
Beobench: A Toolkit for Unified Access to Building
Simulations for Reinforcement Learning

Arduin Findeis
University of Cambridge

af691@cam.ac.uk

Fiodar Kazhamiaka
Stanford University
fiodar@stanford.edu

Scott Jeen
University of Cambridge, Alan Turing Institute

srj38@cam.ac.uk

Srinivasan Keshav
University of Cambridge

sk818@cam.ac.uk

Abstract
Reinforcement learning (RL) is often considered a promising
approach for controlling complex building operations. In
this context, RL algorithms are typically evaluated using a
testing framework that simulates building operations. To
make general claims and avoid overfitting, an RL method
should be evaluated on a large and diverse set of buildings.
Unfortunately, due to the complexity of creating building
simulations, none of the existing frameworks provide more
than a handful of simulated buildings. Moreover, each frame-
work has its own particularities, which makes it difficult to
evaluate the same algorithm on multiple frameworks. To
address this, we present Beobench: a Python toolkit1 that
provides unified access to building simulations frommultiple
frameworks using a container-based approach. We demon-
strate the power of our approach with an example showing
how Beobench can launch RL experiments in any supported
framework with a single command.

CCS Concepts: • Computing methodologies → Simula-
tion environments; Reinforcement learning.

Keywords: reinforcement learning, building energy optimi-
sation, building control, building simulation

ACM Reference Format:
Arduin Findeis, Fiodar Kazhamiaka, Scott Jeen, and Srinivasan Ke-
shav. 2022. Beobench: A Toolkit for Unified Access to Building
Simulations for Reinforcement Learning. In The Thirteenth ACM
International Conference on Future Energy Systems (e-Energy ’22),
June 28-July 1, 2022, Virtual Event, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3538637.3538866

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9397-3/22/06.
https://doi.org/10.1145/3538637.3538866

1 Introduction
Reinforcement learning (RL) [18] represents a promising
control method for building energy optimisation (BEO) prob-
lems. RL can work with incomplete system models, unlike
classical control methods such as model predictive control,
making it better suited to dynamic and complex real-world
conditions. This has motivated a flurry of recent work on
applying RL to BEO [5, 21, 24]. However, RL methods have
been evaluated on a limited set of buildings, leaving open
questions on the suitability of different RL methods for BEO
in general.

The evaluation of RL algorithms for BEO has gone through
two phases. In the first phase of work, each proposed RL al-
gorithm was typically evaluated in its own specific building
context [6, 22]. As Wölfle et al. [23] point out, this limited
standardisation makes it challenging to compare the rela-
tive performance of RL methods. The focus on individual
buildings could also lead to overfitting and weaken any sub-
sequent performance claims. In the second phase of work,
[2, 3, 8, 13, 16, 20], testing frameworks were introduced, al-
lowing different RL algorithms to be tested on a standard
set of building environments. Given the complexity of devel-
oping high-fidelity building simulations, these frameworks
each provide a limited set of simulated buildings. Moreover,
each framework requires the user to adapt to its unique us-
age and installation requirements, so that it is difficult to
evaluate the same RL algorithm on multiple frameworks.

To address this research gap, we present Beobench, a Python
toolkit that simplifies using multiple frameworks to study
RL algorithms for BEO problems. We make the following
contributions:

1. A Python package1 that provides a unified interface
to access multiple building control frameworks for
single-agent RL algorithms.

2. Integrations of three popular building control frame-
works into this package, namely BOPTEST [2, 3], En-
ergym [16], and Sinergym [8].

3. Additional resources to simplify running experiments
that apply RL for BEO, including experiment tracking
and integration with RLlib [9].

1Open-source, available at https://github.com/rdnfn/beobench.

374

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3538637.3538866
https://doi.org/10.1145/3538637.3538866
https://github.com/rdnfn/beobench
https://creativecommons.org/licenses/by/4.0/

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA Arduin Findeis, Fiodar Kazhamiaka, Scott Jeen, and Srinivasan Keshav

Table 1. Number of distinct building models in frameworks

Framework # Buildings Archetypes
BOPTEST 3 Residential, Commercial
Energym 6 Residential, Commercial, Office
RL Testbed 1 Data centre
Sinergym 3 Data centre, Residential, Office

2 Background and related work
In reinforcement learning, problems are formulated as a con-
trol method — or agent — interacting with an environment.
In the context of building control, the environment is an in-
terface that the agent can use to control a building. The goal
is to create an agent that interacts with this building envi-
ronment in a way that achieves some objective, for example
minimising energy payment or emissions.

Frameworks created in the aforementioned second phase
of research provide access to a set of simulated building en-
vironments. We now discuss some recent frameworks, focus-
ing on ones that target single-agent control, are open-source,
under active development2, and accessible via a Python
API. Frameworks that fit these criteria include BOPTEST 3

[2, 3], Energym [16], Sinergym [8], and Reinforcement Learn-
ing Testbed for Power-Consumption Optimization [13]. For
brevity, we will refer to the latter just as RL Testbed. Inspired
by the widely used OpenAI Gym framework [4], many of
the aforementioned projects use the term gym in their name.
Following this convention, we refer to the collection of the
projects just mentioned as gym frameworks. All of the consid-
ered gym frameworks provide environments that give agents
control over fully simulated buildings. The simulations are
run using sophisticated software, such as EnergyPlus [7] or
Modelica [11].
Developing a precise building model for these simula-

tions is a time-consuming task and requires extensive build-
ing specification data. Thus, the aforementioned projects
each use a small set of physical building models, as Table 1
shows. Note that, in addition to physical building models,
each framework also provides other system variations to
create a diverse set of problem formulations, such as types of
controllable devices or location of weather data. A detailed
discussion of environments and building models available in
these gym frameworks is provided in Appendix A.
Note that there are several other frameworks that do

similar tasks but do not meet our criteria, mostly because

2Defined as having a git commit within the last year on the project’s public
repository. Given the fast pace of development within the field, packages
that are not actively maintained may be at risk of becoming incompatible
with popular RL libraries.
3BOPTEST consists of a building simulation framework [3] and a separate
gym implementation [2]. For brevity, we use the term BOPTEST to refer to
the combined framework.

Figure 1. Overview of the architecture of Beobench. The
user provides an experiment configuration file as input to
the Beobench API, which then runs the experiments in a
Docker container with all the requirements for the building
simulation.

they either primarily focus on multi-agent control4, such as
CityLearn [20] and GridLearn [14], or appear to be no longer
under active development, such as Gym-Eplus [26], Model-
icaGym [10] and Tropical Precooling Environment [23]. For
completeness, we mention but do not compare the frame-
works Comprehensive Building Simulator (COBS) [25] and
EmsPy [12] that appear to be at an early stage of develop-
ment.

3 Design
Beobench is designed to extend existing gym frameworks to
support cross-framework method evaluation. By combining
buildings from multiple frameworks, Beobench provides ac-
cess to the largest unified collection of building environments
for single-agent RLmethods. Our framework substantially re-
duces the effort required to evaluate an RL algorithm on this
collection and obtain a robust signal on the algorithm’s gen-
eral applicability. For example, we can investigate whether
an RL algorithm is well suited to control houses in general,
4Multi-agent RL (MARL) environments often use interfaces that differ from
the OpenAI Gym [4] interface widely used for single-agent RL. For example,
GridLearn [14] uses PettingZoo [19]. These interfaces do not necessarily
easily translate to Gym and are thus beyond the current scope of the Gym-
based Beobench. That said, MARL environments that are Gym-based, such
as CityLearn [20], are straightforward to use with Beobench as a custom
integration (similar to the one shown in Appendix C). In the future, such
environments may be officially integrated.

375

Beobench: A Toolkit for Unified Access to Building Simulations for Reinforcement Learning e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

Table 2. Features of Frameworks

Feature BOPTEST Energym RL Testbed Sinergym Beobench
Provides simulations of new buildings ✓ ✓ ✓ ✓ –
Support for cross-framework method evaluation – – – – ✓
Compatibility with standard RL algorithm libraries ✓ – ✓ ✓ ✓
Support for complete problem definition – – – ✓ ✓
Support for experiment tracking – – – ✓ ✓

not just a single house with its specific system represented
by a single environment.
For each gym framework, potentially conflicting depen-

dencies and system requirements need to be satisfied. Beobench
provides built-in support to access and manage the require-
ments ofmultiple building control gym frameworks. Beobench
manages potentially conflicting requirements for each gym
framework by placing each in its own gym container. This
container-based architecture is illustrated in Figure 1.

Note that some frameworks already provide some form of
containerization. Nevertheless, a fair amount of additional
tooling is necessary to make these frameworks mutually
compatible. For example, to integrate BOPTEST, we had to
additionally manage simulation containers within the gym
container. For Energym, we added a new wrapper to make
its environments comply with the OpenAI gym interface [4].
Through these types of built-in integrations with BOPTEST,
Energym and Sinergym, Beobench is able to provide the
largest unified collection of building environments for single-
agent RL methods, giving access to all 12 physical building
models of the underlying frameworks.
In addition to this core functionality, Beobench provides

features that improve ease-of-use and reproducibility of ex-
periments. Whilst some of the following features are sup-
ported by some frameworks (see Table 2), Beobench makes
them available for all frameworks accessed via its API:

1. Compatibilitywith standardRL algorithm libraries:
The OpenAI gym Env class5 [4] has become the widely
accepted standard interface for single-agent RL envi-
ronments. Implementing this interface is a prerequi-
site for frameworks to be compatible with standard RL
algorithm libraries, such as RLlib [9] or Stable Base-
lines3 [15]. Not all gym frameworks fully implement
this interface. If this is the case, Beobench integrations
come with a wrapper that enables compatibility of the
framework with the standard RL algorithm libraries.

2. Support for complete problem definition: An RL
building control problem has many components, in-
cluding the setup of the underlying physical build-
ing simulation and the definition of RL-specific parts,
such as action/control spaces and reward functions. To

5Defined in https://github.com/openai/gym/blob/master/gym/core.py (last
accessed: 26 May 2022).

make RL research reproducible and comparable it is
essential that there is no ambiguity about the problem
definition and setup. Whilst many components can be
defined through the OpenAI gym interface, this does
not apply to them all. In particular, the number of steps
that the agent is able to take is usually defined outside
the RL environment as part of the method/training
implementation. Since Beobench is able to control the
full experiment stack, including the method imple-
mentation, it supports experiment definition files that
unambiguously define the complete problem setup. By
default, Beobench leverages RLlib [9] to facilitate the
definition of components for training/method. This
functionality can also be extended to work with other
RL algorithm libraries.

3. Support for experiment tracking: An integrated ex-
periment tracking solution can capture all relevant in-
formation about the complex building control problem
space. Leveraging RLlib, Beobench is able to support
popular experiment tracking tools such asWeights and
Biases6and MLflow7.

Table 2 shows the support of existing frameworks for
the aforementioned features, and illustrates how Beobench
compares. Note that the goal of Beobench is not to provide
simulations of any new buildings, but rather to enable the
usage of all available buildings across the many existing
frameworks.

4 Usage
This section describes the usage for the latest version of
Beobench available at the time of publication8.

4.1 General usage
Beobench is designed to be easy to both install and use.
Provided that Docker9 is already installed, the Beobench
package can be installed simply using the command
pip install beobench.
6See https://wandb.ai (last accessed: 26 May 2022).
7See https://mlflow.org (last accessed: 26 May 2022).
8v0.5.0. Beobench is under active development – new features may be added
and usage details may change. Refer to the latest version of the online
documentation at https://beobench.readthedocs.io for the most up-to-date
and extensive usage guides.
9See https://docs.docker.com/get-docker/ (last accessed: 26 May 2022).

376

https://github.com/openai/gym/blob/master/gym/core.py
https://wandb.ai
https://mlflow.org
https://beobench.readthedocs.io
https://docs.docker.com/get-docker/

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA Arduin Findeis, Fiodar Kazhamiaka, Scott Jeen, and Srinivasan Keshav

Figure 2. Experiment workflow with Beobench.

Once installed, Beobench uses a container-based architec-
ture to manage the different frameworks and their system
requirements. Figure 2 illustrates the workflow. To start an
experiment, the user creates an experiment configuration, in
which they can set any method from the extensive RLlib
collection of RL algorithms. The user can then apply this
method to any environment from the integrated frameworks
BOPTEST, Sinergym or Energym. If the user wants to use
a method or environment not already supported, they can
optionally create a custom agent or a custom gym integration
and pass it as input to the Beobench API, allowing the user to
fully customize Beobench experiments to their requirements.
This API can be accessed via Python or via a command line
interface (CLI).

Given an experiment configuration, Beobench first builds
a Docker container image custom to the gym framework
of the environment used in the experiment10. It then starts
the container and launches experiments inside it. Data from
these experiments is saved in a local directory and optionally
shared with experiment-tracking systems11 such as Weights
and Biases or MLflow.

4.2 Minimal example
Beobench can launch experiments using environments from
any supported framework in just a single command. Con-
sider the example in Figure 3: with just three commands
10This step is done from cache if multiple experiments use the same image
– effectively skipping the step in that case.
11This is not supported for custom agents that do not use RLlib.

Figure 3. Commands to launch experiments in three dif-
ferent frameworks with Beobench. The plots illustrate the
resulting experiments, which apply the RL method proximal
policy optimisation (PPO) [17] to an environment from each
framework. The mean episode reward over training itera-
tions is shown.

the user is able to evaluate the same RL method, proximal
policy optimisation (PPO) [17], in multiple frameworks. First,
the method is evaluated on the bestest_hydronic environ-
ment12 from BOPTEST, then on the Eplus-5Zone-hot-cont-
inuous-v1 environment13 from Sinergym, and finally on the
MixedUseFanFCU-v0 environment14 from Energym. Building-
specific environment information for frameworks integrated
into Beobench is documented online15. Without Beobench,
running this set of experiments would require a large amount
of additional work to ensure compatibility, such as satisfying
installation requirements and adapting the scripts to each
framework’s usage requirements.

4.3 Adding a gym framework
Beobench is designed to be extendable and allows the user
to add new gym frameworks. Gym frameworks are inte-
grated using Docker build contexts — a set of files that define
a container image. In the simplest case, the build context con-
tains two parts: a Dockerfile that defines a container image
12See https://github.com/ibpsa/project1-boptest/blob/master/testcases/
bestest_hydronic_heat_pump/doc/index.html (last accessed: 26 May 2022).
13See https://jajimer.github.io/sinergym/compilation/html/pages/
environments.html (last accessed: 26 May 2022).
14See https://bsl546.github.io/energym-pages/sources/mixeduse.html (last
accessed: 26 May 2022).
15See https://beobench.readthedocs.io/en/latest/envs.html

377

https://github.com/ibpsa/project1-boptest/blob/master/testcases/bestest_hydronic_heat_pump/doc/index.html
https://github.com/ibpsa/project1-boptest/blob/master/testcases/bestest_hydronic_heat_pump/doc/index.html
https://jajimer.github.io/sinergym/compilation/html/pages/environments.html
https://jajimer.github.io/sinergym/compilation/html/pages/environments.html
https://bsl546.github.io/energym-pages/sources/mixeduse.html
https://beobench.readthedocs.io/en/latest/envs.html

Beobench: A Toolkit for Unified Access to Building Simulations for Reinforcement Learning e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

complying with all the installation requirements of the gym
framework, and an env_creator.py python module that
defines a create_env() function. Given environment pa-
rameters, this function returns an environment instance that
is then used by Beobench for its experiments. Some frame-
works require additional tooling, for example the BOPTEST
integration also has to manage separate building simulation
containers. This additional tooling can be added to the build
context in the same way as the other files. With this flexi-
ble integration setup, Beobench can integrate diverse gym
frameworks, despite varying installation and usage require-
ments.

5 Conclusion
We have presented Beobench: a Python package that simpli-
fies and unifies RL experiments across diverse building con-
trol frameworks. By making environments from BOPTEST,
Sinergym and Energym available through a single API, the
package provides the largest unified collection of building
environments for single-agent RL methods. We hope that
our tool will help researchers by making these standardised
gym frameworks more accessible and thereby facilitate the
comparison of research in this field.

Further, we anticipate that Beobench can provide the foun-
dation for further work on benchmarking RL methods for
BEO, thereby helping answer open questions about the suit-
ability of RL methods for building control in general. We are
currently working on extending Beobench by adding more
pre-defined experiments, better evaluation methods [1], ex-
tensions to Docker alternatives, and more frameworks that
tackle related BEO problems, such as CityLearn [20].

Acknowledgments
We would like to thank Gilmar Findeis for his valuable ad-
vice on Docker systems and his technical support for the
experimental infrastructure. Further, we would like to thank
the reviewers for taking the time to read this paper in depth
and for sharing their helpful comments. Arduin Findeis was
supported by a University of Cambridge School of Physical
Sciences Award and by the UKRI Centre for Doctoral Train-
ing in Application of Artificial Intelligence to the study of
Environmental Risks (reference EP/S022961/1). Scott Jeen
was funded by EPSRC, UK and Emerson Electric.

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C.

Courville, and Marc Bellemare. 2021. Deep Reinforcement Learning at
the Edge of the Statistical Precipice. Advances in Neural Information
Processing Systems 34 (2021), 29304–29320.

[2] Javier Arroyo, Carlo Manna, Fred Spiessens, and Lieve Helsen. 2021.
An OpenAI-Gym Environment for the Building Optimization Testing
(BOPTEST) Framework. In Proceedings of the 17th IBPSA Conference.
IBPSA, Bruges, Belgium. https://doi.org/10.26868/25222708.2021.30380

[3] David Blum, Javier Arroyo, Sen Huang, Ján Drgoňa, Filip Jorissen, Har-
ald TaxtWalnum, Yan Chen, Kyle Benne, Draguna Vrabie, MichaelWet-
ter, and Lieve Helsen. 2021. Building Optimization Testing Framework
(BOPTEST) for Simulation-Based Benchmarking of Control Strategies
in Buildings. Journal of Building Performance Simulation 14, 5 (Sept.
2021), 586–610. https://doi.org/10.1080/19401493.2021.1986574

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.
arXiv preprint arXiv:1606.01540 (2016). arXiv:1606.01540

[5] Di Cao, Weihao Hu, Junbo Zhao, Guozhou Zhang, Bin Zhang, Zhou
Liu, Zhe Chen, and Frede Blaabjerg. 2020. Reinforcement Learning
and Its Applications in Modern Power and Energy Systems: A Review.
Journal of Modern Power Systems and Clean Energy 8, 6 (Nov. 2020),
1029–1042. https://doi.org/10.35833/MPCE.2020.000552

[6] Yujiao Chen, Leslie K. Norford, Holly W. Samuelson, and Ali Malkawi.
2018. Optimal control of HVAC and window systems for natural
ventilation through reinforcement learning. Energy and Buildings 169
(2018), 195 – 205. https://doi.org/10.1016/j.enbuild.2018.03.051

[7] Drury B. Crawley, Linda K. Lawrie, Frederick C.Winkelmann,Walter F.
Buhl, Y. Joe Huang, Curtis O. Pedersen, Richard K. Strand, Richard J.
Liesen, Daniel E. Fisher, and Michael J. Witte. 2001. EnergyPlus: Cre-
ating a New-Generation Building Energy Simulation Program. Energy
and buildings 33, 4 (2001), 319–331.

[8] Javier Jiménez-Raboso, Alejandro Campoy-Nieves, Antonio
Manjavacas-Lucas, Juan Gómez-Romero, and Miguel Molina-Solana.
2021. Sinergym: A Building Simulation and Control Framework
for Training Reinforcement Learning Agents. In Proceedings of the
8th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation. ACM, Coimbra Portugal, 319–323.
https://doi.org/10.1145/3486611.3488729

[9] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018.
RLlib: Abstractions for Distributed Reinforcement Learning. In Inter-
national Conference on Machine Learning. PMLR, 3053–3062.

[10] Oleh Lukianykhin and Tetiana Bogodorova. 2019. ModelicaGym: Ap-
plying Reinforcement Learning to Modelica Models. In Proceedings
of the 9th International Workshop on Equation-based Object-oriented
Modeling Languages and Tools. 27–36.

[11] Sven Erik Mattsson and Hilding Elmqvist. 1997. Modelica-An Interna-
tional Effort to Design the next Generation Modeling Language. IFAC
Proceedings Volumes 30, 4 (1997), 151–155.

[12] mechyai. 2022. RL - EmsPy. https://github.com/mechyai/RL-EmsPy
[13] Takao Moriyama, Giovanni De Magistris, Michiaki Tatsubori, Tu-Hoa

Pham, Asim Munawar, and Ryuki Tachibana. 2018. Reinforcement
Learning Testbed for Power-Consumption Optimization. In Asian Sim-
ulation Conference. Springer, 45–59.

[14] Aisling Pigott, Constance Crozier, Kyri Baker, and Zoltan Nagy.
2021. GridLearn: Multiagent Reinforcement Learning for Grid-Aware
Building Energy Management. arXiv:2110.06396 [cs] (Oct. 2021).
arXiv:2110.06396 [cs]

[15] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximil-
ian Ernestus, and Noah Dormann. 2021. Stable-Baselines3: Reliable
Reinforcement Learning Implementations. Journal of Machine Learn-
ing Research (2021).

[16] Paul Scharnhorst, Baptiste Schubnel, Carlos Fernández Bandera, Jaume
Salom, Paolo Taddeo, Max Boegli, Tomasz Gorecki, Yves Stauffer, An-
tonis Peppas, and Chrysa Politi. 2021. Energym: A Building Model
Library for Controller Benchmarking. Applied Sciences 11, 8 (2021),
3518.

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs] (Aug. 2017). arXiv:1707.06347 [cs]

[18] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning:
An Introduction. MIT press.

378

https://doi.org/10.26868/25222708.2021.30380
https://doi.org/10.1080/19401493.2021.1986574
https://arxiv.org/abs/1606.01540
https://doi.org/10.35833/MPCE.2020.000552
https://doi.org/10.1016/j.enbuild.2018.03.051
https://doi.org/10.1145/3486611.3488729
https://github.com/mechyai/RL-EmsPy
https://arxiv.org/abs/2110.06396
https://arxiv.org/abs/1707.06347

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA Arduin Findeis, Fiodar Kazhamiaka, Scott Jeen, and Srinivasan Keshav

[19] J. Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar,
Ananth Hari, Ryan Sullivan, Luis S. Santos, Clemens Dieffendahl, Car-
oline Horsch, and Rodrigo Perez-Vicente. 2021. Pettingzoo: Gym for
Multi-Agent Reinforcement Learning. Advances in Neural Information
Processing Systems 34 (2021), 15032–15043.

[20] Jose R. Vazquez-Canteli, Sourav Dey, Gregor Henze, and Zoltan Nagy.
2020. CityLearn: Standardizing Research in Multi-Agent Reinforce-
ment Learning for Demand Response and Urban Energy Management.
arXiv:2012.10504 [cs] (Dec. 2020). arXiv:2012.10504 [cs]

[21] José R Vázquez-Canteli and Zoltán Nagy. 2019. Reinforcement learning
for demand response: A review of algorithms and modeling techniques.
Applied energy 235 (2019), 1072–1089.

[22] Tianshu Wei, Yanzhi Wang, and Qi Zhu. 2017. Deep Reinforcement
Learning for Building HVAC Control. In Proceedings of the 54th An-
nual Design Automation Conference 2017 (Austin, TX, USA) (DAC ’17).
Article 22, 6 pages. https://doi.org/10.1145/3061639.3062224

[23] David Wölfle, Arun Vishwanath, and Hartmut Schmeck. 2020. A
Guide for the Design of Benchmark Environments for Building Energy
Optimization. In Proceedings of the 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation. ACM,
Virtual Event Japan, 220–229. https://doi.org/10.1145/3408308.3427614

[24] Liang Yu, Shuqi Qin, Meng Zhang, Chao Shen, Tao Jiang, and Xiaohong
Guan. 2021. A Review of Deep Reinforcement Learning for Smart
Building Energy Management. IEEE Internet of Things Journal (2021).

[25] Tianyu Zhang and Omid Ardakanian. 2020. COBS: COmprehensive
Building Simulator. In Proceedings of the 7th ACM International Confer-
ence on Systems for Energy-Efficient Buildings, Cities, and Transportation.
ACM, Virtual Event Japan, 314–315. https://doi.org/10.1145/3408308.
3431119

[26] Zhiang Zhang and Khee Poh Lam. 2018. Practical Implementation
and Evaluation of Deep Reinforcement Learning Control for a Radiant
Heating System. In BuildSys 2018 - Proceedings of the 5th Conference on
Systems for Built Environments. Association for Computing Machinery,
Inc, 148–157. https://doi.org/10.1145/3276774.3276775

A Problem variations in building control
gym frameworks

This appendix provides additional information about exist-
ing building control gym frameworks that goes beyond the
scope of the paper. Table 1 in Section 2 describes the number
of building simulations available to the user in the existing
BEO frameworks. We define this to be the number of distinct
building envelopes one can run experiments within, rather
than the number of accessible experimental testcases. This
distinction materialises most clearly when evaluating Ener-
gym. Here, the user has access to 12 environments, however
underlying these environments are only 6 building envelopes.
For example, 4 testcases relate to the Apartments building
envelope, where each has a differing state-action space and
control objective. Whilst it is not the only relevant factor,
we propose that differing envelopes are highly relevant for
testing RL algorithm generalisability in the context of BEO.
Note that Table 1 merely serves to illustrate the limited num-
ber of underlying physical building models and should not
be considered a ranking of the frameworks. The counts in
Table 1 were created as follows:

1. BOPTEST: We were able to count 3 distinct building
models for BOPTEST:

a. BESTEST Case 900 room model (used by testcases
bestest_air, bestest_hydronic,
bestest_hydronic_heat_pump)

b. Multi-zone residential hydronic model (used by test-
case multizone_residential_hydronic)

c. Single-zone commercial building model (use by test-
case singlezone_commercial_hydronic)

Data for BOPTESTwas taken from the BOPTEST repos-
itory16. There are 5 "testcases" based on 3 Buildings
as listed above. One testcase with 5 weather options,
four testcases with three weather options, all buildings
have 3 pricing schemes. There are three variations of
the BESTEST Case 900 room model which differ in
devices available to control or overall scale. We do
not include testcase1, testcase2, and testcase3
as they are labelled as prototypes and therfore do not
seem to be intended for other work.

2. Sinergym:We were able to count 3 distinct building
models for Sinergym:
a. 5ZoneAutoDXVAV (used by 12 testcases)
b. 2ZoneDataCenterHVAC_wEconomizer (used by 4 test-

cases)
c. IWMullion (used by 4 testcases)
Data for Sinergym was taken from the sinergym docu-
mentation17. There are three buildings (in the form of
.idf files). All buildings are varied in terms of stochas-
ticity. One building is varied in terms of location as
well. Additionally the webpage distinguishes between
different action spaces — for better comparability these
variations were not considered here as they are han-
dled differently in other frameworks (e.g. not as sepa-
rate environments but rather as wrappers of environ-
ments).

3. Energym:We were able to count 6 distinct building
models for Energym (datawas taken from the Energym
documentation18):
a. Apartments (used by the ApartmentsThermal,

ApartmentsGrid, Apartments2Thermal,
and Apartments2Grid testcases)

b. Offices (used by the Offices testcase)
c. Mixed-Use (used by the MixedUse)
d. Seminarcenter (used by the

SeminarcenterThermostat, and
SeminarcenterFull testcases)

e. SimpleHouse (used by the SimpleHouseRad, and
SimpleHouseRSIa testcases)

f. SwissHouse (used by the SwissHouseRSIa, and
SwissHouseRSIaTank testcases)

16https://github.com/ibpsa/project1-boptest/tree/master/testcases (last ac-
cessed: 26 May 2022)
17https://jajimer.github.io/sinergym/compilation/html/pages/
environments.html (last accessed: 26 May 2022)
18https://bsl546.github.io/energym-pages/sources/base.html (last accessed:
26 May 2022)

379

https://arxiv.org/abs/2012.10504
https://doi.org/10.1145/3061639.3062224
https://doi.org/10.1145/3408308.3427614
https://doi.org/10.1145/3408308.3431119
https://doi.org/10.1145/3408308.3431119
https://doi.org/10.1145/3276774.3276775
https://github.com/ibpsa/project1-boptest/tree/master/testcases
https://jajimer.github.io/sinergym/compilation/html/pages/environments.html
https://jajimer.github.io/sinergym/compilation/html/pages/environments.html
https://bsl546.github.io/energym-pages/sources/base.html

Beobench: A Toolkit for Unified Access to Building Simulations for Reinforcement Learning e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

Energym extensively varies the electrical deviceswithin
the buildings, and whether they are controllable.

4. RL Testbed for EnergyPlus:Wewere able to count 1
distinct building model for RL Testbed for EnergyPlus:
a. 2ZoneDataCenterHVAC_wEconomizer_Temp_Fan (used

by 1 testcase)
Data for this framework was taken from https://github.
com/IBM/rl-testbed-for-energyplus (last accessed: 26
May 2022). The framework appears to only provide a
data centre model.

B Further application example
Note that Beobench is under active development – usage
details may change. Refer to the latest version of the online
documentation at https://beobench.readthedocs.io for the
most up-to-date and extensive usage guides. At the time of
publication, the latest version of Beobench is v0.5.0.

B.1 Configuration
To get started with an experiment, we set up an experiment
configuration. Experiment configurations can be given as a
yaml file or a Python dictionary. Such a configuration fully
defines an experiment, configuring everything from the RL
agent to the environment and its wrappers.

Let’s look at a concrete example. Consider this
config.yaml file:

agent:
origin: ./agent.py
config:
num_steps: 100

env:
gym: sinergym
config:
name: Eplus-5Zone-hot-continuous-v1
normalize: True

general:
local_dir: ./beobench_results

Here, the first agent part of the configuration determines
what code is run inside the experiment container. Simply
put, we can think of Beobench as a tool to (1) build a special
Docker container and then (2) execute some code inside that
container. The code run in step (2) is referred to as the agent
script. In the config.yaml file above, this agent script is set
to ./agent.py via the agent.origin configuration.
Before looking more closely at an agent.py file, let us

first consider the remaining configuration. The env part
sets the environment to Eplus-5Zone-hot-continuous-v1
from Sinergym. The env.config.normalize setting ensures
that the observations returned by the environment are nor-
malized. Finally, the general.local_dir setting determines
that all data from the experiment will be saved to the
./beobench_results directory.

B.2 Agent script
Next, let us have a look at an example agent script, agent.py:

from beobench.experiment.provider import (
create_env,
config

)

create environment and get starting observation
env = create_env()
observation = env.reset()
n_steps = config["agent"]["config"]["num_steps"]

for _ in range(n_steps):
sample random action
action = env.action_space.sample()
take selected action in environment
observation, reward, done, info = env.step(action)

env.close()

The most important part of this script is the first line:
we import the create_env function and the config dictio-
nary from beobench.experiment.provider. These two im-
ports are only available inside an experiment container. The
create_env function allows us to create the environment as
definded in our configuration. The config dictionary gives
us access to the full experiment configuration (as defined
before).
Note that we can use these two imports regardless of the

gym framework we are using. This invariability allows us to
create agent scripts that work across frameworks.
After the imports, the agent.py script above sets up a

loop that takes random actions in the environment. The
agent script can be considered as a template that could be
customised to other requirements.

Alternatively, there are also a number of pre-defined agent
scripts available, including a script for using RLlib.

B.3 Execution
Given the configuration and agent script above, we can run
the experiment using the command:

beobench run --config config.yaml

This will command will:
1. Build an experiment container with Sinergym installed.
2. Execute agent.py inside that container.

C Adding a new framework/environment
to Beobench

In this appendix we further discuss the process of adding a
new framework or environment to Beobench. The amount of
work required to do this integration differs drastically based
on two factors: (1) whether the framework/environment

380

https://github.com/IBM/rl-testbed-for-energyplus
https://github.com/IBM/rl-testbed-for-energyplus
https://beobench.readthedocs.io

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA Arduin Findeis, Fiodar Kazhamiaka, Scott Jeen, and Srinivasan Keshav

already implements the OpenAI Gym [20] interface, and (2)
whether there is a ready-to-use Dockerfile or Docker image
available.
Out of the already supported integrations, Sinergym [8]

was the easiest to add. To set up a minimal sinergym inte-
gration, we only need to create the following two files in the
same folder, e.g. sinergym_minimal/:

1. A file named Dockerfile with only one line:
FROM alejandrocn7/sinergym:v1.7.0

2. An env_creater.py Python script defining a
create_env() function that (when run inside the con-
tainer) returns a Sinergym environment. For Sinergym,
this can be achieved with the following file:
import gym
import sinergym

def create_env(env_config):
return gym.make(env_config["name"])

To test this integration we create the following test.yml
configuration file:

env:
gym: ./sinergym_minimal/
config:
name: Eplus-5Zone-hot-continuous-v1

agent:
origin: random_action
config:
stop:
timesteps_total: 10

Given the three files described above, we can run a simple
experiment using the command:

> beobench run -c sinergym_minimal/test.yml

This will launch an experiment where an agent takes ten ran-
dom actions in a Sinergym environment via the integration
just created.

The full Sinergym integration built into Beobench is slightly
more complex as it also supports Sinergym-specific environ-
ment wrappers and customizes the Sinergym dockerfile to
improve compatibility.

D Authors’ response to reviewers’
comments

We thank the reviewers for their helpful feedback. There
were seven overarching areas where reviewers suggested
improvements. In this appendix we sort the comments by
area and share our responses.

D.1 Connection to multi-agent RL (MARL)
• Reviewer A: The novelty could be better explained. For
example, I don’t see why it is a drawback of existing

work that it focuses on multi-agent control, single-agent
control is a special case of multi-agent control.

• Reviewer C: RL algorithms are more often used in multi-
agent scenarios (e.g., CityLearn....). It would be very help-
ful if the authors can discuss on their potential strengthen
and shortcoming on this. Would that require any change
to the current design or implementation?

Response: we added a footnote in Section 2 to explain
that, in principle, Beobench can also be used with MARL
environments as long as they are following the OpenAI Gym
interface. This notably also includes the CityLearn frame-
work. We would not say that focusing on MARL is a general
drawback of existing work, but instead that limited stan-
dardisation of MARL environments makes it more difficult
to provide unified access via Beobench. Thus, we decided
to focus on single-agent environments in the initial phase
of development. An extension to a broader set of non-gym
MARL environments is a possible future extension.

D.2 Git commit
• Reviewer A: Similarly, how is it a drawback of existing
work that the have not had a git commit in the last year,
maybe they are just very well established already.

Response: we extended the text in the relevant footnote
in Section 2 to include an further explanation: "Given the
fast pace of development within the field, packages that are
not actively maintained are at risk of becoming incompatible
with popular RL libraries."

D.3 Application example
• Reviewer A: It would also be useful to have some concrete
application examples.

Response: we added an additional concrete application
example in Appendix B. This example shows a complete
experiment setup and illustrates how Beobench can be con-
figured via configuration files that go beyond the simple com-
mand line interface. The online documentation19 contains
additional examples and will be maintained as the package
evolves.

D.4 Amount of work required for integrations
• Reviewer B: I would like to see some evaluation or de-
scription of how much work (lines of code, development
time, etc) was required to adapt existing RL and sim-
ulation engines to the proposed package. Was this an
extensive effort? Could any code be reused when inter-
facing with one simulation vs another? Including this
information would give the reader a better impression of
how much work would be required to incorporate future
RL engines.

• Reviewer C: The authors argue that they will allow the
user to fully customize SomePackage experiments to their

19See https://beobench.readthedocs.io

381

https://beobench.readthedocs.io

Beobench: A Toolkit for Unified Access to Building Simulations for Reinforcement Learning e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

requirements. It would be great if the authors can add
the clarification of the implementation of customized
container function.

Response: we designed the Beobench package to be eas-
ily extendable, both with respect to gym frameworks (e.g.
Sinergym) and RL algorithm libraries (e.g. RLlib).

To give more details about the work required to integrate
a gym (simulation) framework, we added a complete exam-
ple in Appendix C. This example shows how to create and
test a minimal Sinergym integration by writing (or copying)
three files, each with less than ten lines of code. We hope
this example helps clarify the minimum amount of work
that will be required to add a new framework integration
(customized container function). This basic structure can be
used as a template for integrating other frameworks. In prac-
tice, some frameworks required a fair amount of additional
code to be integrated into Beobench, for example to create a
Gym compatibility layer or manage the framework-specific
dependencies. A look at the code of the official integrations20
shows that the BOPTEST and Energym integrations each
required several hundred of lines of Python code compared
to the more lightweight Sinergym integration which has less
than a hundred lines of Python code. The fact that some
frameworks require a fair amount of code to be compatible
with each other motivates an open-source tool like Beobench
where this effort only needs to be done once.

In terms of adding RL algorithms libraries, we hope that
the newly added full application example in Appendix B
demonstrates howmuch work may be required. In particular,
the agent script in Section B.2 can be seen as a template to
which custom RL algorithms can be added.

We are actively working on making both gym frameworks
and RL algorithms easier to integrate.

D.5 Multi-building benefits
• Reviewer B: I also would have liked to see some discus-
sion of what kind of conclusions can be drawn by being
able to run a single RL algorithm over many buildings.

Response: following this advice, we added further discus-
sion on this topic at the start of Section 3. In addition to
the points mentioned there, we believe that having access
to multiple buildings via a unified interface could lay the
foundation for further work on a single trained agent that is
able to be applied to more than a single home.

D.6 Access to building characteristics
• Reviewer B: Are the parameters / characteristics of the
buildings exposed in some uniform way so that the user
can investigate the performance of the algorithm with
the details of the target environment?

Response: we believe that access to this kind of informa-
tion is essential for users of our package and therefore have
20See https://github.com/rdnfn/beobench_contrib/tree/main/gyms

created the Environments section in our online documenta-
tion21. This section aims to give the user easy access to this
information for each building environment. The section is
currently work in progress, and we are actively working to
keep improving and updating this section as gym integra-
tions are added to Beobench and the environments provided
by different frameworks change.

D.7 Performance metrics
• Reviewer C: In addition to launch time, are there any
other metrics (e.g., memory size....) that could be used for
evaluating the performance of SomePackage? Is SomePack-
age a heavy load Docker-based application?

Response: possibly one of the most important metrics is
the overall experiment time. As Beobench (SomePackage)
wraps around existing gym frameworks, it inevitably intro-
duces some computational overhead. To make Beobench a
viable alternative to other installation methods, it is impor-
tant to minimize this overhead. The computational overhead
can be split into three parts: (1) configuration parsing, (2)
container management, and environment steps (3). We are
currently actively working towards reducing the computa-
tional cost associated with all three parts.

Beyond experiment time, memory and disk usage are also
likely to have a significant impact on user experience. The
former can be mostly controlled via API arguments, although
there is a trade-off between available memory and exper-
iment time. In terms of disk usage, the use of Docker can
produce a large amount of cached images, but appropriate
disk management can reduce the disk usage to a manageable
level. We are considering automating this management to
make Beobench more user-friendly.

Beobench is under active development, and it is difficult to
provide any definite metrics at this point as they are subject
to change.

D.8 Docker alternatives
• Reviewer C: It seems like the design can be extended to
other Docker alternatives. Any thoughts on that for the
non-docker users to benefit broader building research
communities?

Response: the support of Docker alternatives is something
we are actively considering to integrate because the usage
of Docker, whilst convenient for many users, may provide
license or availability issues for some user groups, e.g. in
high-performance computing (HPC) settings. We added a
note on this in the Conclusion section.

21See https://beobench.readthedocs.io/en/latest/envs.html

382

https://github.com/rdnfn/beobench_contrib/tree/main/gyms
https://beobench.readthedocs.io/en/latest/envs.html

	Abstract
	1 Introduction
	2 Background and related work
	3 Design
	4 Usage
	4.1 General usage
	4.2 Minimal example
	4.3 Adding a gym framework

	5 Conclusion
	Acknowledgments
	References
	A Problem variations in building control gym frameworks
	B Further application example
	B.1 Configuration
	B.2 Agent script
	B.3 Execution

	C Adding a new framework/environment to Beobench
	D Authors' response to reviewers' comments
	D.1 Connection to multi-agent RL (MARL)
	D.2 Git commit
	D.3 Application example
	D.4 Amount of work required for integrations
	D.5 Multi-building benefits
	D.6 Access to building characteristics
	D.7 Performance metrics
	D.8 Docker alternatives

