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Abstract—We consider the problem of allocating a capital bud-
get to solar panels and storage to maximize the expected revenue in
the context of a large-scale solar farm participating in an energy
market. This problem is complex due to many factors. To begin
with, solar energy production is stochastic, with a high peak-to-
average ratio, thus the access link is typically provisioned at less
than peak capacity, leading to the potential waste of energy due to
curtailment. The use of storage prevents power curtailment, but
the allocation of capital to storage reduces the amount of energy
produced. Moreover, energy storage devices are imperfect. A solar
farm owner is thus faced with two problems: 1) deciding the level
of power commitment and 2) the operation of storage to meet this
commitment. We formulate two problems corresponding to two
different power commitment approaches, an optimal one and a
practical one, and show that the two problems are convex, allow-
ing efficient solutions. Numerical examples show that our practical
power commitment approach is close to optimal and also provide
several other engineering insights.

Index Terms—Batteries, budget splitting, solar PV panels.

I. INTRODUCTION

G RID-SCALE solar farms are being rapidly deployed
around the world today, with India and China alone plan-

ning to add 100 GW of solar power each in the next 5–7 years.
Nearly all solar farms being deployed today lack storage: solar
production is either directly absorbed into the grid or curtailed,
where the curtailment is either due to inadequate access line
capacity or to maintain grid stability. Today, solar farm oper-
ators are typically paid for solar energy production whether
or not it is curtailed, so they are indifferent to curtailment.
However, curtailment comes at a significant financial cost to
grid operators, who need to pay for energy although, it cannot
be used to meet loads.

As solar generation becomes an increasingly larger fraction
of the overall energy supply, the cost of curtailment is likely to
become unsustainable. We anticipate that this will force solar
farm operators to become more like traditional generators, in
that they will need to commit to a certain constant power level
for a certain duration (we call this a market time slot) a day or an
hour in advance, receiving revenue for this committed power,
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and that they will need to pay a penalty if this commitment
is not met. To avoid penalties or, more generally, to maximize
their revenue, such a change in solar farm operation will make
it necessary for farm owners to invest in storage that smooths
out power fluctuations. In this paper, we study the optimal allo-
cation of a fixed budget to solar panels and storage in this future
price regime.

More specifically, in this regime, the amount of storage that
needs to be purchased by a solar farm operator is influenced by
six distinct, inter-related factors.

1) The capacity of the access link that connects the farm to
the rest of the grid: the smaller this capacity, the higher
the possibility of curtailment, and the greater the need for
storage.

2) The power level committed to by the farm owner in each
market time slot: the higher the commitment level, the
higher the probability of not meeting this commitment,
and hence the greater the need for storage.

3) The penalty: the higher the penalty, the greater the moti-
vation to either choose a lower commitment level or to
store energy to prevent a future shortfall.

4) The degree of fluctuation in the purchase price in different
market time slots: the greater the fluctuation, the larger the
benefit from storing solar production for future sale at a
higher price.

5) The degree of variation in solar energy during a single
market time slot: the greater this variation, the greater the
need for storage.

6) The solar generation prediction accuracy: the lower the
prediction accuracy, the greater the need for storage to
mitigate against prediction errors.

Due to the complex relationship between these factors, the
optimal allocation of resources to solar panels and storage is
a challenging problem. In this paper, we determine, at design
time, the optimal budget allocation such that the system, when
commissioned, would maximize its anticipated revenue in the
day-ahead market.

What prices would solar generation receive in future mar-
kets? It is evident that the current pricing scheme (which is a
fixed feed-in tariff with no penalties) must be changed to reduce
the burden on the grid to smooth-out renewable generation. It
is, however, not clear how the pricing schemes for solar will
play out. To simplify the problem, in this paper, we assume the
simplest possible scenario, which is to assign constant reward
and penalty prices. We also assume perfect prediction of solar
power. We defer the more general setting, with variable power
prices and imperfect prediction, to future work.

The prior work closest to ours is a study of the impact
of access link capacity and purchase price fluctuation on the
amount of storage that needs to be purchased by solar farm
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owners in Puglia and Badem-Wuttemberg [1]. Our problem
formulation is different in that we study the effect of market
pricing schemes (penalty price, the length of a market time slot,
and power-level commitment) as well as access link capacity
on the optimal budget split. Our key contributions include:

1) modeling a complex system that includes stochastic solar
power production, realistic storage systems, and both
optimal and practical power commitment approaches, for-
mulating the corresponding problems to obtain an optimal
budget split between solar generation and storage;

2) showing that the two problems are convex and that the
optimal storage charge and discharge operation can be
described with simple rules;

3) engineering insights that shed new light on the role of the
length of the market time slot, penalty, and access link
capacity on the optimal budget split.

This paper is organized as follows. We discuss the existing
work on solar farm designs in Section II. We present the system
model and notation in Section III. In Section IV, we formu-
late the problems and prove two useful lemmas. We present
numerical examples in Section V and conclude the paper in
Section VI.

II. RELATED WORK

There is extensive work on sizing or analyzing the perfor-
mance of storage-photovoltaic (PV) systems. Prior work can be
categorized into two main classes: stand-alone problems and
grid-connected problems (see [2]–[4] for an extensive review
of existing related work).

Stand-alone problems are those in which the system can only
rely on solar power and storage to meet the demand power.
Several papers studied the optimal sizing and cost analysis of
stand-alone PV systems [2], [5]–[7]. The objective in stand-
alone systems is to minimize the cost of the battery-PV system,
while still meeting the power demand with a target loss of
load probability. Cost minimization is either in terms of min-
imizing the initial capital cost of the system [8], [9] or the
annualized cost of the system accounting for different lifetime
of batteries and PV panels [10], [11]. Annualized cost mini-
mization is further extended to a general target output power
in [12].

Grid-connected scenarios themselves are divided into two
classes: residential/commercial installations and solar PV
farms. Residential/commercial installations of PV systems have
the option to serve demand from PV panels, storage, or the grid.
Typically, the price of buying/selling electricity to the grid is a
function of the time of the day and season. Such installations
mostly aim at selling their excess power to the grid and buy-
ing their power shortage from the grid. These options create
many challenging problems with different objective functions.
Barra et al. [13] optimally size PV panels and storage such that
a minimum target fraction of the total demand is guaranteed to
be met by the battery-PV system and the cost of energy is min-
imized. Azzopardi and Mutale minimize the annual net cost,
using a case study of a residential installation where energy
can be stored, used, or sold [14]. They consider fluctuations
in time of use pricing and use mixed integer programming to
find the optimal size of each system component. Using a similar

Fig. 1. System model.

Fig. 2. Illustrating the time unit definitions.

system model, Ru et al. [15] provide an optimization problem to
determine the critical size of the battery after which an increase
in size gives no performance benefit. Other work maximizes the
benefit minus cost of a grid-connected solar PV panel with no
storage [16], [17]. The joint optimal technology selection and
operation to minimize electricity bills of a commercial building
is considered in [18] and [19]. Our work is targeted at PV farms
that have no intrinsic electricity demand of their own, and thus
these results do not carry over.

Prior work on solar farm sizing does not focus on the allo-
cation of a fixed budget to either solar production or storage.
Typically, the level of investment in the solar panels is given,
and the question is whether or not to invest in storage [1].
Moreover, in most prior work, there is no penalty for not meet-
ing demand [1]–[4]. Finally, prior work is mostly focused on
meeting a given demand with some target allowable uncertainty
[3], [12]. The target-committed power level is a free variable in
our optimization problem. The joint optimization of the budget
split and the target-committed power level makes the problem
challenging. These differences result in a problem structure in
prior work that differs substantially from ours; our formula-
tion allows us to derive some engineering insights on market
time-slot duration and power commitment level that cannot be
obtained from prior work.

III. SYSTEM MODEL

Fig. 1 illustrates our system, consisting of solar PV panels
and a battery. We assume a discrete-time model, where time
is slotted; k = 0, Tu, 2Tu, . . ., with Tu being the time unit. We
assume that the changes can happen only at the beginning of
each time slot and all inputs and parameters are constant dur-
ing a time slot. We assume that k = 0 is the time the PV farm
system in Fig. 1 is created. The available power from solar PV
panels at any time k is Pin(k). The actual output power from
the solar PV farm Pout(k) is transmitted over an access line of
capacity of C power units to the grid. We assume a day-ahead
market and a market time slot of duration ZTu (see Fig. 2).
The farm owner commits to delivering a constant power dur-
ing each market time slot. The target-committed output power
during market time slot j in day d is denoted by Π(j, d). Note
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that this commitment cannot exceed the access line capacity;
thus

0 ≤ Π(j, d) ≤ C ∀j, ∀d. (1)

In our problem formulation, Π(j, d) for each market time slot
j in day d is a control variable, so that this choice of power com-
mitment is a decision variable, chosen to maximize expected
revenue.

We denote by Pio(k) and Pd(k), respectively, the portions of
the output power that come directly from the input solar power
and from the battery. Define Tj,d to be the time interval corre-
sponding to the time slots in day d and market time slot j in that
day, i.e.,

Tj,d = {k|k ∈ [(d− 1)M + (j − 1)Z + 1, (d− 1)M + jZ]}
(2)

where M is the number of time slots in a day. Thus, we can
write

Pout(k) = Pio(k) + Pd(k) ≤ Π(j, d) ∀k ∈ Tj,d, ∀j,∀d (3)

Ps(k) = Π(j, d) ∀k ∈ Tj,d, ∀j,∀d (4)

where the first inequality implies that the entire system might
fail to provide the target output power at certain times and it is
never larger than the target output power.

Given our notation, the system model in Fig. 1 has the
following constraints (∀k):

0 ≤ Pd(k) + Pio(k) ≤ Ps(k) (5)

0 ≤ Pc(k) + Pio(k) ≤ Pin(k) (6)

0 ≤ Pc(k), Pio(k), Pd(k). (7)

Besides these constraints, we model battery imperfections
as follows. The charging (discharging) power must not exceed
αcB (αdB) at any time.1 The battery loses a fraction of 1−
ηc (1− ηd) when charging (discharging), because of battery
charging (discharging), inefficiency due to energy conversion
losses.2 To achieve a reasonable battery lifetime, the battery
state of charge should not violate a minimum of a1B and a
maximum of a2B. Finally, the stored energy is reduced by a
fraction 1− γ ≤ 1 after each time unit, due to self-discharge.
In summary, if b(k) is the state of charge evolution in time slot
k, then we have

b(0) = a1B (8)

b(k) = (1− γ)b(k − 1) + ηcPc(k)Tu − Pd(k)Tu/ηd (9)

a1B ≤ b(k) ≤ a2B (10)

0 ≤ Pd(k) ≤ αdB (11)

0 ≤ Pc(k) ≤ αcB (12)

Pc(k)× Pd(k) = 0 (13)

where B is the battery size and the last equality ensures that we
cannot charge and discharge the battery simultaneously.

The output power Pout(k) is transmitted via the access line to
be sold in an electricity market and by design will not be larger
than Ps(k). We believe that the day-ahead electricity market is
likely to use one of the two following policies to pay/charge
solar PV owners. In the first policy, the supplier earns $c1 for
each energy unit it produces, and pays a penalty of $p1 for each
energy unit it falls short during the day of operation. Thus, the
total revenue in the first N time slots in this policy is given by

Rev1(N) =
N∑

k=1

(c1Pout(k)− p1(Ps(k)− Pout(k)))Tu.

(14)

In the second policy, everything is the same as before, except
that the supplier is rewarded for its target output power Ps(k)
(which is constant during each market time slot Tj,d) rather than
its actual production Pout. In this case, the revenue in the first
N time slots is

Rev2(N) =

N∑
k=1

(c2Ps(k)− p2(Ps(k)− Pout(k)))Tu (15)

1Here, we assume a homogenous battery sizing, in which increasing the size
of the battery is done by adding identical cells of the same technology from the
same manufacturer.

2We can also incorporate the inefficiency of the converters by treating ηc
(ηd) to be the product of the charging (discharging) inefficiencies of the battery
and the converters.
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where $c2 and $p2 are, respectively, the per-energy unit reward
and penalty. However, the revenue formulations in these two
policies from (14) and (15) are equivalent if we redefine the
penalty price by setting c2 = c1 and p2 = c1 + p1, keeping in
mind that p2 ≥ c1. Note that both (14) and (15) are written in
constant dollars, i.e., they are already built in a nominal rate of
inflation. Thus, when we compute the net revenue, the penalty
and reward values are assumed to scale at the same rate. Thus,
the formulations are independent of the time-value of money
and discount rates.

Following existing work (e.g., [20] and [21]), we choose (15)
to be the objective function for our problem. We simplify nota-
tion by using c and p instead of c2 and p2. Combining (4) and
(15) with some manipulations yields

Rev(N) =

N∑
k=1

((c− p)Ps(k) + p (Pd(k) + Pio(k)))Tu.

(16)

Given a total budget of $K, our goal is to optimally size a
solar PV farm (illustrated in Fig. 1) with the maximum revenue
(16) over its lifetime. The budget can be used to buy either solar
PV panels or batteries. In Section IV, we formulate and discuss
this problem in greater detail.

IV. PROBLEM DEFINITION

In this section, we discuss the problem formulation.

A. Optimal Budget Split

Our first goal is to estimate, from a solar irradiance trace, the
cost of the solar panels needed to produce a certain peak power.
Let us denote Kpv to be the total budget invested for PV panels.
Denote by i(k) the available solar power at any time k per unit
area at the given location. The available power from solar PV
panels Pin is given by

Pin(k) = αpvAi(k) (17)

where αpv is the efficiency of the solar PV panels and A is the
total surface area. We define Pmax(A) to be the peak power
produced by a PV farm with total surface area A. Then, from
(17), we have

Pmax(A) = max
k′

(i(k′))αpvA. (18)

Given a cost per unit peak power u, a solar PV farm with total
surface area A costs Pmax(A)u. Thus, for a given Kpv, the area
of the PV panels affordable is given by

A =
Kpv

umaxk′(i(k′))αpv
. (19)

Inserting this value in (17) yields

Pin(k) =
Kpv

umaxk′(i(k′))
i(k)

=
Kpv

u
in(k) (20)

where in(k) is the normalized irradiance given by

in(k) :=
i(k)

maxk′(i(k′))
. (21)

Given a Kpv, we can compute the corresponding PV panel
size and Pin, respectively, from (19) and (20).

Define KB to be the total budget invested for batteries. The
overall budget is either invested in battery purchase or in buying
PV panels. Thus,

Kpv +KB = K. (22)

Thus, the size of battery is given by

B =
KB

v
(23)

where v is the price per unit of storage.

B. PV Panel Discounted Price

The lifetime of a PV panel is typically much longer than the
lifetime of a battery. Therefore, at the end of the lifetime of the
battery, the PV panels are still likely to be functional. This must
be taken into account in the revenue formulation. We assume
that the asset value of each dollar invested on PV panels at the
end of the lifetime of the battery is reduced by a discounted
factor rL ≤ 1, where L is the lifetime of the battery in time
units. The solar asset decay rL occurs due to two factors: the
decreasing price of PV panels mostly due to improvement in
the technology and the depreciation of the original asset. We
assume a 12% annual decay in solar asset worth and an addi-
tional 5% annual decrease in the original worth of the panels,
which follows from their 20-year lifetime. Thus,

rL = (0.88)L
(
1− L

20

)
. (24)

By the end of the lifetime of the battery, the asset value of
the PV panels is $rLKpv and it must be included in the total
revenue

Revtot = Rev(L) + rLKpv

=

L∑
k=1

((c− p)Ps(k)+ p (Pd(k)+Pio(k)))Tu + rLKpv

(25)

where in the second line, we inserted the revenue during the
lifetime of the battery from (16).

C. Choice of Power Commitment Π(j, d)

Solar power generation is diurnal. A solar farm owner should
commit to a target power level Π(j, d) that roughly follows the
diurnal variations in solar power, i.e., the average expected solar
power production during each market time slot3 [22]. Thus, a

3Note that this is easier than to forecast the exact time series of future
irradiance values.
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possible candidate for power commitment is what we call the
average commitment, i.e.,

Π(j, d) = min(C,P in(j, d)) ∀j,∀d (26)

where P in(j, d) is the average solar power over market time slot
Tj,d, given by

P in(j, d) :=

∑
k′∈Tj,d

Pin(k
′)

Z
. (27)

However, there might be reasons why committing to the aver-
age over a period is not the right thing to do. For example, if
the battery is empty at the beginning of the period, the system
would not be able to cope with a possible shortfall during the
first part of the time period. If the battery is full, it might be pos-
sible to commit more than the average. Hence, in the following,
we will evaluate the average commitment by comparing it to an
upper bound on the revenue. Precisely, we will consider the two
following problems.

1) P1 (optimal commitment): In this formulation, the power
commitment Π(j, d) is a free parameter. Therefore, the
solver finds the optimum choice of Π(j, d) for the given
inputs. We use this result as a benchmark, i.e., to obtain
an upper bound on the revenue. This problem, however,
will not give us any insights into how to perform power
commitment.

2) P2 (average commitment): In this formulation, we assume
that the power commitment is given by (26).

We now formulate these two problems.

D. Formulating P1

Using the above definitions and notation and given K, C,
L, Tu, c, p, i(k), u, v, and the battery imperfections (αc, αd,
ηc, ηd, a1, a2, and γ), we can write the solar PV farm design
optimization problem P1 as follows:

P1: max
Kpv,Pd(k),Pio(k),Pc(k),Π(j,d)

L∑
k=1

((c− p)Ps(k)

+p(Pd(k)+Pio(k)))Tu+rLKpv

(28)

s.t.

Ct1 : Kpv +KB = K

Ct2 : B =
KB

ν
Ct3 : b(0) = a1B

Ct4 : b(k) = (1−γ)b(k−1)+ηcPc(k)Tu−Pd(k)Tu/ηd ∀k
Ct5 : a1B ≤ b(k) ≤ a2B ∀k
Ct6 : 0 ≤ Pd(k) + Pio(k) ≤ Ps(k) ∀k
Ct7 : 0 ≤ Pc(k) + Pio(k) ≤ Pin(k) ∀k
Ct8 : 0 ≤ Pc(k), Pio(k), Pd(k) ∀k
Ct9 : 0 ≤ Pd(k) ≤ αdB ∀k
Ct10 : 0 ≤ Pc(k) ≤ αcB ∀k
Ct11 : Pin(k) =

Kpv

u
in(k) ∀k

Ct12 : 0 ≤ Π(j, d) ≤ C ∀j,∀d
Ct13 : Ps(k) = Π(j, d) ∀k ∈ Tj,d, ∀j,∀d
Ct14 : Pc(k)× Pd(k) = 0 ∀k.

The above optimization problem is nonlinear, because of
the last constraint (Ct14). We, however, prove in the follow-
ing lemma that this inequality can be safely removed, making
the problem a linear programming (LP).

Lemma 1: The problem P1 without the last constraint, i.e.,
Ct14, always has a solution for which Ct14 is true and this
solution would yield the same Kpv.

Note: From this point on, to simplify notation, whenever we
refer to P1 we refer to the problem without Ct14, using the
above lemma. This is why we separated Ct14 from the other
constraints by a solid horizontal line.

Proof: Suppose that there exists a solution to P1 for which
there exists at least one k such that P ∗

c (k)× P ∗
d (k) �= 0. Let us

denote by P ∗
c (k), P

∗
d (k), and P ∗

io(k) the optimal charging, opti-
mal discharging, and optimal feedforward power in time slot k.
Let us define the following:

P ′
c(k) = [P ∗

c (k)− P ∗
d (k)/(ηcηd)]+ (29)

P ′
d(k) = [P ∗

d (k)− ηcηdP
∗
c (k)]+ (30)

P ′
io(k) =

{
P ∗
io(k) + P ∗

d (k), if ηcP ∗
c (k) ≥ P ∗

d (k)/ηd

P ∗
io(k) + ηcηdP

∗
c (k), if ηcP ∗

c (k) < P ∗
d (k)/ηd

(31)

where [y]+ = max(0, y) for any y. Then, it can be easily veri-
fied that replacing P ∗

c (k), P
∗
d (k), and P ∗

io(k), respectively, with
P ′
c(k), P ′

d(k), and P ′
io(k) does not change neither the opti-

mal revenue nor the optimal Kpv and satisfies all constraints
including Ct14. �

The physical interpretation of the proof is that we define
P ′
c(k), P

′
d(k), and P ′

io(k) in a way to represent the net power
flow to each element. For example, when we are simultaneously
charging and discharging the battery, the overall net power flow
to the battery is either positive or negative, and hence only one
of P ′

c(k) or P ′
d(k) can be nonzero.

To recap, Ct14 guarantees that simultaneous charging and
discharging cannot happen. With the above lemma, we can
relax Ct14, and convert P1 to an LP.

E. Formulating P2

The power commitment Π(i, j) in P2 is not a free parameter
and is set to its value in (26). This is

P2 : max
Kpv,Pd(k)Pio(k),Pc(k)

L∑
k=1

((c− p)Ps(k)

+p(Pd(k) + Pio(k)))Tu + rLKpv

(32)

s.t.

Ct1 to Ct12

Ct15 :Eq. (26)
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which is a nonlinear optimization problem, because of the
constraint Ct15. This nonlinear optimization problem can be
easily turned to an integer LP (ILP) by defining slack vari-
ables. Therefore, this is a convex optimization problem. This
convex problem can be significantly simplified using the fol-
lowing lemma, which provides closed-form formulations for
the optimal values of charging, discharging, and feedforward
power.

Lemma 2 (optimal control strategy): The optimal values of
Pc, Pd, and Pio in optimization problems P1 and P2 can be
expressed in the following closed forms:

Pio(k) = min(Ps(k), Pin(k)) (33)

Pc(k) = min([Pin(k)− Ps(k)]+, αcB,

(a1B − (1− γ)b(k − 1))/(ηcTu)) (34)

Pd(k) = min([Ps(k)−Pin(k)]+, αdB, (1−γ)b(k−1)ηd/Tu).
(35)

See [23] for the proof.
Sketch of Proof: We first show that we should always max-

imize Pio regardless of Pd and Pc. Accordingly, the optimal
value of Pio can be proved to match (33). Given this value for
Pio and using Lemma 1 together with (5) and (6), we can show
that the optimal values of Pd and Pc, respectively, match the
values in (34) and (35). �

Based on the above lemma, the optimal control strategy in
our problems follows these straightforward static rules: The
input power Pin(k) is primarily used to serve the target out-
put power, delivering min(Pin(k), Ps(k)) to the output line.
The leftover (if any) [Pin(k)− Ps(k)]+ is stored. The energy
is stored in the battery with power Pc(k) at any time k. If, at
a given time k, the available solar power is insufficient [i.e.,
Pin(k) < Ps(k)], the energy stored in the battery, if any, can be
used to make up the difference.

Storing energy in the battery when we have a chance to sell
it is always harmful because: 1) there is no gain in terms of
revenue in postponing selling energy; 2) we might lose some
revenue because the battery may become full; and 3) we might
lose stored energy due to self-discharge or charging/discharging
efficiency of the batteries or converters.

Lemma 2 provides the optimal operation of the battery. This
removes three free parameters from P2, leaving Kpv as the
only one. This (given the convexity of P2) allows a simple
hill-climbing technique to be used to solve problem P2.

V. NUMERICAL EXAMPLES

We use the two approaches to design a solar PV farm with
storage at a given location characterized by its irradiance trace.
We compute the optimal revenue and the corresponding budget
split for both P1 (using CPLEX) and P2 (using the hill-climbing
technique coded in C++). We assume that the reward and
penalty prices are set to c = $291/MWh and p = 2 ∗ c, unless
otherwise stated. The price (including hardware and installa-
tion) and the lifetime of a PV panel are set to u = 1.63$/W
and 20 years, which are the typical values in 2014 [28]. We
assume that our total initial budget is enough to build a 1-MW
solar farm with no storage; thus , K = $1 630 000. We use

TABLE I
BATTERY CHARACTERISTICS AT ROOM TEMPERATURE AND AVERAGED

OVER ITS LIFETIME [24]–[27]

the solar irradiance dataset [i.e., i(k) in our notation] from the
atmospheric radiation measurement website [29] from the C1
station in the Southern Great Plains permanent site with a 5-
min time resolution. Unless otherwise stated, the market time
slot is fixed to 1 h (Z = 60) and the access line capacity is
set to C = 1.5 ∗ Pav, where Pav is the average available solar
power between 8 A.M. and 8 P.M. if the entire budget is spent
on solar panels (the corresponding value is C = 0.54 MW).
Although our problem formulation can be applied to a large set
of batteries, we will only show results for lithium-ion (Li-ion)
and lead-acid (PbA) batteries. Their characteristics are given in
Table I.

A. Role of Budget Allocation and Market Time Scale

The overall revenue is greatly affected by the budget split
between the panels and the batteries. Fig. 3 shows how the rev-
enue is influenced by varying the budget split. We have repeated
this example for two types of batteries (Li-ion and PbA), two
market time-slot sizes (Z = 15, 60), and using both P1 and
P2. This figure shows that there is not a significant difference
between P1 and P2, suggesting that an average power commit-
ment is a good choice. The revenue presents a convex behavior
with respect to the budget split as also suggested by the convex-
ity of both P1 and P2. As we increase the investment on solar
PV panels, we increase the power production (advantageous) as
well as the fluctuations (disadvantageous). As this figure shows,
the maximal revenue occurs at Kpv ∼96%–99% of the total
budget for both Li-ion and PbA batteries and both market time
scales. Comparing the revenue in the presence of batteries com-
pared to the case without batteries (Kpv = 1), Fig. 3 shows that
we have a 7.1% improvement in revenue using Li-ion and a
4.1% improvement using PbA batteries for Z = 60. The figure
also shows that decreasing the market time period helps.

Finally, we conducted a sensitivity analysis with respect to
the solar power traces, by repeating the above experiment on
100 modified solar sample paths. We found that these results
are insensitive to the choice of solar power traces.

B. Role of the Line Access Capacity (C)

Fig. 4 shows the optimal revenue with and without storage for
different values of access line capacity C, as a ratio of Pav for
Li-ion batteries. Clearly, the revenue increases with an increase
in line capacity C due to a reduction in curtailment, reaching a
saturation point when the access capacity is no longer a binding
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Fig. 3. Total revenue as a function of budget share (in percentage) for PV
panels.

Fig. 4. Optimal revenue as a function of line access capacity C.

constraint. We also see that adding storage reduces the loss of
revenue due to market penalties.

C. Sensitivity Analysis to Battery Lifetime

The battery lifetimes we use in our numerical examples are
nominal averaged values. In practice, battery lifetime is highly
dependent on how it is used, i.e., the detailed charge/discharge
processes. We now discuss the sensitivity of the optimal budget
split to the battery lifetime. We vary the battery lifetime from 1
to 20 years and record the corresponding optimal budget split
for each point. As shown in Fig. 5, the optimal budget split is
relatively insensitive to battery lifetime, changing by only a few
percentage points. We see a slight shift toward a greater invest-
ment in batteries as the battery lifetime increases. The optimal
budget split is even more insensitive to the battery lifetime if
the battery lifetime is about (or larger than) its nominal lifetime
as the vertical dashed line is close to the plateau of the curves
in Fig. 5.

The monotonic decreasing trend of the optimal budget invest-
ment on solar PV panels reaches a saturation point as battery
lifetime increases. This is due to the fact that the asset value
of solar PV panels is almost negligible at 14% of its origi-
nal value after about 10 years. Thus, the second term in (25),

Fig. 5. Optimal budget split as a function of battery lifetime.

Fig. 6. Optimal budget split percentage for solar PV panels as a function of the
penalty price.

which mainly reflects the impact of battery lifetime on the total
revenue, becomes negligible.

D. Role of the Penalty Price Ratio (p/c)

Fig. 6 illustrates the impact of penalty prices on the optimal
budget split. We take the ratio p/c as an independent variable
by keeping c constant. The graph shows that the optimal budget
split shifts in favor of investing in storage as the penalty price
increases. This corroborates the fact that one of the primary
roles of storage in this context is to smooth out the produc-
tion and avoid paying the penalty; the larger the battery, the
more likely we are able to smooth out the fluctuations in solar
output with stored energy. For higher price ratios, the invest-
ment into batteries is slightly higher for PbA than for Li-ion.
We observe that the difference between P1 and P2 increases as
the penalty price increases but remains low. This is because the
role of the choice of power commitment is more important for
large penalty prices.

VI. CONCLUSION

Our work studies the one-shot optimal allocation of a capi-
tal budget to solar panels and storage to maximize anticipated
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revenue from a day-ahead or hour-ahead market over the life-
time of storage system (which is typically shorter than that of
solar panels). Unlike prior work, we have carefully modeled
several real-world constraints, yet have formulated two convex
models that can be efficiently solved using hill-climbing or a
solver. Numerical evaluation using real irradiation traces shows
that it is typically optimal to invest 96%–99% of the initial
investment on solar panels and the rest on storage. We find that
this fraction depends on six inter-related factors, four of which
we study in detail in this work. We find that the practical expe-
dient of setting the power commitment level to the expected
solar production during a market time slot results in nearly the
same revenue as an optimal commitment level determined by
a solver. Moreover, we find that as storage lifetimes increase,
the optimal investment level in solar panels is about 96% and is
nearly insensitive to lifetimes longer than about 10 years, which
are already becoming possible with current technology.

The primary limitation of our work is that it assumes a very
simple market structure, with constant revenue and penalty
prices. We also assume a fixed line capacity C whose size
cannot be increased through additional investments. We study
only two types of batteries with homogenous cells. We hope
to address these limitations in our future work. We also plan
to work on improving our battery model and make it more
realistic (e.g., accounting for state-of-health and the lifetime
dependency on the charging/discharging operations).
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