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ABSTRACT
The return on investment of a battery system is maximized if the
battery control strategy is appropriately matched to the operating
environment (e.g., pricing scheme, electrical load). For residential
battery systems, the current practice is to statically determine the
control policy prior to system installation; the battery subsequently
spends upwards of 10 years operating in a dynamic environment.
A state-of-the-art model predictive controller (MPC) can adapt to
changes in the system, but is limited by its high online compu-
tational requirements. To better extract value at a reasonable on-
line computational cost, we propose an adaptive battery controller
framework that learns a control strategy by encoding an MPC pol-
icy in a neural network, as data becomes available, to adapt the
control to the operating environment. We evaluate our controller
in the context of a solar PV-storage system deployed in Texas under
a time-of-use pricing scheme. We find that our controller gets to
within 5-10% of optimal performance, and outperforms a default
control strategy for PV-storage systems within a few months of
installation.
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•Hardware→Batteries; Renewable energy; •Computingmethod-
ologies → Neural networks.
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1 INTRODUCTION
In the last decade, steadily declining prices of Lithium-ion batteries
and solar photovoltaic (PV) cells [10, 34] have made it economically
advantageous for residential and commercial buildings in some
jurisdictions to generate and store their own energy, and thereby
reduce their dependency on the centralized grid [9, 20]. Meeting
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a significant fraction of electricity demand in a building via re-
newable sources requires large battery systems, which represent
a substantial monetary investment. Hence, many studies have fo-
cused on increasing the return on investment of these systems, by
sizing and controlling them appropriately based on their operating
environment [6, 19, 29], and using them for several applications
concurrently (this is called application stacking)[15, 33].

The current practice for residential battery system control is to
deploy them with a static control policy, with no further modifi-
cations over the life of the system. However, batteries have a long
lifetime, with many warranties lasting 5-10 years. Hence, the oper-
ating environment may change over the system lifetime, and this
may require adjustments to the control strategy to make it effective.
For example, changes to the grid pricing scheme1, electrical load
(new appliances), and stacking of additional applications are possi-
ble. Considering this dynamic operating environment, static rules
may be unable to efficiently control the battery over its lifetime.
Designing new rules to adapt to the changing environment is a
prohibitively tedious task given the variety in the combinations of
load patterns, grid pricing schemes, and (stacked) applications that
require tailored control rules.

The state of the art in control of battery systems is model predic-
tive control (MPC) [4, 18, 24, 40]. An MPC can be adapted relatively
painlessly to a changing operating environment by updating its
predictive models to match the changes in the patterns of load and
generated power. Changes to the grid pricing and new applications
can be also be accommodated by updating the underlying optimiza-
tion objective function and system model. However, an MPC’s high
computational cost can make it impractical to use for residential
battery systems. Our key insight is that, to circumvent this problem,
deep neural networks can be trained to approximate the control
policy of an MPC at a fraction of the online computational cost
[16, 46].

The limiting factor of using a deep neural network for residential
battery system control is that training the network requires data
about the operating environment, which is typically unavailable at
the time of system deployment. However, this data can be collected
by the system post-deployment. To account for this limitation, we
have designed a controller that makes periodic updates its under-
lying neural network. We present a preliminary evaluation of our
approach for a residential system comprised of PV panels and a
battery, in an environment where time-of-use grid pricing is used,
load patterns can change over time, and there is an option to sell
PV power to the grid.

Our contributions are as follows:
• We have developed an adaptive battery controller frame-
work that uses a combination of model predictive control

1The prices and price periods in Ontario’s time-of-use electricity pricing scheme have
changed at least once a year in the recent past.
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Figure 1: System diagram

(MPC), neural networks, and simulations to optimize battery
operation over time.

• We show that our controller can outperform the default
static operating strategy used in PV-storage systems within
a few months of deployment and approaches MPC-level
performance at a fraction of the online computational cost.

The rest of the paper is organized as follows. In Section 2, we
describe the design of the controller. In Section 3, we evaluate the
performance of our controller and compare it to the default control
in most battery systems, an MPC-based control and an Oracle. In
Section 4, we discuss the current approaches to battery system
control and how they relate to our vision of an adaptive battery
system. We discuss our future research plans and conclude the
paper in Section 5

2 DESIGN
In this section, we describe the context for our system and the
controller architecture. The system configuration is shown in the
lower half of Figure 1, which is installed in a home and is composed
of the following:

(1) an array of solar PV panels
(2) a Lithium-ion battery
(3) a bi-directional connection to the local electricity grid to buy

and sell electricity
(4) a connection to the residential electricity load
(5) a controller
Our design goals are as follows:
• High performance. The controller should outperform the
default control scheme (lower benchmark), and approach

the performance of MPC (upper benchmark) at a fraction of
the online computational cost.

• Minimizing offline computation cost; due to the costs
associated with cloud computing, we want to minimize the
amount of computation required to achieve a high level of
performance.

• Flexibility to adapt to different system configurations, op-
erating environments, and applications with minimal user
effort and interaction.

2.1 Local system
The purpose of the system is to minimize the cost of providing
power to the home, which can also be offset by selling energy. The
main control variables are the following:

• power used to charge the battery (Pc )
• power discharged from the battery (Pd )

The power purchased from the grid (Pд ) and sold to the grid (Psell )
can thus be directly computed to balance the power in the system.
The prices for buying electricity are set according to a time-of-use
pricing scheme.We assume the system has access to the grid pricing
scheme, which is published by the electrical utility company.

Initially, the system is operated using a default control strategy
for PV-storage systems which is described in Algorithm 1.

Data: The current solar (PS (t)) and load (PL(t)) measurements
if PS (t) > PL(t) then

Charge the battery as much as possible;
Sell the excess solar;

else
Discharge the battery to make up for the difference
between PS (t) and PL(t);

Purchase power from the grid if the battery power was not
enough;

end
Algorithm 1: Default control strategy.

Immediately after the battery system is installed, it begins to
collect data on solar PV generation (PS ) and household electricity
load (PL ). After a set amount of time has passed, or when prompted
by the system owner, the collected data is sent to a server in the
cloud and used to train a neural network. If training is successful,
i.e., the network is validated to outperform the default strategy on
historical observations via system simulation, then the network
is uploaded into the system controller. The controller then uses
the network to decide how to charge and discharge the battery,
applying a post-processing step to the network output to ensure
that the constraints of the system aremet (see Section 2.6 for details).
The network is retrained once a significant amount of additional
data is collected, and the old network is replaced by the new one if
it is determined to have superior performance via simulations.

2.2 Neural network architecture
The most common type of learning studied for battery system appli-
cations is deep reinforcement learning [11, 12, 28]. However, these
networks are notoriously difficult to tune, require large amounts
of data and computational resources to converge on an effective

2



Adaptive Battery Control with Neural Networks e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA

ReLU

Current P
+  

forecast

Current PL

+
forecast

Grid 
prices

 for 
forecast
horizon

EESD

ReLU

ReLU

ReLU

ReLU

ReLU

X

ReLU

ReLU

Input Fully Connected
Hidden Layers

Output

if X > 0, charge 
             with X kW

if X < 0, discharge 
             with |X| kW

Control Action

Figure 2: Network architecture

solution, and our initial attempts with RL algorithms for this prob-
lem were unsuccessful. Hence, in our controller design, we forego
reinforcement learning in favour of a supervised learning approach
via deep feed-forward networks [13], which are trained in the cloud
using an MPC to label the collected data with good control actions.
We discuss why an MPC is not ideal for directly controlling the
network in Section 4.

The inputs to the controller can be any data related to the system.
In the case of our test system, the following inputs are available:

• Current PV generation, PS (t)
• Current load, PL(t)
• Current battery energy content, EESD (t)
• Grid prices2, [πд(t) . . . πд(t +Th )]
• PV generation predictions, [PS (t + 1) . . . PS (t +Th )]
• Load predictions, [PL(t + 1) . . . PL(t +Th )]

Battery control is a regression problem, where the output of
the network is the charging or discharging rate (recall that once
this is known, we can compute the amount of power to sell or to
buy), which we model as a single neuron where a negative out-
put indicates discharging and a positive output indicates charging
actions. The magnitude of the output neuron’s value is the charg-
ing/discharging rate. Figure 2 illustrates the network’s structure.

The main hyper-parameters of the network are the number of
hidden layers, number of nodes per hidden layer, and number of
training epochs. Our training algorithm explores different combina-
tions of hyper-parameters to find the most effective configuration.
We use the rectified linear unit (ReLU) activation function for each
neuron [3], and gradually decrease the number of neurons of deeper
hidden layers in order to lower the training time. The output neuron
does not have an activation function, which allows for the output
to be a real number.

The standard practice for dealing with neural network inputs in
the form of time series, such as the future grid prices and PV/load
predictions, is to use convolutional filter layers to extract features
from each series [35]. The cost of using 1-D convolutional layers
2For residential consumers, grid prices are typically available months in advance. We
found that giving 24 hours of look-ahead was enough to get a satisfactory control
performance for the system under study.

would have to be balanced with the cost of searching through the
space of other network hyper-parameters. The results presented
in this paper use networks which do not have any convolutional
layers, since we found that they were not necessary to achieve
effective control performance for the system under study, though
they may become necessary for other systems.

2.3 Training data
Deep neural networks perform better when a large amount of
training data is available. The amount of time needed to collect
a sufficiently large amount of data after system installation can
be prohibitive to the adaptive neural network approach. To get
around this issue, it is possible to synthesize additional data by
using model-based approaches such as ARMA or Gaussian Mixture
Models. In this paper, we use the following simple method to expand
the amount of PV generation and load data available for training:

(1) Start with original training set of size N
(2) Generate a vector of N perturbation factors by conducting a

bounded random walk in the range 0.95 and 1.05 with a step
size of 0.01

(3) Take an element-wise product of the training set and the
perturbation factors vector, and add the resulting dataset to
the expanded training set

(4) Repeatedly perturb the original training set until sufficient
amount of training data has been generated.

The perturbed data is heavily correlated to the original dataset, and
doesn’t add completely unseen data patterns to the training set.
Nevertheless, our approach creates altered sets of PV and load data
that resemble the original measurements (within 5%) and preserves
the continuous structure of data over time, while being sufficiently
different to provide the network with “fresh” data to train on. In our
testing, we have observed that increasing the size of the training
dataset by 3-5× with this data generation approach improves the
stability of the control actions and the control performance of the
network in the first year of system deployment where the original
training dataset is small.

Note that we do not use all of the collected data for training;
25% of the data is reserved for network selection, in which we vali-
date the performance of the selected network. This data is labelled
with good control actions using an MPC, as discussed in the next
subsection.

2.4 MPC
One of the most crucial aspects of our approach is labelling the
training data with effective control actions. In general, a neural net-
work could be used to approximate any practical control strategy, in
the sense that the strategy uses only practically-available informa-
tion to compute the control actions. The inputs of the strategy map
to the inputs of the neural network. We note that using the true
optimal control for labelling is impractical because it may depend
on perfect knowledge of the entire operating horizon, which is
typically impossible to obtain in an online control setting.

To label the data with control actions, we formulate an MPC, i.e.,
a discrete mathematical optimization problem for optimal system
control over a given time horizon. We refer to Figure 1 which shows
the label on each power flow, as a guide for some of our notation.
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The length of the MPC horizon is Th time slots, and each time slot
is of lengthTu . The power flowing through the system in each time
slot t is constant. Due to conservation of power, the amount of PV
generation and purchased grid power cannot exceed the sum of
power used to charge the battery and the power that flows directly
to meet the load or be sold (Pdir (t)). Likewise, the amount of power
being sold and demanded by the load cannot exceed the sum of
Pdir (t) and the amount of power being discharged.

The battery has physical constraints which are described in our
model. We use the Lithium-ion battery model developed and val-
idated in [22] for optimization problems, and we briefly describe
it here. The battery energy content at the end of time slot t is de-
noted EESD (t). The limits on battery energy content have a linear
relationship with the charging/discharging power being applied,
as described by the u1,u2,v1, and v2 parameters. The battery also
has limits on the charging and discharging power, denoted αc and
αd respectively. A fraction of power is lost when the battery is
charged and discharged due to imperfect efficiency of power con-
version, and the remaining fraction is denoted ηc for charging and
ηd for discharging. The battery cannot be charged and discharged
simultaneously, which also needs to be enforced in our model.

We denote πд(t) and πsell (t) to be the price for buying and
selling energy in time slot t , respectively. They are input to the
problem.

Combining our system constraints, we formulate the problem
of minimizing the electricity payment of the system owner as an
integer linear program at time t :

Given [PS (t), . . . , PS (t +Th )], [PL(t), . . . , PL(t +Th )], the battery
parameters: αc , αd , ηc , ηd ,u1,u2,v1,v2, the battery content at time
t :Ut , the prices [πд(t), . . . ,πд(t +Th )], [πsell (t), . . . πsell (t +Th )),
as well as Tu and Th :

min
Pdir (k ),Pc (k ),Pd (k ),
Pд (k ),Psel l (k ), I (k)

t+Th∑
k=t

(πд(k)Pд(k) − πsell (k)Psell (k))Tu (1)

subject to

0 ≤ Pд(k), Pdir (k), Psell (k) ∀k ∈ [t , t +Th ] (2)
Pdir (k) + Pd (k) = PL(k) + Psell (k) ∀k ∈ [t , t +Th ] (3)
EESD (t) = Ut (4)
EESD (k + 1) = EESD (k) + ηcPc (k)Tu

− Pd (k)
ηd

Tu
∀k ∈ [t , t +Th ] (5)

0 ≤ Pc (k) + Pdir (k) ≤ PS (k) + Pд(k) ∀k ∈ [t , t +Th ] (6)
0 ≤ Pc (k) ≤ I (k)αc ∀k ∈ [t , t +Th ] (7)
0 ≤ Pd (k) ≤ (1 − I (k))αd ∀k ∈ [t , t +Th ] (8)
I (k) ∈ {0, 1} ∀k ∈ [t , t +Th ] (9)
u1Pd (k) +v1 ≤ EESD (k + 1) ≤ u2Pc (k) +v2 ∀k ∈ [t , t +Th ]

(10)

where I (k) is a binary integer which prevents simultaneous charg-
ing and discharging. It can be shown that the optimal solution will
not have simultaneous charging and discharging due to the ineffi-
ciencies in the battery, which means the binary integer I (k) can be
removed and the problem is simplified to a linear program (LP).

This LP is used as part of an MPC, which is based on iterative
optimization of the system control over a finite time horizon. At
time t , the control action is decided by solving the optimization
problem in order to determine the control actions that optimize
the objective function over a finite time horizon [t , Th]. The first
control action (corresponding to time t ) is implemented, and the
process is repeated in the next control time slot t+1with an updated
Ut = E(t). In time slot t , PL(t) and PS (t) represent the measured
load and PV generation, respectively, while [PL(t+1) . . . PL(t+Th )]
and [PS (t + 1) . . . PS (t +Th )] are predictions.

The inputs to the neural network are exactly the same as the
inputs to the MPC. We solve the MPC repeatedly to label every time
slot of solar, load, and initial battery state data with the charging
and discharging actions computed by the MPC. The inputs at time
slot t are assigned the label Pc (t) − Pd (t) as computed by the MPC.
In each iteration of MPC, the battery energy content is updated
to reflect the action taken in the previous iteration. The labelled
dataset is used to train neural networks.

A neural network controller trained using MPC can adapt to
system changes that are expressed in the PV generation and load
data without any modifications to the controller. Changes to the
system, grid pricing scheme, and applications are communicated
to the controller via modification of the underlying optimization
problem of the MPC. The MPC labels the data with updated control
actions by which the neural network learns how to operate in the
new environment. We note that a linear program can be solved
even with basic computational hardware, and a linear MPC could
be used to operate the system directly without a neural-network
approximation. We use the linear problem as a first step to under-
stand the potential of this approach, since it greatly simplifies and
speeds up the computation of our preliminary analysis, and discuss
our future plans in section 5.

2.5 Training
In this step, we train many different neural networks, each with a
different structure, i.e., different numbers of layers and nodes per
layer. Each one of the network configurations is trained using the
back-propagation training algorithm with a mean-squared error
cost function for minimizing the difference between the network
output and the MPC actions computed for the given input. During
training, we use a dropout rate of 0.2 at each hidden layer to help
prevent overfitting [38].

The network is trained with a set number of epochs (i.e., passes
through the training data), and the network weights at the end
of each epoch are saved. After training is completed, the set of
networks are tested to select the network which will be uploaded
to the controller.

2.6 Selection
To validate the performance of the trained networks, we run a
simulation for each network in which the network is used to make
control decisions on the system. The system model is exactly the
same as the one used in LP formulation (Section 2.4).

The selection is done in two steps.
Step 1: All of the newly trained networks are simulated on 25% of

the data that was with-held from training, to single out the
4
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Table 1: Battery model parameters

Parameter αc αd u1 u2 v1 v2 ηc η∗d
House 1 8 8 0.053 -0.125 0 8 0.99 1.11
House 2 8 8 0.053 -0.125 0 8 0.99 1.11
House 3 14 14 0.053 -0.125 0 14 0.99 1.11
∗includes inverter inefficiencies of ∼10%

network with the most effective performance on unseen
data.

Step 2: The best network from Step 1 is compared against the net-
work that is currently deployed, by simulating them both
on all of the data collected so far; if there is no network cur-
rently deployed, the new network is compared against the
default control strategy. If the new network is the winner,
it is uploaded to the controller.

Note that in both the simulations and at the controller, the output
of the network is processed by an algorithm to ensure that the
physical constraints of the system are met before the control action
is taken. First, the algorithm ensures that the constraints of the
battery are being met, as described by Constraints 7, 8, and 10 in
the LP, by decreasing the charging/discharging action if necessary.
Next, the power in the system is balanced (Constraints 2 and 3) by
selling less and then buying more power from the grid if there is
a power deficit, or buying less and then selling more if there is a
power surplus.

3 EVALUATION
We use four years of PV generation and load data obtained from
three houses in the Pecan Street Dataport [1] to simulate different
realizations of this system. The hourly data was collected from
Texas, USA, over a period of four years. All three homes have high
electricity consumption in the range of 35-45 kWh per day, making
them good candidates for a PV panel and battery installation. The
night grid price is set to $0.04 per kWh, and the higher day price to
$0.16 per kWh between October and May, and $0.21 per kWh be-
tween June and September, reflecting a ToU pricing scheme offered
by a Texas utility company [43]. The price for selling electricity is
set to a constant value of $0.03 per kWh, which is just below the
off-peak grid price.

We compare our adaptive controller, the default control algo-
rithm, and the MPC in terms of the grid cost paid by the home
owner. We also compare these costs to the lowest possible (optimal)
cost obtained via an Oracle, which we compute by solving the LP
in Section 2.4 over the entire four year horizon (Th = 4 years). We
use perfect hourly forecasts (Tu = 1) with Th = 24 as input for
the MPC and neural network simulations, deferring an evaluation
with realistic prediction errors and optimization of the prediction
horizon to future work. The parameters used in our system model
are given in Table 1.

The network training process was activated on the following
days: 10, 20, 40, 80, 120, 190, 365, 550, 730, 910, 1090, 1270, and 1450.
During the data generation phase, the amount of training data was
increased by a factor of 4. During the training phase, we looked at
networks with between 3 and 7 hidden layers, 40 and 100 nodes
per layer, and 21 epochs; a total of 24 different network structures
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Figure 3: House 1: bi-weekly grid cost, and the total cost be-
tween re-training periods relative to the optimal cost.
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Figure 4: House 2: bi-weekly grid cost, and the total cost be-
tween re-training periods relative to the optimal cost.

are tested at each retraining period, each with 21 different sets of
weights (one for each training epoch), giving a total of 504 different
networks to choose from in the selection step.

The results for the three houses are summarized in Figures 3, 4,
and 5, respectively. Each figure shows the bi-weekly grid cost over
four years for the three control methods, as well as a comparison
of their relative performance with respect to the Oracle. Across
all three houses, we see that MPC is quasi-optimal. The neural
network is able to get within 25% of the optimal cost 200 days after
deployment, and within 5-10% in 2-4 years. For houses 1 and 2,
the neural network outperforms the default strategy within 100
days of system deployment. Figure 5 also shows the changes in
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Figure 5: House 3: load, which has large changes halfway
through year 2, the biweekly grid cost, and the total cost be-
tween re-training periods relative to the optimal cost.

the load pattern approximately halfway through the second year
of deployment. Across all houses, the adaptive controller saved
between 13-19% on grid costs over the 4 years compared to the
default strategy, with savings as high as 25% for the third house after
two years of data was collected. In additional tests, we observed that
the networks trained on data prior to the load change performed
poorly after the change, which highlights the value of re-training
the controller on recently-collected data.

We observe a general trend in the size of the most effective net-
works across different training periods. Smaller networks, i.e, those
with fewer nodes and hidden layers, have better performance when
there is not much data available, while larger networks eventually
perform better as more training data becomes available. To reduce
the amount of computation done during the training of the net-
work set, one possible optimization is to check for convergence
of the structure of the best network, and remove structures with
historically poor performance from the set.

4 RELATEDWORK
In this section we discuss three methods for battery control: MPC,
rule-based control, and neural networks.

4.1 Model Predictive Control (MPC)
MPC is commonly used for industrial process control [45], although
there have been applications of MPC for a variety of control prob-
lems, such as optimizing energy efficiency [37] and HVAC systems

[17] in buildings, and controlling battery and renewable energy
systems [44].

MPC has been studied as a control method for energy systems
with storage. Teleke et al. [40] consider a system consisting of a
wind farm and energy storage that is used to make wind power
more dispatchable. One of the observations in this work is the sys-
tem performance with respect to the length of the time horizon
considered for optimization; horizon values ranging from 100 sec-
onds to 30 minutes were tested, showing significant performance
benefits from having longer – and hence, more computationally
expensive – horizons.

Khalid et al. [23, 24] also consider a wind farm with energy
storage but with different objectives. In [23], energy storage is
controlled using an MPC approach to reduce the ramping of system
power output, and in [24] the system is operated to maximize
revenue from selling energy in an electricity market with dynamic
pricing. In both cases, it is shown that the MPC can effectively
utilize the battery to meet the objectives of the applications. The
optimization horizon in [24] is limited to 15 minutes to limit the
computational burden.

MPC could be used as the base for an adaptive battery controller,
since it requires only a dynamic model of the system and a pre-
dictive model for the system environment. The predictive models
could be trained as more data is collected by the system to improve
the MPC performance, and new applications or pricing schemes
could be handled by updates to the optimization objective function
and constraints. However, MPC is limited in its applicability by the
cost of rapidly solving optimization problems to compute the con-
trol action at any given time. Although significant improvements
to computation time can be made by improvements to the solving
algorithm [26, 44], the hardware requirements of the solver for a
non-linear control problem may still dominate any improvements
in control effectiveness for small-scale residential system applica-
tions; for such applications, a control solution with minimal online
computational costs is preferred.

In our work, we train neural networks to approximate the results
of the MPC to bypass the heavy online computation. For compari-
son, the neural networks trained in our evaluation using Python’s
Keras deep learning library on a single 1.6 GHz CPU were on av-
erage 22× faster than a linear MPC running using the CPLEX LP
solver [8] on a machine with up to 24 3.0 GHz CPU cores for par-
allelization and 500 GB of RAM. Using a non-linear MPC – in the
case where a more accurate non-linear battery model is needed or
if the grid pricing scheme or application constraints could not be
expressed linearly – would require at least a few orders of mag-
nitude more time, making it too slow for online control using the
limited hardware that is typically available in a battery controller.

4.2 Rule-based control
The rule-based control approach involves creating a set of control
rules which relate system state to control actions. Rule-based con-
trol requires very low online computational effort, but it is often
difficult to come up with rules that result in good system perfor-
mance. Rules can be specified in explicit “white box" form such
as an algorithm or knowledge-based system [39]. The creation of
explicit rules is often done by domain experts.
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It is common for rule-based strategies to focus more on meeting
constraints rather than optimization objectives. In [42], a very sim-
ple algorithm is used to control an off-grid system composed of a
wind turbine, PV panels, hydrogen fuel cell, and household loads.
The algorithm chooses between two control actions depending on
whether or not there is excess renewable generation. A similar
system was considered in [2], where the control of the system in-
cluded a heuristic that kept the charge of the battery at high levels
to reduce the problems in power balance caused by intermittent
renewable sources.

While rule-based approaches have shown to be effective, requir-
ing a domain expert to tweak the battery control rules to adapt to
changes is not practical. Furthermore, there is a large number of
grid pricing schemes; each utility company offers several options
to its residential customers, and an even larger variety is available
to commercial and industrial customers. In a general dynamic pric-
ing scenario, it has been shown that optimal policy can be based
on energy thresholds [14], i.e., the charge/discharge policy can be
described through a relationship between the energy content in the
battery, some optimal energy thresholds, and the current state of
the system. In [21], we designed efficient operating threshold-based
rules for two system deployment scenarios that involve a combina-
tion of energy arbitrage, curtailment avoidance, and power leveling
applications. Our approach uses heuristics that were obtained from
studying the results of offline optimal operation. In this paper, we
automate the learning of effective control rules by using artificial
neural networks in place of domain experts.

4.3 Neural Networks
Artificial neural networks have been used to control energy sys-
tems such as hybrid-electric vehicles and wind farms with energy
storage [5, 27, 32]. In [32], a neural network approach to controlling
a supercapacitor in a hybrid-electric vehicle showed substantial
improvement in energy efficiency compared to other approaches.
In [5], a neural network is shown to decrease the cost of opera-
tion compared to simple rule-based control and fuzzy logic control.
In both studies, the neural network was trained using datasets
of “good" control actions which were obtained by using offline
optimization methods.

Deep learning methods have shown promise in complex control
problems. Deep neural networks have been trained to successfully
perform physical tasks such as walking and car driving in a simu-
lated environment [25], play video games [30, 31], and replace PID
control for a DC motor [7]. These problems have high-dimensional
features (input) that are mapped to a comparatively small number
of control variables (output); energy storage control has the same
challenge, where a large number of environment variables can be
used to decide the battery’s charging or discharging rate. Applying
deep neural networks to energy systems has been studied in [11]
and [28], and recently the concept of supporting and even replacing
human effort via artificial neural networks in the management of
power systems has been proposed [41].

The online computational cost of using a deep neural network is
very low, making it more suitable for small-scale residential systems
compared to MPC. The high computational cost of using MPC was
handled in a similar way in [46] and [16], where neural networks

were used to encode an online MPC policy to control drones and
other autonomous robots. The shortcomings are the cost of training
the network, and the need for large amounts of data to learn from.

Neural networks offer a natural approach to adaptive system
control; automatically re-training the control network with newly-
available data allows us to bypass most of the work involved in
creating new control rules in response to changes in the system. We
believe that a deep learning control framework has the potential to
be applicable for a wide combination of energy system deployment
and environment factors, including but not limited to variability in
the following system characteristics:

• Battery size
• Battery chemistry, including Lithium-ion and other battery
technologies

• Application, including stacked applications
• Operating climate, in cases where batteries are combined
with renewable sources that depend on wind speed and solar
radiation

• Grid pricing for the buying and selling of energy, in cases
where the application interacts with the energy grid

5 FUTUREWORK AND CONCLUSION
In this paper, we have developed an adaptive controller framework
for battery systems based on neural networks, MPC, and system
simulation. Unlike the static algorithms typically used in battery
systems, our controller can adapt to changes in the system.We have
evaluated our controller on a PV-battery system with time-of-use
pricing, and shown that it approaches MPC-level performance at a
fraction of the online computational cost of MPC.

Our approach has two limitations. First, there is a cost to train
the neural network in the cloud, and this cost has to be balanced
with the gains in control performance achieved by training on new
data. Second, some time must pass to collect enough data to train
an effective network, and during this time the control policy may
be ineffective.

In future work, we plan to explore the following:
• The effect of prediction errors. Our current results were
computed with perfect predictions for day-ahead PV and
load. MPC relies on accurate predictions of the operating
environment to make effective control decisions; it is unclear
to what degree prediction errors will affect the performance
of the neural network. Our plan is to conduct a sensitivity
analysis on the impact of prediction errors.

• Transfer learning [36], by training networks on available
data collected by other systems to increase the rate at which
the network performance improves.

• Test on non-linear systems. Showing that it works on a linear
system was the first step of our evaluation. For such systems,
it may be possible to use MPC directly rather than using a
neural network to encode a the MPC policy, because solving
small LPs online can be done efficiently. For systems, applica-
tions, and pricing schemes with poor linear approximations,
the computational cost of solving non-linear optimization
problems online is prohibitive, and encoding the control
strategy (in a neural network) to lower the online computa-
tional cost is an attractive solution.
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• Test on different pricing schemes. We are currently testing
on a peak-pricing scheme, where the price increases substan-
tially if grid power usage exceeds a threshold.
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