0 split clients. Client splitting does not adversely im-

pact allocation quality, but can increase runtime. The hardest

problems in our experiments required 𝑡 = 0.75. The optimal

value of 𝑡 is problem-specific and it is possible that users

may have to dynamically adapt 𝑡 to get the best performance

from POP; however, in all of the considered production use-

cases in our experiments, we found that small values of 𝑡

that worked well for historical problem instances continue

to work well on future problem instances.

Resource Splitting. If a client has to use a particular re-

source to make progress, POP will not work out of the box,

since randomly partitioning clients and resources into sub-

problems might result in a partitioning where the client is

not matched with its preferred resource. In such cases, each

resource can be split into 𝑘 “virtual” resources (where 𝑘 is

the number of sub-problems). Each virtual resource has 𝑘×
lower capacity, and is assigned to a different sub-problem.

By ensuring that each virtual resource has lower capacity,

we ensure that the final coalesced allocation is still feasible.

Client and resource splitting are not always applicable. For

example, resource splitting cannot be used easily if the allo-

cation problem’s objective depends on whether a resource

is used or not (e.g., an allocation problem that tries to mini-

mize the number of resources used). Similarly, client splitting

cannot be used easily for problems which take into account

interactions between multiple clients sharing a resource.

The resulting allocation problem after these transforma-

tion steps can be granular; if so, we can use POP to solve

it. After the partition step, we obtain allocations for each

virtual variable in the problem. Allocations assigned to vir-

tual variables corresponding to a single client need to be

summed to obtain the final allocation. We show how this can

be incorporated into the full POP procedure in Algorithm 1.

3.4 Benefits of POP
POP has several desirable properties:

• Simplicity: Users do not need to design new heuris-

tics from scratch to scale up to larger problem sizes,

and can reuse their original problem formulations.

• Generality across domains and solvers: POP can

be used to accelerate allocation computations for many

different types of problem formulations across do-

mains. POP also easily integrates with different solvers.

• Applicability to different types of objectives: POP
can be applied for a broad class of objectives, such as

525

total flow and maximum concurrent flow in traffic en-

gineering. These objectives have traditionally required

very different approximation algorithms [16, 25].

• Composability: POP can be used for any granular

allocation problem in an outer loop as a simplifying

step; existing heuristics or approximation algorithms

can then be used to solve the resulting sub-problems.

• Tunability: The number of sub-problems is a knob

for trading off between allocation quality and runtime.

4 Case Studies of Applying POP
In this section, we describe various resource allocation prob-

lems that are formulated as optimization problems: sched-

uling of jobs on clusters with possibly heterogeneous re-

sources [32], WAN traffic engineering [5], and query load

balancing [12, 42, 45]. We show the full exact problem for-

mulations presented in the corresponding papers, and then

explain how POP can be used to compute high-quality allo-

cations faster. We also present some examples of problems

which are not granular and out of scope for POP.

4.1 Resource Allocation for Heterogeneous Clusters
We first discuss the optimization problem formulations used

in Gavel, which supports a range of complex objectives.

These can be accelerated using POP since these problems

are granular, i.e., meet the conditions in §2.

Gavel [32] is a cluster scheduler that assigns cluster re-

sources to jobs while optimizing various multi-job objectives

(e.g., fairness, makespan, cost). Gavel assumes that jobs can

be time sliced onto the available heterogeneous resources,

and decides what fractions of time each job should spend on

each resource type by solving an optimization problem. Op-

timizing these objectives can be computationally expensive

when scaled to 1000s of jobs, especially with “space sharing”

(jobs execute concurrently on the same resource), which

requires variables for every pair of runnable jobs.
Allocation problems in Gavel are expressed as optimiza-

tion problems in terms of a quantity called effective through-
put: the throughput a job observes when given a resource

mix according to an allocation 𝐴, computed as:

throughput(job 𝑗, allocation 𝐴) =
∑
𝑖

𝑇𝑗𝑖 · 𝐴 𝑗𝑖 .

𝑇𝑗𝑖 is the raw throughput of job 𝑗 on resource type 𝑖 . In Gavel,

vanilla heterogeneity-aware allocations 𝐴 𝑗𝑖 are assigned to

each combination of job 𝑗 and GPU type 𝑖 .𝐴 𝑗𝑖 represents the

fraction of wall-clock time that a job 𝑗 should spend on the

GPU type 𝑖 . We now show formulations for three objectives.

Max-Min Fairness. The Least Attained Service policy [20]

tries to give each job an equal resource share of the cluster.

The heterogeneity-aware version of this policy can be ex-

pressed as a max-min optimization problem over all active

jobs in the cluster. We assume that each job 𝑗 has fair-share

weight𝑤 𝑗 and requests 𝑧 𝑗 GPUs. Then, to take into account

the impact of moving a job between GPU types, we find the

max-min allocation of normalized effective throughputs:

Maximize𝐴 min

𝑗

1

𝑤 𝑗

throughput(𝑗, 𝐴)
throughput(𝑗, 𝐴equal)

· 𝑧 𝑗 .

𝐴equal
is the allocation given to job 𝑗 assuming it receives

equal time share on each worker type in the cluster. We also

need to specify constraints to ensure that jobs and the cluster

are not over-provisioned (e.g., total GPU allocation time does

not exceed the total number of GPUs):

0 ≤ 𝐴 𝑗𝑖 ≤ 1 ∀(𝑗, 𝑖)∑
𝑖 𝐴 𝑗𝑖 ≤ 1 ∀𝑗∑

𝑗 𝐴 𝑗𝑖 · 𝑧 𝑗 ≤ num_workers𝑖 ∀𝑖
The above formulation can be extended to consider space

sharing [32, 49], where multiple jobs execute concurrently

on the GPU to improve GPU utilization, by only changing

the way effective throughput is computed; see the Gavel

paper [32] for details.

Proportional Fairness. Proportional fairness [6] tries to
maximize total utilization while still maintaining some mini-

mum level of service for each user (in this case, job). Propor-

tional fairness for GPU cluster scheduling can be formulated

as the following convex optimization problem:

Maximize𝐴

∑
𝑗

log(throughput(𝑗, 𝐴)) .

Constraints are the same as before. Per-job weights and

other extensions are also possible (the above objective can be

interpreted as a sum of utilities, i.e., Maximize𝐴

∑
𝑖 𝑈𝑖 (𝐴𝑖)).

MinimizeMakespan. We can also minimize makespan (the

time taken by a collection of jobs to complete) using a similar

optimization problem framework. Let num_steps𝑗 be the

number of iterations remaining to train job 𝑗 . The makespan

can then be computed as the maximum of the durations of all

active jobs; the duration of job 𝑗 is just the ratio of the number

of iterations to throughput(𝑗, 𝐴). Mathematically, this can

be written as follows using the same above constraints:

Minimize𝐴 max

𝑗

num_steps𝑗

throughput(𝑗, 𝐴) .

Using POP. We can use POP on these cluster scheduling

problems by partitioning the full set of jobs into job subsets,

and the cluster into sub-clusters. Each sub-cluster has an

equal number of resources (GPUs of each type), and jobs are

partitioned randomly into the job subsets. The POP solution

is feasible by construction. Since the cluster has multiple

resources of each type (e.g., GPU of specific generation),

the problem is granular by default, and does not require

additional transformations to be made granular. Additionally,

even when allowing job colocation (using space sharing),

jobs can make progress colocated with many other jobs.

526

4.2 Traffic Engineering and Link Allocation
We next discuss optimization problem formulations that re-

quire both resource and client splitting to be solved accu-

rately and efficiently by POP.

The problem of traffic engineering for networks deter-

mines how flows in a Wide Area Network (WAN) should be

allocated fractions of links of different capacities to best sat-

isfy a set of demands. One might consider several objectives,

such as maximizing the total amount of satisfied flow, or

minimizing the extent to which any link is loaded to reserve

capacity for demand spikes.

Maximize Total Flow. The problem of maximizing the total

flow, given a matrix of per-commodity demands 𝐷 (each

commodity or flow 𝑗 has a demand 𝐷 𝑗), a pre-configured set

of paths 𝑃 , and a list of edge capacities 𝑐𝑒 , can be written as:

Maximize𝐴

∑
𝑗 ∈𝐷

𝐴 𝑗 .

Subject to the constraints:

𝐴 𝑗 =
∑

𝑝 𝐴
𝑝

𝑗
∀𝑗 ∈ 𝐷

𝐴 𝑗 ≤ 𝐷 𝑗 ∀𝑗 ∈ 𝐷∑
∀𝑗,𝑝∈𝑃 𝑗 ,𝑒∈𝑝 𝐴

𝑝

𝑗
≤ 𝑐𝑒 ∀𝑒 ∈ 𝐸

𝐴
𝑝

𝑗
≥ 0 ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝐷

𝐴
𝑝

𝑗
is the flow assigned to commodity 𝑗 along path 𝑝 (one

of the paths in 𝑃 𝑗). The constraints ensure that the total flow

through an edge does not exceed the capacity of the edge,

that each commodity’s flow per path is positive, and each

commodity’s flow does not exceed its demand.

For every commodity, the set 𝑃 consists of a pre-computed

set of paths between the source and target nodes [5].

Maximize Concurrent Flow. The objective only needs to

be changed to:

Maximize𝐴 min

𝑗 ∈𝐷
𝐴 𝑗 .

The constraints are the same as above.

Using POP. To accelerate allocation computation using

POP, we need to granularize the original problems. In par-

ticular, we use resource splitting for all traffic engineering

problems: we assign the entire network (all nodes and edges)

to each sub-problem (but each link with a fraction of the total

capacity), and distribute commodities across sub-problems.

We do not shard the network itself (i.e., assign each link to a

single sub-problem only) since traffic can flow between any

pair of nodes and the difference in utility for any commodity

when using a fraction of the available links in the network is

high (links between specific sites may need to be used to sus-

tain sufficiently high flow). By assigning each sub-problem a

link with a fraction of the total capacity, we ensure that the

final allocation from POP is feasible. For specific problems

with large commodities, we also use client splitting.

4.3 Query Load Balancing
Systems like Accordion [42], E-Store [45], and Kairos [12]

need to determine how to place data items in a distributed

store to spread load across available servers.

We consider the problem of load balancing data shards

(collections of data items). This is similar to the single-tier

load balancer in E-Store, but acting on collections of data

items instead of individual tuples. The objective is to mini-

mize shard movement across servers as load changes, while

constraining the load on each server to be within a toler-

ance 𝜖 of average system load 𝐿. Each shard 𝑖 has load 𝑙𝑖 and

memory footprint 𝑓𝑖 . Each server 𝑗 has a memory capacity

of memory𝑗 that restricts the number of shards it can host.

The initial placement of shards is given by a matrix𝑇 , where

𝑇𝑖 𝑗 = 1 if partition 𝑖 is on server 𝑗 .𝐴 is a shard-to-server map,

where 𝐴𝑖 𝑗 is the fraction of queries on partition 𝑖 served by

𝑗 , and 𝐴′𝑖 𝑗 = 1 if 𝐴𝑖 𝑗 > 0, 0 otherwise. Finding the balanced

shard-to-server map that minimizes data movement can then

be formulated as a mixed-integer linear program:

Minimize𝐴

∑
𝑖

∑
𝑗

(1 −𝑇𝑖 𝑗)𝐴′𝑖 𝑗 𝑓𝑖 .

Subject to the constraints:

𝐿 − 𝜖 ≤ ∑
𝑖 𝐴𝑖 𝑗𝑙𝑖 ≤ 𝐿 + 𝜖 ∀𝑗∑

𝑗 𝐴𝑖 𝑗 = 1 ∀𝑖∑
𝑖 𝐴
′
𝑖 𝑗 𝑓𝑖 ≤ memory𝑗 ∀𝑗

𝐴𝑖 𝑗 < 𝐴′𝑖 𝑗 ≤ 𝐴𝑖 𝑗 + 1 ∀(𝑖, 𝑗)

Using POP. The load balancing problem can be accelerated

using POP by dividing the shard set and server cluster into

shard subsets and server sub-clusters, while ensuring that

each shard subset has the same total load.

4.4 When is POP Not Applicable?
Although POP can be used on a number of different resource

allocation problems, it cannot be used for all possible prob-
lem formulations. Here, we present a few examples of re-

source allocation problems where POP with random parti-

tioning cannot be used.

Capacitated Facility Location. The capacitated facility lo-
cation problem tries to minimize the cost of satisfying users’

demand given a set of processing facilities. Each facility has

a processing capacity, and also a “leasing cost” if used at all

(if a facility is not processing any demand, it has a leasing

cost of 0). The cost of processing some demand by a facility

is proportional to the distance of the facility from the user.

Problems where a user is only close to a single facility are not

amenable to POP and violate condition 3 in the definition

of granularity: partitionings of the problem where the user is

not placed into the same sub-problemwith the facility closest

to them would lead to a low-quality allocation. Additionally,

527

resource splitting cannot be used to make the problem granu-

lar, since the objective explicitly takes into account whether

facilities are used or not, and creating multiple variables

for a single <client, resource> pair would require additional

constraints across sub-problems. More generally, resource

allocation problems where clients prefer one resource over

all other available resources by a large amount are a poor fit

for POP unless resource splitting can be used.

Traffic Engineering. A variant of the traffic engineering

problem from §4.2 could include hard constraints like “flows

A and B should / should not use the same link”. This violates

condition 4 in the definition of granularity. Randomly par-

titioning clients and resources into sub-problems would not

work all the time (e.g., random partitioning could drop flows

A and B into different sub-problems when flows A and B

need to use the same link); smarter partitioning algorithms

can mitigate this by considering affinity between flows, but

supporting these is left to future work.

Global Rescheduling with Plan-Ahead. TetriSched [47]

is a scheduler that can take into account upcoming resource

reservations when deciding how to allocate resources to jobs.

TetriSched allows preferences to be specified declaratively

(e.g., a job comes in at a specific start time and needs to be

completed by a specific end time). These preferences are then

compiled into a mixed-integer linear program (MILP). These

MILPs can be accelerated using POP by dividing the jobs and

resources into job and resource subsets, and solving each sub-

problem independently. However, TetriSched also supports

combinatorial constraints, such as “a particular set of 𝑘 jobs

must use the same resource”, which cannot be supported by

POP without smarter partitioning algorithms.

5 Analysis
The effectiveness of POP is directly tied to how clients and

resources are partitioned across sub-problems. In this section,

we consider a simple resource allocation problem and prove

that the probability of a large optimality gap with the POP

procedure and random partitioning is low, discuss how POP

relates to primal decomposition (a technique used in convex

optimization to decompose certain types of optimization

problems), and also note the expected runtime benefits.

5.1 Theoretical Analysis for a Simple Problem
In settings with large numbers of clients, POP with random

partitioning works well. In this section, we consider a simpli-

fied allocation problem and compute an upper bound on the

probability that POP (using 𝑘 sub-problems) with random

partitioning results in a low-quality allocation.

The allocation problemwe consider assigns servers to jobs.

We assume that the problem has the following properties:

• 𝑛 jobs and servers. Each job is allocated a single server.

• 𝑟 distinct server types (equal number of each type).

Resource 1 Resource 2

𝑢!,#𝑢!,$

𝑖

Figure 5. Simple partitioning problem where jobs are assigned

servers (or resources). Each job 𝑖 derives utility 𝑢𝑖,1 from resource

1 and 𝑢𝑖,2 from resource 2.

• Job 𝑖 has utility 𝑢𝑖,𝑠 on resource type 𝑠 .

• The largest difference in utility for any job across any

two servers is 𝑢maxgap.

A job is “type-𝑠” if it achieves highest utility on a type-𝑠

server. With two server types, we have type-1 and type-2

jobs (shown in Figure 5).

The objective of this problem is to maximize the overall

utility of the allocation, defined as the sum of every job’s

utility on its assigned server.

Now, if we use POP to solve this problem, we would

equally partition servers of each type into sub-clusters, ran-

domly assign jobs to sub-clusters, and then solve assignment

problems separately for each sub-cluster. We wish to answer

the following questions in this regime:

1. What is the optimality gap of the solution using the

POP procedure (with respect to the optimal solution

for the full problem)?

2. How do the values of 𝑛, 𝑟 , 𝑢maxgap, and 𝑘 affect this

optimality gap?

One way to quantify the optimality gap is to count the

number of “misplaced" jobs in each sub-problem (e.g., type-1

jobs that are not assigned “resource 1” because there were too

many other type-1 jobs in the relevant sub-problem). Define

𝑞𝑠,𝑡 to be the number of type-𝑠 resources that are misplaced

in sub-problem 𝑡 . The distance from optimal utility, i.e., opti-

mality gap, is bounded by the product of this number and

𝑢maxgap added across all resource types and sub-problems:

Optimality gap ≤
𝑟∑

𝑠=1

𝑘∑
𝑡=1

𝑞𝑠,𝑡𝑢maxgap (1)

We note that this is a loose bound for the gap, since jobs

with large resource utility gaps would be allocated their

optimal resource even within a sub-problem.

To quantify the performance gap between POP and opti-

mal solutions, we now need a sense of how big 𝑞𝑠,𝑡 can be

in practice. We walk through the full derivation of a bound

on the probability that the optimality gap exceeds a given

value in the Appendix, but briefly sketch it here. The ran-

dom assignment of all type-𝑠 jobs to sub-problems can be

interpreted as Bernoulli trials where the probability that

any given type-𝑟 job is placed in a given sub-problem is

528

1/𝑘 . We then use a classical Chernoff bound [31] to com-

pute the probability that each 𝑞𝑠,𝑡 exceeds a fraction 𝛿 of

its expected value (𝑛/𝑟𝑘). We can combine these across all

job types and sub-problems using the union bound to find

an upper limit on the probability that the total number of

misplaced jobs exceeds 𝛿𝑛. This allows us to bound the dis-

tance of a randomly-partitioned POP allocation from optimal

utility by 𝛿𝑢maxgap𝑛:

Pr

[
𝑈 (Γ∗) −𝑈 (ΓPOP) ≥ 𝛿𝑢maxgap𝑛

]
≤ 𝑟𝑘 exp

(−𝛿2𝑛
(2 + 𝛿)𝑟𝑘

)
(2)

where Γ∗ is an optimal allocation, ΓPOP is the allocation re-

turned by the POP procedure, and𝑈 () : Γ → 𝑢 is a function

that maps an allocation Γ to a scalar value (the utility).

Equation 2 defines the relationship between the problem

parameters (𝑛, 𝑟 , 𝑢maxgap and 𝑘) and the probability that the

optimality gap exceeds a given fraction 𝛿 of the worst-case

gap if every job is allocated its worst resource (𝑢maxgap𝑛).

Concretely, the probability decays exponentially with 𝑛; as

the problem gets larger, the probability of having a large op-

timality gap becomes very small. The probability also decays

exponentially with 𝛿2. On the other hand, the probability of

a large optimality gap increases as 𝑟 , 𝑘 , and 𝑢maxgap increase;

this is to be expected, as having many sub-problems and

many resource types increases problem heterogeneity and

makes it more likely for a random partitioning to lead to

misplaced jobs and a lower-quality allocation.

To put this bound into perspective, consider a large cluster

with 1 million jobs, 𝑘 = 10 sub-problems, and 𝑟 = 4 resource

types of equal amounts (𝑛/𝑟𝑘 = 25, 000); the probability that

more than 3% of jobs are not allocated their optimal resource

is upper bounded by 0.000614.

To summarize, the bound given in Equation 2 for a simple

allocation problem gives insight as to why POP works well

empirically for more complex granular resource allocation

problems like those described in §4.

5.2 Relationship to Primal Decomposition
For many problems, such as when the objective function is

separable and convex (that is, the objective can be expressed

in the form “Maximize𝑈 (𝐴) = ∑
𝑖 𝑈𝑖 (𝐴𝑖)” with per-job util-

ity functions𝑈𝑖), POP can be interpreted as the first iteration

of primal decomposition, a well-known method from con-

vex optimization [10]. Primal decomposition is an iterative

technique; for a resource allocation problem, it works by

decomposing the large problem into several smaller alloca-

tion problems, each with a subset of clients and resources.

In each iteration, every sub-problem is solved individually,

and then the dual variables of each sub-problem are used to

determine how to shift resources between the sub-problems;

those found to be relatively resource-starved are given more

resources from other sub-problems for the next iteration.

Like many other techniques from the optimization litera-

ture, primal decomposition works for a restricted set of prob-

lems, namely those with separable objectives and certain

types of constraints (see Boyd et al. [10]). These restrictions

come into effect during the resource-shifting phase prior

to subsequent iterations. For a “well-partitioned” problem

with a separable objective (i.e., each sub-problem has suf-

ficient resources), one iteration of primal decomposition is

often sufficient and resource shifting is not required [10].

Primal decomposition and POP are thus equivalent for these

problems, explaining why POP can produce a high-quality

allocation efficiently. However, this explanation does not

apply to other problems where primal decomposition cannot

be used (e.g., non-convex problems, such as the MILP used

in the load balancing problem from §4.3), even though we

found POP to still be effective in such regimes.

5.3 Expected Runtime Benefits
We can estimate the runtime benefits of POP when used with

linear programs. Solvers for linear programs have worst-case

time complexity of 𝑂 (𝑓 (𝑛,𝑚)𝑎) (𝑎 ≈ 2.373 [11] in the worst

case) where 𝑓 (𝑛,𝑚) is the number of variables (𝑛 clients and

𝑚 resources) in the problem. If 𝑓 (𝑛,𝑚) = 𝑛 · 𝑚 and both

clients and resources are partitioned across 𝑘 sub-problems,

each sub-problem will have 𝑘2× fewer variables, as illus-

trated in Figure 3. The asymptotic runtime savings are then

proportional to 𝑘2𝑎−1 if each sub-problem is solved serially,

and proportional to𝑘2𝑎 if solved in parallel, assuming a cheap

reduce step. Some problems have an even larger potential

for runtime reduction. For example, if the allocation consid-

ers interactions between two jobs on the same resource, then

the problemwould have 𝑛2𝑚 variables, and using POP would

lead to a larger runtime speedup (proportional to 𝑘3𝑎−1 if
each sub-problem is solved serially, and proportional to 𝑘3𝑎

if solved in parallel).

6 Implementation
POP is easy to implement on top of a number of existing

solvers for a variety of different granular allocation prob-

lems. The main method that needs to be implemented is

partition, which given a collection of clients and resources,

assigns them to sub-problems. The subsequent map step then

involves calling the existing solver routine for the already-

written problem formulation on the smaller sub-problem.

The reduce step is similarly simple, and involves concatenat-

ing the allocations obtained from each of the sub-problems

and summing allocations across virtual clients and resources

(when using client and resource splitting).

We implemented POP on top of a number of different

solvers (MOSEK using cvxpy [7, 15], Gurobi [21], and a cus-

tom solver [6] that uses PyTorch [37]) for problems across

diverse domains, in < 20 lines of code in each case. We im-

plemented client splitting in about 100 lines of Python code.

529

7 Evaluation
In this section, we seek to answer the following questions:

1. What is the effect of POP on allocation quality and

execution time on granular allocation problems? How

does it compare to relevant heuristics?

2. Does POP work across a range of solvers and types of

optimization problems?

3. How effective are POP’s client and resource splitting

optimizations in generating high-quality allocations?

4. How does random partitioning compare to other more

sophisticated problem partitioning strategies?

We evaluate POP on problems from three domains:

1. GPU cluster scheduling, where we apply POP to

solve the optimization problems used in Gavel (§4.1),

and compare with the greedy Gandiva policy [49].

2. Traffic engineering acrossWideAreaNetworks, where

we apply POP to solve the problem formulations in

§4.2, and compare to CSPF and NCFlow [5].

3. Shard load balancing in distributed storage systems,

where we apply POP on the problem formulation in

§4.3, and compare to a heuristic from E-Store [45].

Where relevant, we integrate POP into systems such as

Gavel [32] to measure the end-to-end impact of POP on appli-

cation performance. Our results span three different cluster

scheduling policies (max-min fairness, minimize makespan,

and proportional fairness), two traffic engineering policies

(maximize total flow, and maximize concurrent flow), and

one load balancing policy (minimize number of shard trans-

fers as load changes).

We first present end-to-end experiments, then present

some microbenchmarks that examine the impact of various

algorithmic contributions in POP.

7.1 End-to-End Results
We first demonstrate POP’s end-to-end effectiveness on vari-

ous problems.We compare to approaches based on allocation

quality, and time needed to compute the allocation; the run-

time for POP includes the runtime for solving the optimiza-

tion problems for sub-problems. In all of our experiments,

“Exact sol.” is the original unpartitioned problem formula-

tion and solver used by the reference system (e.g., Gavel for

cluster scheduling). We believe this is a fair baseline since it

represents what people use today if using optimization prob-

lem formulations for resource allocation. We use the same

evaluation methodology as related work. The total number

of threads given to solvers for our baselines and POP are the

same. If 𝑘 sub-problems are solved in parallel when using

POP, each sub-problem uses 1/𝑘 of the number of threads.

We also present heuristics where relevant. Unfortunately, not

every problem has a state-of-the-art heuristic. For example,

it is not clear how to use a heuristic to solve for an approxi-

mate proportionally-fair allocation. We explicitly note when

we use client or resource splitting.

10−1 100

Runtime (seconds)

0

10

20

30

40

Av
er

ag
e

JC
T

(h
ou

rs
) Exact sol.POP-2POP-4POP-8

Bette
r

Figure 6. Results for the max-min fairness policy (with space shar-

ing) for cluster scheduling for the formulation shown in §4.1 (“Exact

sol.”) and its POP variants. POP-𝑘 uses 𝑘 sub-problems.

7.1.1 Cluster Scheduling
We used POP to accelerate various cluster scheduling poli-

cies supported by Gavel [32]. We then used these POP-ped

policies in Gavel’s full simulator
1
to measure the impact of

POP on end-to-end metrics of interest, like average job com-

pletion time and makespan for real traces. The traces and

methodology used are identical to those used in Gavel.

Max-Min Fairness. We show the trade-off between run-

time and allocation quality for the max-min fairness policy

with space sharing on a large problem (2048
2
job pairs on

a 1536-GPU cluster) in Figure 2 (in the introduction). POP

leads to an extremely small change in the average effective

throughputs across all jobs (< 1%), with a 22.7× improve-

ment in runtime. Gandiva [49], on the other hand, uses a

heuristic to assign resources to job pairs, resulting in 1.9×
worse allocation quality.

We unfortunately could not run end-to-end simulations

for such large problem sizes: the simulation involves run-

ning thousands of allocation problems, since an allocation

problem needs to be solved every time a new job arrives at

the cluster or an old job completes. This would take months

to run at scale by virtue of the number of problems that need

to be solved and the time taken for each problem. Instead, we

show full simulation results on more moderate problem sizes.

These experiments involve dynamic changes: the full simu-

lation involves new jobs coming in and old jobs completing,

and consequently the set of jobs is not static.

We ran experiments with 96 GPUs (32 V100, P100, and

K80 GPUs). The original heterogeneity-aware Least Attained

Service policy without space sharing has a small number of

variables (on the order of hundreds). Even on such smaller

problem sizes, the quality of allocation with POP is high,

with only up to a 5% drop in average JCT (not pictured).

Figure 6 shows the average JCT of the original Least At-

tained Service policy from §4.1, with space sharing, along

with three POP-ified versions using 2, 4, and 8 sub-problems.

With space sharing, the number of variables scales quadrati-

cally with the number of jobs: this leads to a performance

1
The Gavel paper [32] shows that its simulator demonstrates performance

very similar to behavior on the physical cluster.

530

100 2 × 100 3 × 100 4 × 100

Runtime (seconds)

−2

−1

0

Su
m

 o
f l

og
of

 u
til

iti
es

Exact sol.POP-2POP-4

POP-8

Bette
r

Figure 7. Results for the proportional fairness policy for cluster

scheduling for the formulation shown in §4.1 (“Exact sol.”) and its

POP variants. POP-𝑘 uses 𝑘 sub-problems.

0.10 0.12 0.14 0.16
Runtime (seconds)

0

100

200

300

M
ak

es
pa

n
(h

ou
rs

)

Exact sol.
POP-2POP-4

POP-8

Bette
r

Figure 8. Results for the minimize makespan policy for cluster

scheduling for the formulation shown in §4.1 (“Exact sol.”) and its

POP variants. POP-𝑘 uses 𝑘 sub-problems.

speedup of 11× with 𝑘 = 8 compared to the full problem

formulation, and similar average JCT.

We see similar behavior for max-min fairness policies

when clients have more attributes (e.g., different priority

levels). Average JCTs are almost identical when jobs request

multiple GPUs, and increase by 5% for high-priority jobs in

workloads containing a mix of low- and high-priority jobs,

using the Gavel simulator as before.

Proportional Fairness. We ran a simple experiment with

the proportional fairness policy with 10
6
jobs and a similar

number of resources. Figure 7 shows POP combined with

a proportional fairness policy. This allocation problem is a

general convex optimization problem (not a linear program),

with a sum-of-log objective. For this problem, we implement

POP on top of a custom solver [6] that runs an order of

magnitude faster than commercial solvers for this particular

problem formulation. We see strong scaling performance

as we increase the number of sub-problems (4.9× reduction

in runtime with 8 sub-problems), with an extremely small

optimality gap (7 × 10−5).

Minimize Makespan. Figure 8 shows the makespan of vari-

ants of the “minimize makespan” policy. This policy again

is a simple linear program with number of variables linear

in the number of jobs and resource types. Consequently, the

runtime improvements are lower (1.6×), but the end-to-end
makespan over the trace is nearly identical.

7.1.2 Traffic Engineering
We tested POP on several large networks (shown in Table 1)

from the Topology Zoo repository [26], with similar results.

Topology # Nodes # Edges

Kdl 754 1790

Cogentco 197 486

UsCarrier 158 378

Colt 153 354

GtsCe 149 386

TataNld 145 372

DialtelecomCz 138 302

Deltacom 113 322

Table 1. The WAN topologies used to benchmark POP for traffic

engineering problems, obtained from Internet Topology Zoo [26].

100 101 102

Runtime (seconds)

0

1

2

3

To
ta

l a
llo

ca
te

d
flo

w ×104

Exact sol.POP-4POP-16POP-64

CSPFNCFlow Better

Figure 9. Results for the max-flow problem for traffic engineering

for a single topology and traffic matrix. The scatterplot shows

runtimes and total allocated flow for the formulation shown in §4.2

(“Exact sol.”) and its POP variants, as well as CSPF and NCFlow.

For each topology, we benchmarked POP on sets of synthetic

traffic matrices, which were generated using several traffic

models: Gravity [8, 41], Uniform, Bimodal [8], and Poisson.
These traffic matrices were previously used in NCFlow

2
[5].

Poisson represents a skewed workload, where a small per-

centage of commodities dominate the network demand. For

this workload, we use the client-splitting algorithm from

§3.3 to improve allocation quality. We do not use the client-

splitting algorithm for the other traffic matrices.

Total Flow. Figure 9 shows the trade-off between runtime

and allocated flow on the Kentucky Data Link network (Kdl
in Table 1), which has 754 nodes and 1790 edges spanning

the Eastern half of continental USA. We instantiated over

5 × 105 demands to up to 4 paths in the network. The flow

allocated by POP is within 1.5% of optimal when using 64 sub-

problems, yet 100× faster than the original problem. We also

compare favourably to the Constrained Shortest Path First

(CSPF) heuristic [17] and the recently-published NCFlow [5].

Note that NCFlow is not a heuristic, but a state-of-the-art
approach that uses a problem decomposition technique ex-

plicitly tuned for the max-flow problem.

Figure 10 shows the improvement in allocation quality

and runtime compared to the original LP formulation pre-

sented in §4 with POP using 16 sub-problems. Each point

in the scatterplot represents a different topology and traffic

matrix. We see larger speedups for the larger Kdl topology.
We used client splitting with a threshold (𝑡) of 0.75 for the

2
The full set of traffic matrices can be found here: https://github.com/
netcontract/ncflow.

531

http://www.topology-zoo.org/maps/Kdl.jpg
http://www.topology-zoo.org/maps/Cogentco.jpg
http://www.topology-zoo.org/maps/UsCarrier.jpg
http://www.topology-zoo.org/maps/Colt.jpg
http://www.topology-zoo.org/maps/GtsCe.jpg
http://www.topology-zoo.org/maps/TataNld.jpg
http://www.topology-zoo.org/maps/DialtelecomCz.jpg
http://www.topology-zoo.org/maps/Deltacom.jpg
https://github.com/netcontract/ncflow
https://github.com/netcontract/ncflow

101 102

Speedup rel. to original problem

0.00

0.25

0.50

0.75

1.00

To
ta

l f
lo

w
 re

l.
to

 o
rig

in
al

 p
ro

bl
em

KDL Non-KDL

Figure 10. Results for the max-flow problem for traffic engineering

for multiple topologies and traffic matrices. The scatterplot shows

runtimes and allocated total flow for POP-16 across 275 experiments,

separated by large (kdl) and small (non-kdl) topologies.

0.85

0.90

0.95

1.00

To
ta

l f
lo

w
 re

l.
to

 o
rig

in
al

 p
ro

bl
em

NCFlow POP, +0x POP, +0.25x

0 1 2 3 4 5
Time (days)

10

15

20

Sp
ee

du
p

re
l.

to
 o

rig
in

al
 p

ro
bl

em

Figure 11. Allocated flow and speedup relative to original problem

on a 5-day sequence of real-world traffic matrices from a private

WAN with 100s of nodes and edges. With client splitting (𝑡 = 0.25),

POP allocates >99% of the total flow with a 12.5× median speedup.

Poisson traffic matrices (where some commodities have large

demands), and no client splitting for the other traffic mod-

els, which were granular out of the box. As stated before,

resource splitting was used for all traffic matrices to ensure

that each sub-problem has all links (but with lower capacity).

We also ran experiments with a sequence of real-world
traffic traces collected on a private industrial WAN with hun-

dreds of nodes and edges. Figure 11 plots the moving average

(over 5 windows) of the total flow and speedup relative to

the original problem for NCFlow, POP with no client split-

ting, and POP with 𝑡 = 0.25 client splitting. Without client

splitting, POP achieves significant speedups (15× in the me-

dian case) compared to the original problem, but allocates

89.1% of the total flow in the median case. However, POP

with client splitting nearly matches the total flow allocated

in the original problem (99.9% in the median case), while still

achieving a median 12.5× speedup.

Maximum Concurrent Flow. Similarly, we benchmarked

POP on the maximum concurrent flow objective using the

101 102 103 104

Runtime (seconds)

0.00

0.25

0.50

0.75

1.00

M
in

im
um

fr
ac

tio
na

l f
lo

w Exact sol.POP-4POP-16POP-64

Better

Figure 12. Results for the maximum concurrent flow problem for

traffic engineering for a single topology and traffic matrix. The

scatterplot shows runtimes and minimum fractional flow for the

formulation shown in §4.2 (“Exact sol.”) and its POP variants.

10−2 100 102

Runtime (seconds)

0

10

20

30

N
um

be
r o

f s
ha

rd
m

ov
em

en
ts

Exact sol.

POP-4
POP-16

Greedy

Bette
r

Figure 13. Results for the minimize shard movement policy for

load balancing for the formulation shown in §4.3 (“Exact sol.”) and

its POP variants. We also compare to a greedy heuristic (“Greedy”).

POP-𝑘 uses 𝑘 sub-problems.

same set of topologies and traffic matrices. Figure 12 shows

the trade-off between runtime and minimum fractional flow

on the Kdl topology, using the same traffic matrix in Figure 9.

The objective value realized by POP is again within 1.5%

of optimal when using 64 sub-problems, yet 1000× faster

than the original problem. As before, we use client splitting

with a threshold of 75% for the Poisson traffic matrices, and

no client splitting for the other traffic matrices. Resource

splitting is used for all traffic matrices.

7.1.3 Load Balancing
In Figure 13, we evaluate POP on a load balancing problem.

In the problem, we have 1024 shards of data each assigned

to exactly one of 64 servers. Each round, we receive the

query load of each shard and compute a new assignment of

shards to servers such that each server has approximately

(within 5%) the same amount of load across its shards but the

number of shard movements is minimized. We examine the

performance of POP with various numbers of sub-problems

and compare it to the original optimization problem (§4.3)

and a greedy heuristic algorithm from E-Store [45]. For each

system, we run 100 rounds of the problem. In each round,

we generating a new load distribution and rerun the load

balancing algorithm. We report the average runtime and

number of shard movements across these rounds.

We find that POP improves the runtime over the original

problem by two orders of magnitude, while outperforming

the greedy heuristic. The exponential scaling of MILP solvers

restricted us to smaller problem sizes for the purpose of com-

paring against the optimal solution. Since shard movements

532

+0x clients +0.5x clients +1x clients

0.0 0.5 1.0
Total flow ratio

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 c

as
es

(a) Gravity (total flow ratio).

0.0 0.5 1.0
Total flow ratio

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 c

as
es

(b) Poisson (total flow ratio).

101 102

Speedup ratio

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 c

as
es

(c) Gravity (speedup ratio).

101 102

Speedup ratio

0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
 c

as
es

(d) Poisson (speedup ratio).

Figure 14. Comparison of POP-16 relative to original problem for

the max-flow objective in traffic engineering, across different levels

of additional split clients (0× to 1×) and traffic matrices from two

traffic models: Gravity and Poisson (which is skewed).

2 4 8 16 32
Number of sub-problems

0

1

2

3

4

To
ta

l a
llo

ca
te

d
flo

w ×104

Resource splitting
No resource splitting

Figure 15. Effect of resource splitting on total flow as the number

of sub-problems (𝑘) is adjusted for a TE problem with a max-flow

objective (Cogentco topology and Gravity traffic matrix).

are stateful (previous round’s solution is initial state for

current round), we added an extra step to re-balance the ag-

gregate load in the relatively small sub-problems, requiring

a few extra shard movements. As 𝑘 increases, the number of

sub-problems and thus the number of these movements also

increases, which is why POP-𝑘 does worse as 𝑘 increases.

This becomes less of an issue for larger problem sizes where

random allocations are likely to remain balanced.

7.2 Effectiveness of Client and Resource Splitting
Figure 14 shows the effect of client splitting on total flow

and runtime when using POP with 16 sub-problems, on a

traffic engineering problem with “large” clients (Poisson traf-

fic model) as well as a more typical set of clients (Gravity
traffic model) and a max-flow objective. The figure shows

separate cumulative distributions of approximately 100 dif-

ferent experiments for each traffic model and client splitting

threshold (𝑡 in Algorithm 1).

1 4 8 16
Number of sub-problems

0

1

2

3

4

To
ta

l a
llo

ca
te

d
flo

w ×104

Skewed
Power-of-2

Random

Figure 16. Performance comparison of various partitioning algo-

rithms for the max-flow objective in traffic engineering.

We see that with skewed traffic (Poisson traffic model) and

no client splitting, the total flow is typically far from optimal.

Client splitting drastically increases the median relative total

flow from 0.2 to near 1.0 for these problems, at the cost of

some runtime overhead (due to an increase in the number

of variables). In contrast, the problems with Gravity traffic

get near-optimal allocated flow without client splitting.

Figure 15 shows the effect of resource splitting on total

flow when using POP with various numbers of sub-problems

(𝑘) on the Cogentco topology andGravity traffic model. Here,

we split the capacity of each unique resource (link between

two sites) across every sub-problem when using resource

splitting. We compare this to the regular POP procedure:

partitioning the network into 𝑘 disjoint networks, with every

link appearing in a single sub-problem.We see that total flow

remains roughly the same with high 𝑘 when using resource

splitting. On the other hand, without resource splitting, the

flow is up to 15× lower for high 𝑘 . This result highlights the

importance of resource splitting for problems with resources

that have to be used by certain clients for high utility.

7.3 Alternatives to Random Partitioning
We implemented several algorithms to partition clients into

sub-problems, and compared them to random. Among these

is a power-of-2 partitioning algorithm that tries to assign

each client sequentially to one of two randomly-chosen sub-

problems using “distributional similarity” to the original

problem as the metric. We also implement a skewed par-

titioning algorithm that deliberately creates skew among

sub-problems to show the impact of bad partitions. Figure 16

shows the impact of these partitioning algorithms on the

quality of allocation returned by POP on a traffic engineer-

ing problem. We see that random performs about as well

as the more sophisticated power-of-2 partitioning, while

skewed partitions have poor performance (skewed causes

link congestion around certain nodes in the WAN).

8 Related Work and Discussion
In this section, we discuss other systems that use optimiza-

tion problems to allocate resources. We also comment on

general efforts to accelerate solving large optimization prob-

lems and how POP fits into this body of work.

533

Optimization Problems in Systems. A number of systems

besides the ones discussed in §4 use optimization problem

formulations to solve resource allocation problems.

TetriSched [47] is a cluster scheduler that is able to lever-

age runtime predictions and deadline information (provided

as input to the system) to make smarter near-term decisions

on how jobs should be allocated resources, while also provid-

ing room for uncertainty from unknown future job submis-

sions. Preferences in resource space-time can be expressed

in a new DSL called STRL; these are then compiled down

to a mixed-integer linear program (MILP) whose solution

describes when and how jobs should be executed.

RAS [33] is a capacity reservation system that manages

the allocation of servers to clients within a datacenter region,

while taking into account failures, resource heterogeneity,

and maintenance schedules. RAS formulates problems as

MILPs which are solved hourly.

DCM [44] makes it easier to implement various cluster

management policies (e.g., ensure containers have enough of

a particular resource, or two containers are not placed in the

same rack) by having users specify cluster manager behavior

declaratively through SQL queries written over cluster state

maintained in a relational database. Similar to TetriSched,

these queries are then compiled down to an optimization

problem that can be solved by constraint solvers, such as CP-

SAT [1]. DCM supports affinity and anti-affinity constraints.

Quincy [24] and Firmament [19] are centralized datacen-

ter schedulers that use efficient min-cost max-flow (MCMF)

based optimization to scale up to large clusters.

NCFlow [5] is a technique that solves themulti-commodity

maximum flow problem (“total flow” in §4.2). NCFlow di-

vides a topology into geographic clusters, and then solves a

set of smaller-complexity flow problems; this yields faster

runtimes and fewer forwarding entries in the WAN topology,

at the cost of a smaller total flow. POP compares favorably to

NCFlow, both in terms of solver runtime and total flow (see

Figure 9). While POP does not offer any reduction in forward-

ing entries, it is more general in the objectives it can support;

NCFlow only supports the max-flow objective. For the max-

flow objective, POP and NCFlow can be used together to

reduce solver runtime and the number of forwarding entries.

Random Partitioning in Computer Systems. Random as-

signment has seen success in other important systems prob-

lems as well. For example, in data center networking [43],

random graph topologies work surprisingly well compared

to commonly-used structured topologies such as FAT-trees.

In load-balancing algorithms [30], assigning jobs to the least-

loaded of just two randomly selected servers in a cluster can

drastically reduce the probability of overloading a server.

Approximation Algorithms. FPTAS algorithms [4] return

results with a guaranteed approximation ratio and run in

polynomial time over this approximation factor. Proving an

approximation ratio with POP is hard since we apply POP to

many different problems with various structures, as opposed

to designing a problem-specific approximation algorithm.

More Efficient Solving. The optimization community has

developed various methods for scaling optimization solvers

to handle large problems. Fundamentally, these approaches

rely strictly on identifying and then exploiting certain math-

ematical structures (if they exist) within the problem to ex-

tract parallelism; they make no domain-aware assumptions

about the underlying problem. For example, Benders’ de-

composition [18, 39] only applies to problems that exhibit

a block-diagonal structure; ADMM [9, 36] has been applied

to select classes of convex problems, and Dantzig-Wolfe de-

composition [13], while more broadly applicable, offers no

speedup guarantee. This poses a significant limitation when

applying these methods to real-world systems, which of-

ten do not meet their criteria or would need mathematical

analysis to determine if this structure exists.

As mentioned in §5.2, POP can be interpreted as the first

iteration of primal decomposition for optimization prob-

lems with separable objectives and certain types of cou-

pled constraints [10]. By randomly partitioning large num-

bers of clients and equally apportioning resources into sub-

problems, we found that it is possible to obtain high-quality

solutions with a single iteration for a broader set of allocation

problem formulations, including MILPs.

9 Conclusion
In this paper, we showed how a number of resource alloca-

tion problems in computer systems are granular and pro-

posed an efficient new method to solve them. Such granular

allocation problems can be partitioned into more tractable

sub-problems by randomly assigning clients and resources.

Our technique, POP, achieves strong results across a variety

of tasks, including cluster scheduling, traffic engineering,

and load balancing, with runtime improvements of up to

100× with small optimality gap, and outperforms greedy ad-

hoc heuristics. We hope this work motivates using POP as a

simple pre-solving step when solving optimization problems

that arise in computer systems.

Acknowledgements
We thank our shepherd, Malte Schwarzkopf, the anonymous

SOSP reviewers, Keshav Santhanam, Kostis Kaffes, Akshay

Narayan, Shoumik Palkar, and Deepti Raghavan for their

feedback that improved this work.We are also grateful to pro-

duction teams at Microsoft for facilitating access to datasets.

This research was supported in part by affiliate members

and other supporters of the Stanford DAWN project—Ant

Financial, Facebook, Google, and VMware—as well as Toyota

Research Institute, Cisco, SAP, and the NSF under GRF grant

DGE-1656518 and CAREER grant CNS-1651570. Any opin-

ions and conclusions expressed in this material are those of

the authors and do not reflect the views of the NSF.

534

References
[1] Google OR-Tools. https://developers.google.com/

optimization.
[2] Kubernetes. https://github.com/kubernetes/kubernetes.
[3] OpenShift. https.//openshift.com.

[4] Polynomial-Time Approximation Scheme. https:
//en.wikipedia.org/wiki/Polynomial-time_approximation_
scheme.

[5] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Men-

ache, Matei Zaharia, and Peter Bailis. Contracting Wide-area

Network Topologies to Solve Flow Problems Quickly. In 18th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21), 2021.

[6] Akshay Agrawal, Stephen Boyd, Deepak Narayanan, Fiodar

Kazhamiaka, and Matei Zaharia. Allocation of Fungible Re-

sources via a Fast, Scalable Price Discovery Method. arXiv
preprint arXiv:2104.00282, 2021.

[7] Akshay Agrawal, Robin Verschueren, Steven Diamond, and

Stephen Boyd. A Rewriting System for Convex Optimization

Problems. Journal of Control and Decision, 5(1):42–60, 2018.
[8] David Applegate and Edith Cohen. Making Intra-Domain

Routing Robust to Changing and Uncertain Traffic Demands.

In SIGCOMM, 2003.

[9] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed Opti-

mization and Statistical Learning via the Alternating Direction

Method of Multipliers. Foundations and Trends in Machine
Learning, pages 1–122, 2011.

[10] Stephen Boyd, Lin Xiao, Almir Mutapcic, and JacobMattingley.

Notes on Decomposition Methods. Notes for EE364B, Stanford
University, 635:1–36, 2007.

[11] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear

programs in the current matrix multiplication time. Journal
of the ACM (JACM), 68(1):1–39, 2021.

[12] Carlo Curino, Evan PC Jones, Samuel Madden, and Hari Bal-

akrishnan. Workload-Aware Database Monitoring and Consol-

idation. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 313–324, 2011.

[13] George B Dantzig and Philip Wolfe. Decomposition Principle

for Linear Programs. Operations Research, 8(1):101–111, 1960.
[14] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. Communications of the
ACM, 51(1):107–113, 2008.

[15] Steven Diamond and Stephen Boyd. CVXPY: A Python-

Embedded Modeling Language for Convex Optimization. The
Journal of Machine Learning Research, 17(1):2909–2913, 2016.

[16] Lisa K Fleischer. Approximating Fractional Multicommodity

Flow Independent of the Number of Commodities. SIAM
Journal on Discrete Mathematics, 13(4):505–520, 2000.

[17] Bernard Fortz, Jennifer Rexford, and Mikkel Thorup. Traf-

fic Engineering with Traditional IP Routing Protocols. IEEE
Communications Magazine, 40(10):118–124, 2002.

[18] Arthur M Geoffrion. Generalized Bender’s Decomposition.

Journal of optimization theory and applications, 10(4):237–260,
1972.

[19] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NMWat-

son, and Steven Hand. Firmament: Fast, Centralized Cluster

Scheduling at Scale. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 99–115,

2016.

[20] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu,

Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong

Guo. Tiresias: A GPU Cluster Manager for Distributed Deep

Learning. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 485–500, 2019.

[21] Zonghao Gu, Edward Rothberg, and Robert Bixby. Gurobi

Optimizer Reference Manual, version 5.0. Gurobi Optimization
Inc., Houston, USA, 2012.

[22] Ajay Gulati, Anne Holler, Minwen Ji, Ganesha Shanmu-

ganathan, Carl Waldspurger, and Xiaoyun Zhu. VMware Dis-

tributed Resource Management: Design, Implementation, and

Lessons Learned. VMware Technical Journal, 1(1):45–64, 2012.
[23] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min

Zhu, Richard Alimi, Chandan Bhagat, Sourabh Jain, Jay Kaimal,

Shiyu Liang, Kirill Mendelev, et al. B4 and After: Managing

Hierarchy, Partitioning, and Asymmetry for Availability and

Scale in Google’s Software-Defined WAN. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 74–87, 2018.

[24] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder,

Kunal Talwar, and Andrew Goldberg. Quincy: Fair Scheduling

for Distributed Computing Clusters. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles,
pages 261–276, 2009.

[25] George Karakostas. Faster Approximation Schemes for Frac-

tional Multicommodity Flow Problems. ACM Transactions on
Algorithms (TALG), 4(1):1–17, 2008.

[26] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bow-

den, and Matthew Roughan. The internet topology zoo. IEEE
Journal on Selected Areas in Communications, 29(9):1765–1775,
2011.

[27] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman,

Nikhil Kasinadhuni, Enrique Cauich Zermeno, C Stephen

Gunn, Jing Ai, Björn Carlin, Mihai Amarandei-Stavila, et al.

BwE: Flexible, Hierarchical Bandwidth Allocation for WAN

Distributed Computing. In Proceedings of the 2015 ACMConfer-
ence on Special Interest Group on Data Communication, pages
1–14, 2015.

[28] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance

and faster algorithms for linear programming. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science,
pages 230–249. IEEE, 2015.

[29] Xiaoqian Li and Kwan L Yeung. Traffic Engineering in Segment

Routing Networks Using MILP. IEEE Transactions on Network
and Service Management, 17(3):1941–1953, 2020.

[30] Michael Mitzenmacher. The Power of Two Choices in Ran-

domized Load Balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, 2001.

[31] Michael Mitzenmacher and Eli Upfal. Probability and Comput-
ing: Randomization and Probabilistic Techniques in Algorithms
and Data Analysis. Cambridge university press, 2017.

[32] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka,

Amar Phanishayee, and Matei Zaharia. Heterogeneity-Aware

Cluster Scheduling Policies for Deep Learning Workloads. In

14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 481–498, 2020.

535

https://developers.google.com/optimization
https://developers.google.com/optimization
https://github.com/kubernetes/kubernetes
https.//openshift.com
https://en.wikipedia.org/wiki/Polynomial-time_approximation_scheme
https://en.wikipedia.org/wiki/Polynomial-time_approximation_scheme
https://en.wikipedia.org/wiki/Polynomial-time_approximation_scheme

[33] Andrew Newell, Dimitrios Skarlatos, et al. RAS: Continuously

Optimized Region-Wide Datacenter Resource Allocation. In

28th ACM Symposium on Operating Systems Principles, 2021.
[34] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. SCS: Splitting

Conic Solver, version 2.1.3. https://github.com/cvxgrp/scs.
[35] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic Opti-

mization via Operator Splitting and Homogeneous Self-Dual

Embedding. Journal of Optimization Theory and Applications,
169(3):1042–1068, June 2016.

[36] Brendan O’Donoghue, Giorgos Stathopoulos, and Stephen

Boyd. A Splitting Method for Optimal Control. IEEE Transac-
tions on Control Systems Technology, 21(6):2432–2442, 2013.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-

talia Gimelshein, Luca Antiga, et al. PyTorch: An Imperative

Style, High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems, pages 8024–8035,
2019.

[38] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth

Kandula, Aditya Akella, Paramvir Bahl, and Ion Stoica. Low

Latency Geo-Distributed Data Analytics. ACM SIGCOMM
Computer Communication Review, 45(4):421–434, 2015.

[39] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau,

and Walter Rei. The Benders Decomposition Algorithm: A

Literature Review. European Journal of Operational Research,
259(3):801–817, 2017.

[40] Sajjad Rizvi, Xi Li, Bernard Wong, Fiodar Kazhamiaka, and

Benjamin Cassell. Mayflower: Improving Distributed Filesys-

tem Performance through SDN / Filesystem Co-Design. In

2016 IEEE 36th International Conference on Distributed Com-
puting Systems (ICDCS), pages 384–394. IEEE, 2016.

[41] Matthew Roughan, Albert Greenberg, Charles Kalmanek,

Michael Rumsewicz, Jennifer Yates, and Yin Zhang. Experience

in Measuring Backbone Traffic Variability: Models, Metrics,

Measurements and Meaning. In IMW, 2002.

[42] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth

Salem, Taha Rafiq, and Umar Farooq Minhas. Accordion: Elas-

tic Scalability for Database Systems Supporting Distributed

Transactions. Proceedings of the VLDB Endowment, 7(12):1035–
1046, 2014.

[43] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten God-

frey. Jellyfish: Networking Data Centers Randomly. In 9th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12), pages 225–238, 2012.

[44] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu Jyothi,

Nina Narodytska, Leonid Ryzhyk, Sahan Gamage, Brian Oki,

Pranshu Jain, and Michael Gasch. Building Scalable and Flex-

ible Cluster Managers Using Declarative Programming. In

14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 827–844, 2020.

[45] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Dug-

gan, Aaron J Elmore, Ashraf Aboulnaga, Andrew Pavlo, and

Michael Stonebraker. E-Store: Fine-Grained Elastic Partition-

ing for Distributed Transaction Processing Systems. Proceed-
ings of the VLDB Endowment, 8(3):245–256, 2014.

[46] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque,

Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and John

Wilkes. Borg: The Next Generation. In Proceedings of the

Fifteenth European Conference on Computer Systems, pages
1–14, 2020.

[47] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A

Kozuch, Mor Harchol-Balter, and Gregory R Ganger.

TetriSched: Global Rescheduling with Adaptive Plan-Ahead

in Dynamic Heterogeneous Clusters. In Proceedings of the
Eleventh European Conference on Computer Systems, pages
1–16, 2016.

[48] Robert J Vanderbei et al. Linear Programming, volume 3.

Springer, 2015.

[49] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee,

Muthian Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush

Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, et al. Gan-

diva: Introspective Cluster Scheduling for Deep Learning. In

13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 595–610, 2018.

[50] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur

Dave, Justin Ma, Murphy McCauly, Michael J Franklin, Scott

Shenker, and Ion Stoica. Resilient Distributed Datasets: A

Fault-Tolerant Abstraction for In-Memory Cluster Computing.

In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 15–28, 2012.

536

https://github.com/cvxgrp/scs

Appendix (Not Peer-Reviewed)
A Proof of Bound on Random Partitioning

for Simple Allocation Problem
In this section, we show a full derivation of Equation 2, which

upper bounds the probability of a large gap between the

optimal solution and solution returned by POP.

To quantify the gap between POP and optimal solutions,

we need a sense of how big 𝑞𝑠,𝑡 – the number of misplaced

jobs of type 𝑠 in sub-problem 𝑡 – is in practice. In this section,

we assume that the number of resources of each type are not

necessarily equal; we define 𝑛𝑠 as the number of resources of

type 𝑠 . We can compute a probabilistic upper bound on 𝑞𝑠,𝑡
using a classical Chernoff bound, interpreting the random

assignment of all type-𝑠 jobs (𝑛𝑠 of them) to sub-problems as

Bernoulli trials where the probability that any given type-𝑟

job is placed in sub-problem 𝑘 is 1/𝑘 . Define 𝑋𝑠,𝑡 to be the

sum of all such trials, i.e., the number of type-𝑠 jobs in sub-

problem 𝑡 , with 𝐸 [𝑋𝑠,𝑡] = 𝑛𝑠/𝑘 . Note that when 𝑋𝑠,𝑡 exceeds

the expected value, we get 𝑋𝑠,𝑡 = 𝑛𝑠/𝑘 + 𝑞𝑠,𝑡 . The Chernoff
upper bound [31] can then be used to find the upper limit on

the probability that the value of 𝑋𝑠,𝑡 exceeds the expected

value by a fraction 𝛿 :

Pr[𝑋𝑠,𝑡 ≥ (1 + 𝛿)𝑛𝑠/𝑘] = Pr[𝑞𝑠,𝑡 ≥ 𝛿𝑛𝑠/𝑘]

≤ exp

(
−𝛿2𝑛𝑠
(2 + 𝛿)𝑘

)
(3)

In the rest of this text, to simplify notation, we will refer

to the RHS of Equation 3 as𝐶 (𝛿, 𝑛𝑠 , 𝑘). For a simple problem

with 𝑟 = 2 and 𝑘 = 2, if we have 𝑛 = 𝑚 = 10
5
jobs and

resources split equally across resource types, the probability

of exceeding the expected amount of type 𝐴 jobs in a given

sub-problem by 1% is 0.2877, by 2% is 0.00694, and by 3% is

0.0000145.

This bound can be extended to misplaced jobs across all

resource types and sub-problems using the union bound,

i.e., Pr(𝑍1 ∨ 𝑍2) ≤ Pr(𝑍1) + Pr(𝑍2). This can be used to

compute an upper limit on the probability that any resource

type exceeds its expectation by a fraction (1 + 𝛿) on any

sub-problem. Define 𝑌𝑠,𝑡 to be the event that type-𝑟 jobs in

sub-problem 𝑘 are in excess of the expected amount by a

factor of (1 + 𝛿), i.e., 𝑋𝑠,𝑡 ≥ (1 + 𝛿)𝑛𝑠/𝑘 . Then, we see that
the following holds:

Pr[𝑌𝑠,1 ∨ ... ∨ 𝑌𝑠,𝑘] ≤
𝑘∑
𝑡=1

Pr[𝑌𝑡] ≤
𝑘∑
𝑡=1

𝐶 (𝛿, 𝑛𝑠 , 𝑘) (4)

We can extend this to all resource types similarly. Let𝑍𝑟 be

the probability that type-𝑠 jobs in any sub-problem 𝑘 exceeds

(1 + 𝛿)𝑛𝑠/𝑘 . Using the union bound again, we can extend

Equation 4 to compute the upper limit on the probability

that the total number of misplaced jobs exceeds 𝛿𝑛.

Pr

[
𝑟∑

𝑠=1

𝑘∑
𝑡=1

𝑞𝑠,𝑡 ≥ 𝛿𝑛

]
≤ Pr[𝑍1 ∨ ... ∨ 𝑍𝑅]

≤
𝑟∑

𝑠=1

Pr[𝑍 𝑗] ≤
𝑟∑

𝑠=1

𝑘∑
𝑡=1

𝐶 (𝛿, 𝑛𝑠 , 𝑘) (5)

We can now combine this with Equation 1 to bound the

performance of a randomized POP solution for the simplified

allocation problem discussed in §5.1. We define Γ∗ to be an

optimal allocation, ΓPOP to be the allocation returned by

the POP procedure, and 𝑈 () : Γ → 𝑢 to be a function that

computes the utility of an allocation Γ. Using Equations 1

and 5, the probability that a random job partition will result

in a utility that is greater than 𝛿𝑢maxgap𝑛 from optimal is:

Pr[𝑈 (Γ∗) −𝑈 (ΓPOP) ≥ 𝛿𝑢maxgap𝑛]

≤ Pr

[
𝑟∑

𝑠=1

𝑘∑
𝑡=1

𝑞𝑠,𝑡𝑢maxgap ≥ 𝛿𝑢maxgap𝑛

]
≤

𝑟∑
𝑠=1

𝑘∑
𝑡=1

𝐶 (𝛿, 𝑛𝑠 , 𝑘)

537

	Abstract
	1 Introduction
	2 Granular Allocation Problems
	3 Partitioned Optimization Problems
	3.1 Intuition
	3.2 Procedure for Granular Problems
	3.3 Transformations to Granularize Problems
	3.4 Benefits of POP

	4 Case Studies of Applying POP
	4.1 Resource Allocation for Heterogeneous Clusters
	4.2 Traffic Engineering and Link Allocation
	4.3 Query Load Balancing
	4.4 When is POP Not Applicable?

	5 Analysis
	5.1 Theoretical Analysis for a Simple Problem
	5.2 Relationship to Primal Decomposition
	5.3 Expected Runtime Benefits

	6 Implementation
	7 Evaluation
	7.1 End-to-End Results
	7.2 Effectiveness of Client and Resource Splitting
	7.3 Alternatives to Random Partitioning

	8 Related Work and Discussion
	9 Conclusion
	References
	A Proof of Bound on Random Partitioning for Simple Allocation Problem

