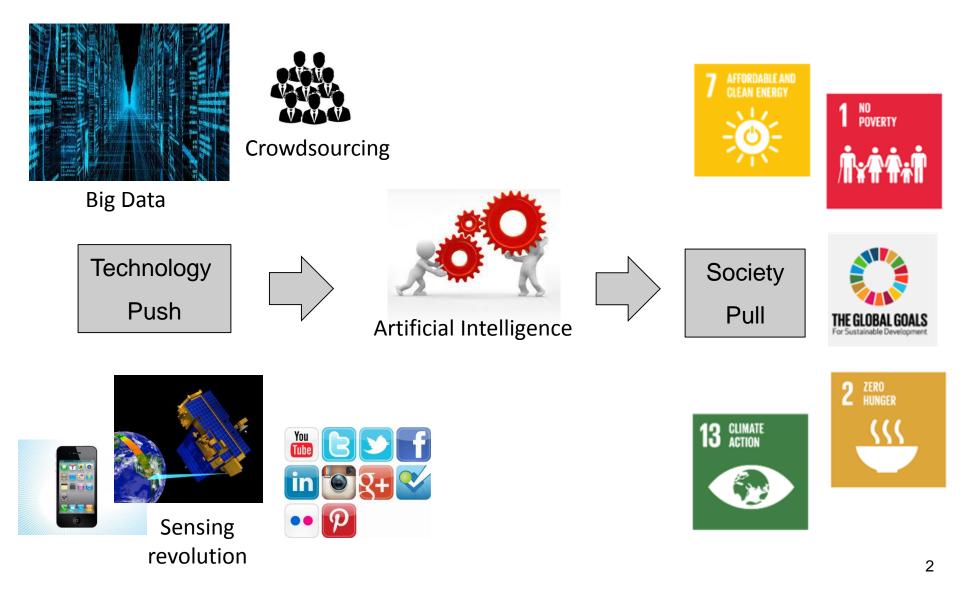


Machine Learning and Decision Making for Sustainability

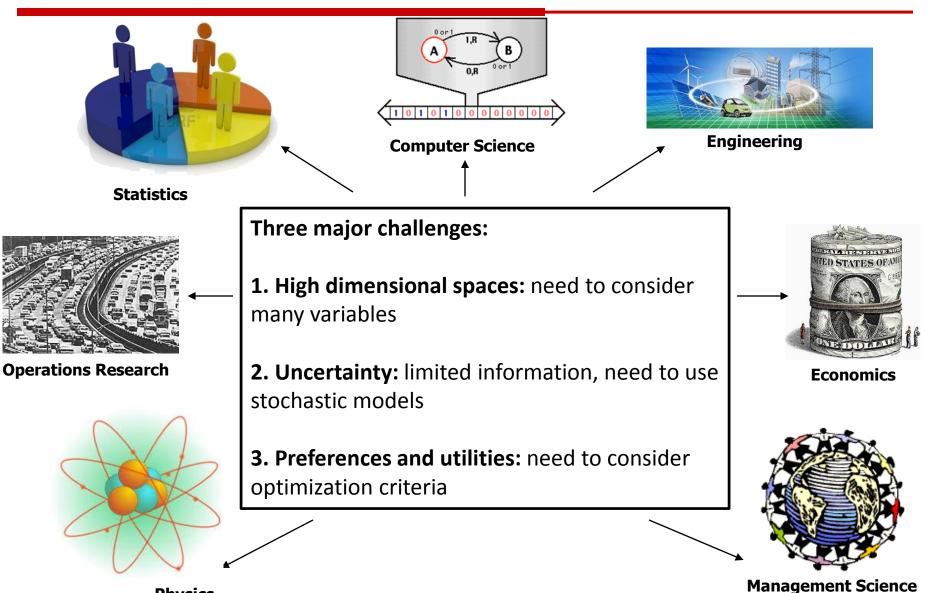
Stefano Ermon Department of Computer Science Stanford University

IJCAI - July 13

Vision

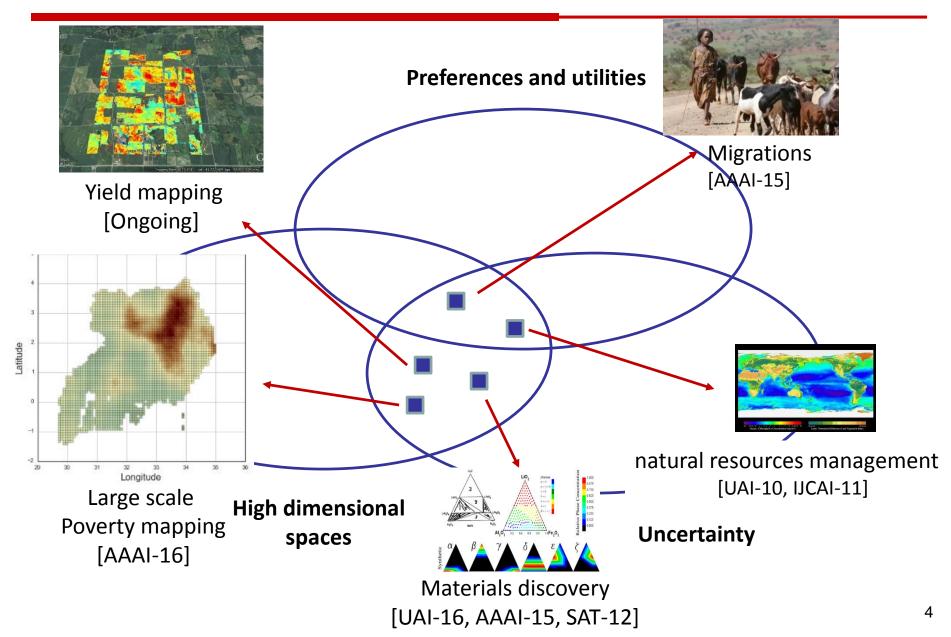


Challenges in reasoning about complex systems

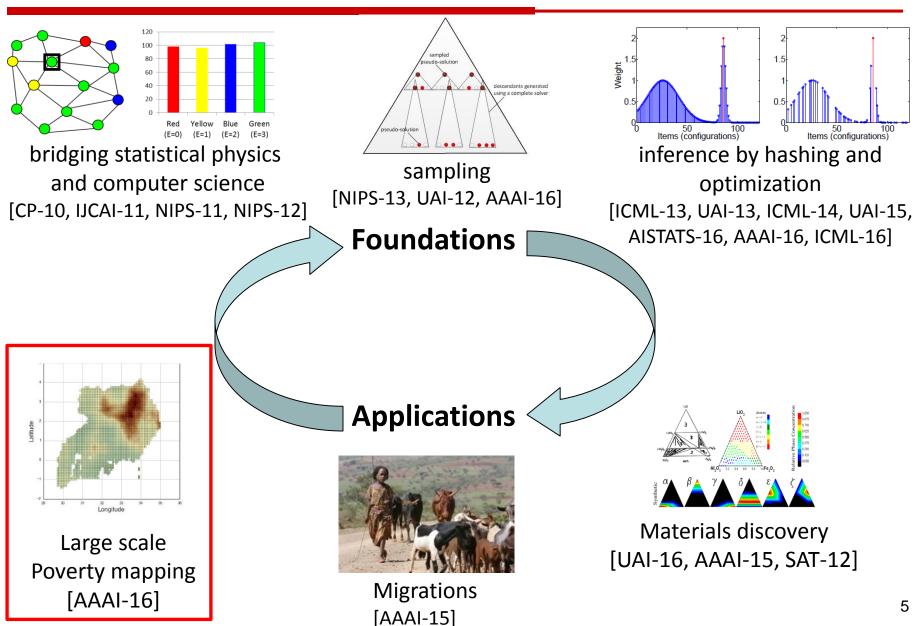


Physics

Computational Sustainability

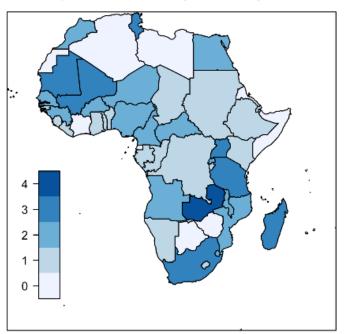


Research Agenda

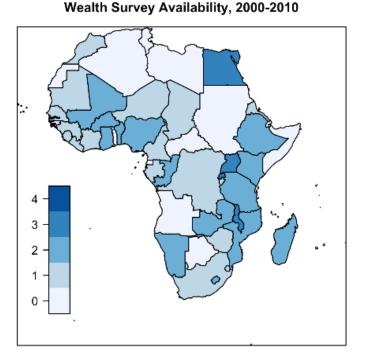


- #1 UN Sustainable Development Goal
 Global poverty line: \$1.90/person/day
- Understanding poverty can lead to:
 - Informed policy-making
 - Targeted NGO and aid efforts

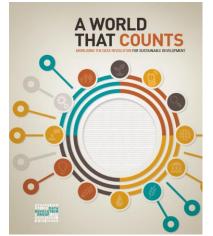
Data scarcity



Consumption/Income Survey Availability, 2000-2010

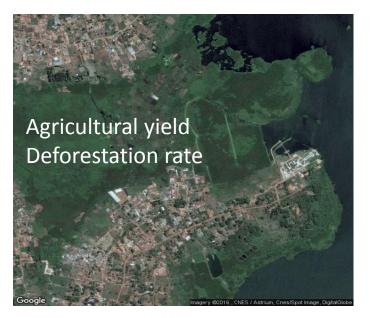


- Expensive to conduct surveys
- Poor spatial and temporal resolution
- Questionable data quality



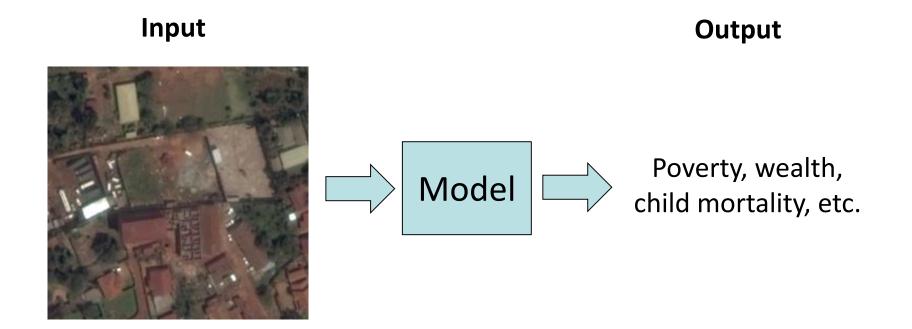
Satellite imagery is low-cost and globally available

- Many cheap, unconventional data sources: remote sensing, phones/smartphones, crowdsourcing, ...
- Remote sensing is becoming **cheaper** and **more accurate**



• Challenge: Lots of useful information, but data is unstructured

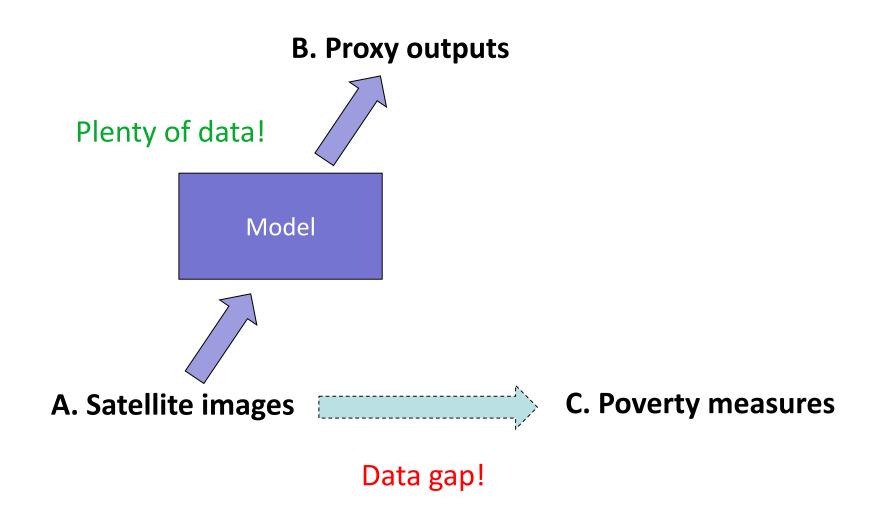
Standard supervised learning won't work

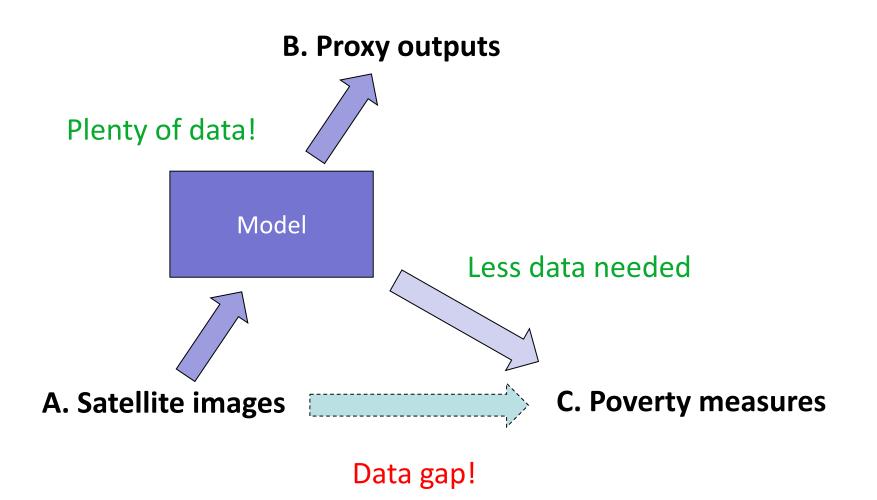


- Very little training data
- Nontrivial for humans

Transfer learning: Use knowledge gained from one task to solve a different (but related) task

Transfer learning bridges the data gap



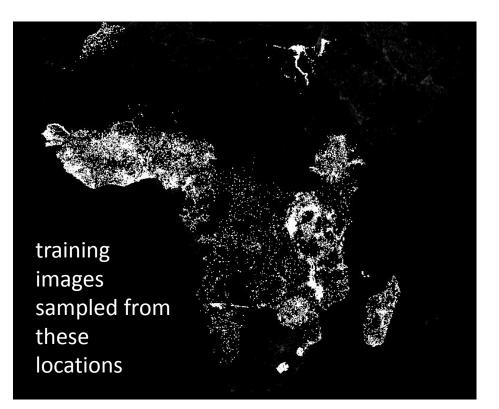


Nighttime lights as proxy for economic development

Labeled input/output training pairs

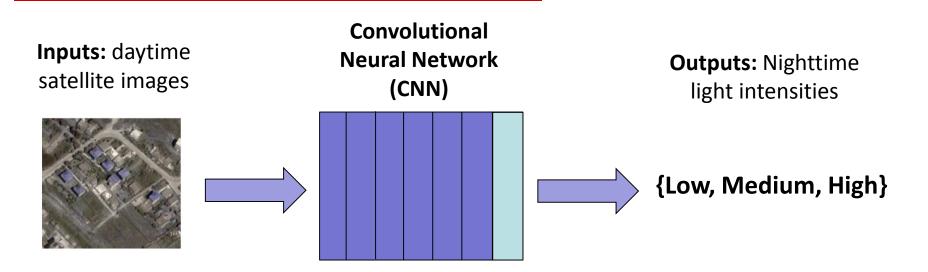
Low nightlight intensity

High nightlight intensity

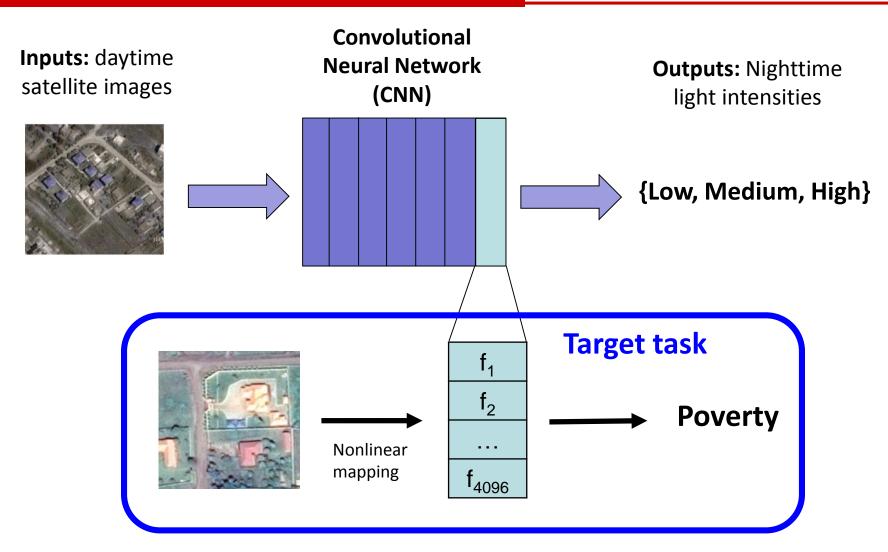


> 300,000 training images

Images summarized as low-dimensional feature vectors



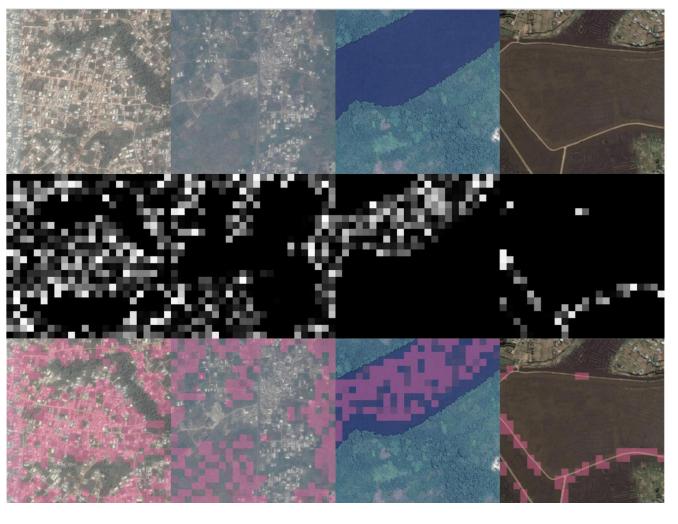
Images summarized as low-dimensional feature vectors



Have we learned to identify useful features?

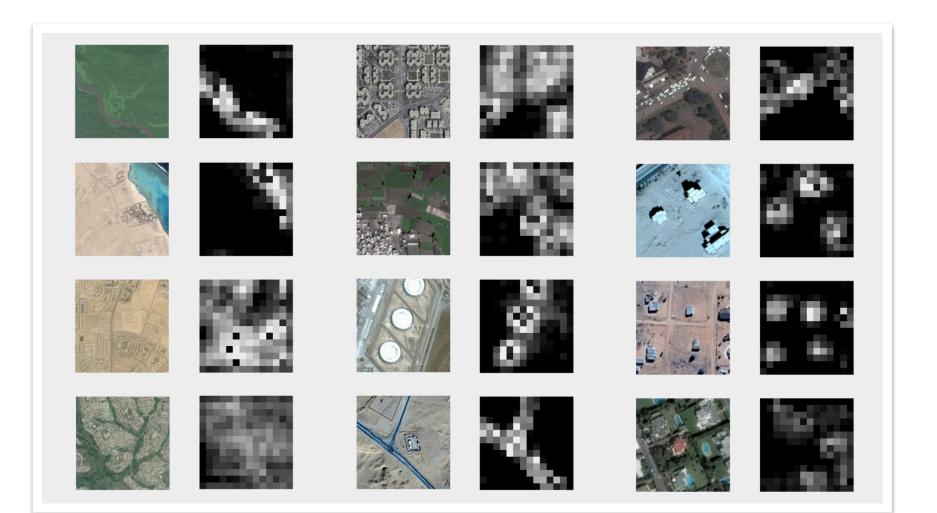
Filter activation map

Overlaid image

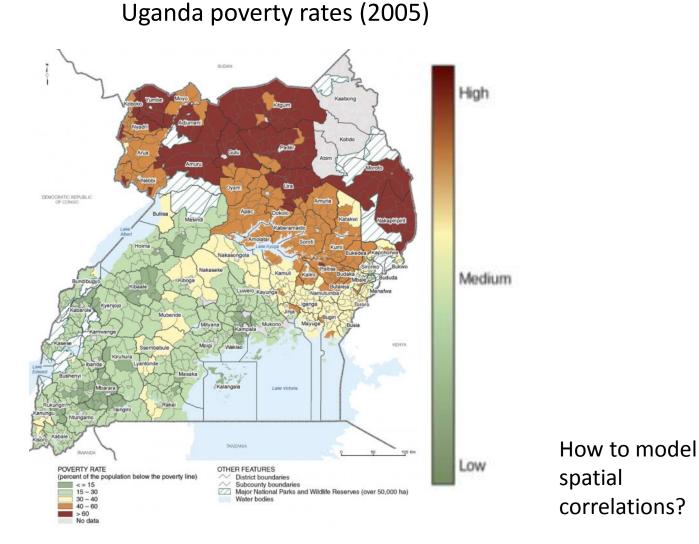


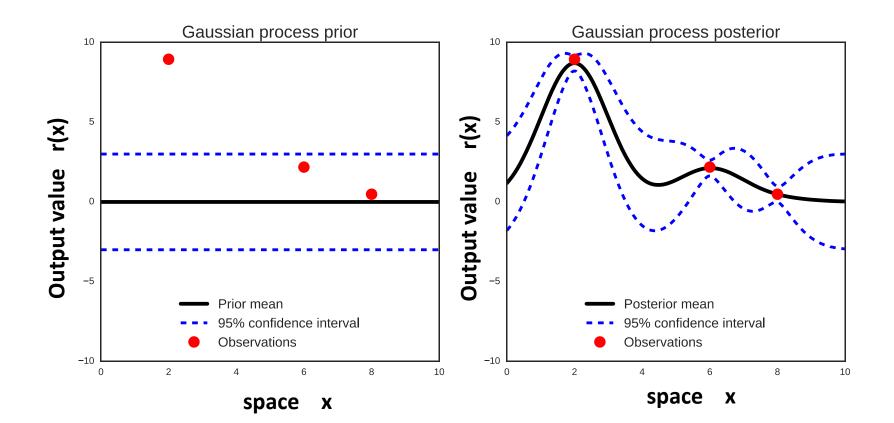
Urban Non-urban Water Roads

Model learns relevant features automatically



Poverty is NOT spatially independent





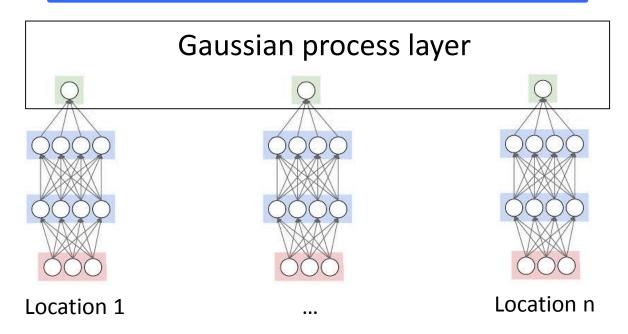
 $r(x) \sim \mathcal{GP}(0, k(x, x'))$

How to take images into account?

$$f(x) = \underbrace{h(x)^T \beta}_{}$$

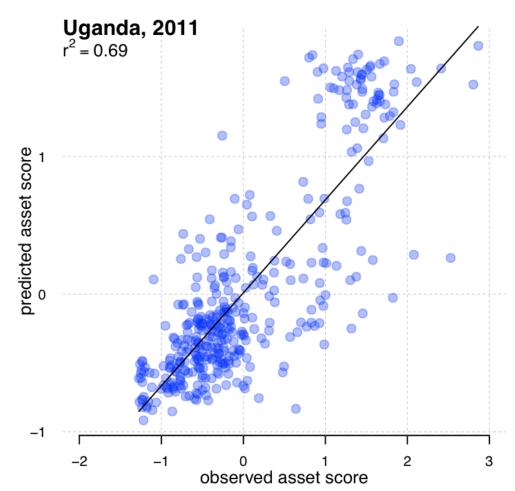
Features from CNN

Key Idea: combine GP with CNN



Predicting household asset-based wealth

We outperform recent methods based on mobile call record data



Blumenstock et al. (2015) Predicting Poverty and Wealth from Mobile Phone Metadata, *Science*

Predicting Poverty from Space



Scalable and inexpensive approach to generate high resolution maps.

The Upshot The New York Eimes

Satellite Images Can Pinpoint Poverty Where Surveys Can't

Economic View By SENDHIL MULLAINATHAN APRIL 1, 2016

Ĵ

THE WORLD BANK

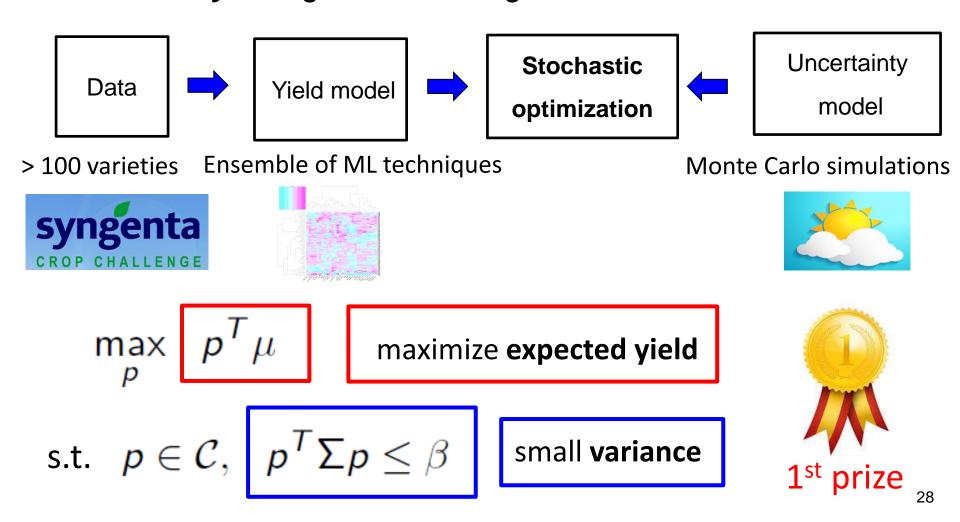
Working for a World Free of Poverty

GiveDirectly

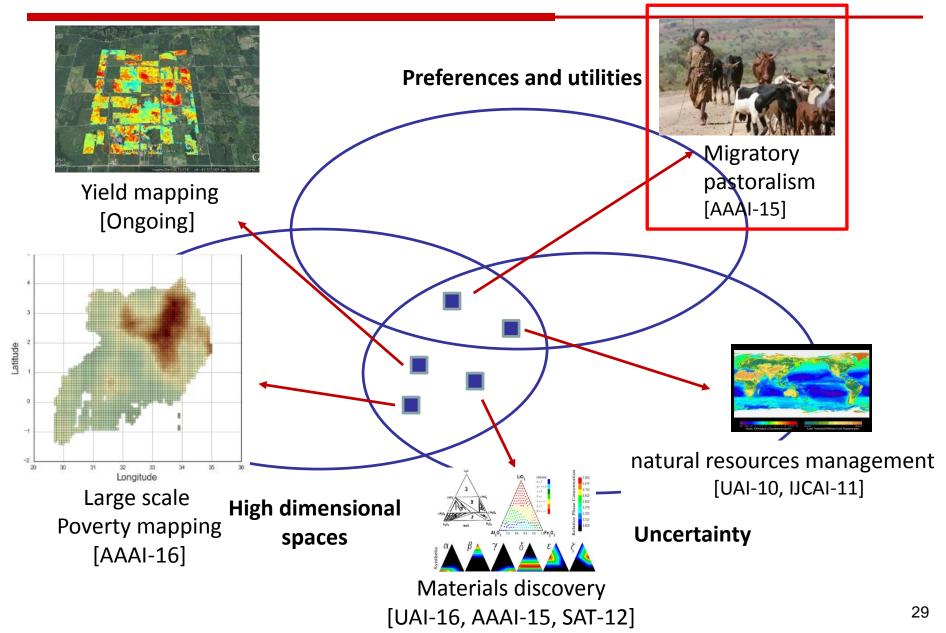
Ongoing work: food security

- Mapping and estimating crop yields
- E Transey Date 8/11/2011 Lit 41/27/14/2 lan 9/4/22/12/2 vv 4
- Est. 2 billions more people to feed by 2050: information technologies will have to play a role to increase productivity

Crop Challenge: which soybean varieties to plant to maximize yield, given knowledge about soil and climate?



Computational Sustainability



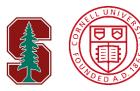
Motivation: migratory pastoralism

8 million pastoralists in Ethiopia and 3 million in Kenya depend on livestock to make a living, relying on the vast arid and semi-arid rangelands of East Africa.

Motivation: migratory pastoralism

Issues: droughts, environmental degradation, climate change

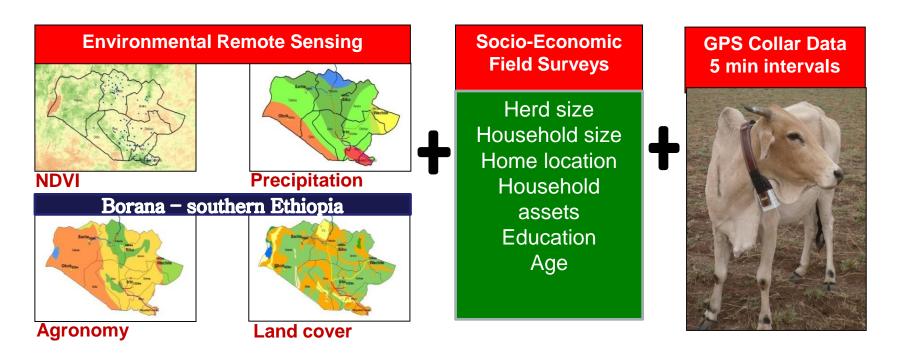
Understanding herding and grazing choices is critical to characterizing the impact of **policy interventions** on pastoralists' lives and on the ecosystem of the region



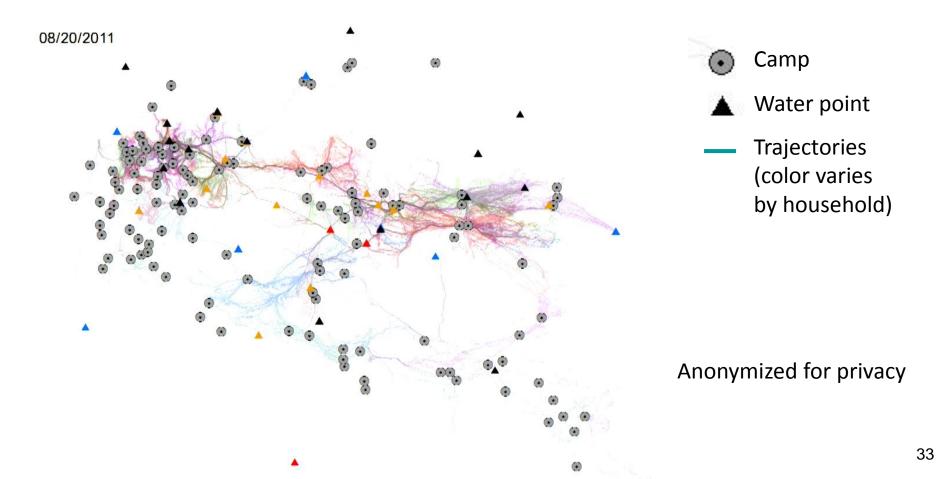
5

Develop a **generative** model to capture the decision making processes of pastoralists

Can use the model to predict what would happen if we provide insurance, build new water points, climate changes, ...

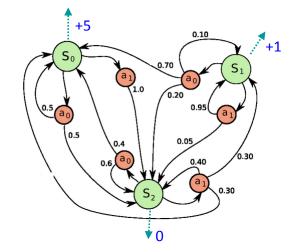


GPS collar traces



Markov Decision Process

- Markov Decision Process
- States S
- Actions A
- Reward function (immediate):
- Transition Probabilities: P(s's,a)

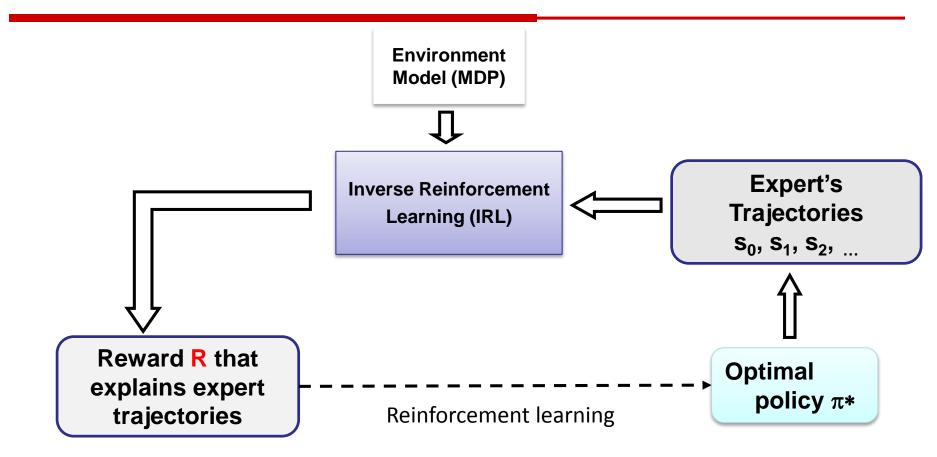


 Planning Problem/ Reinforcement learning: pick actions to maximize (expected discounted) total reward

 $r: S \rightarrow \mathbf{R}$

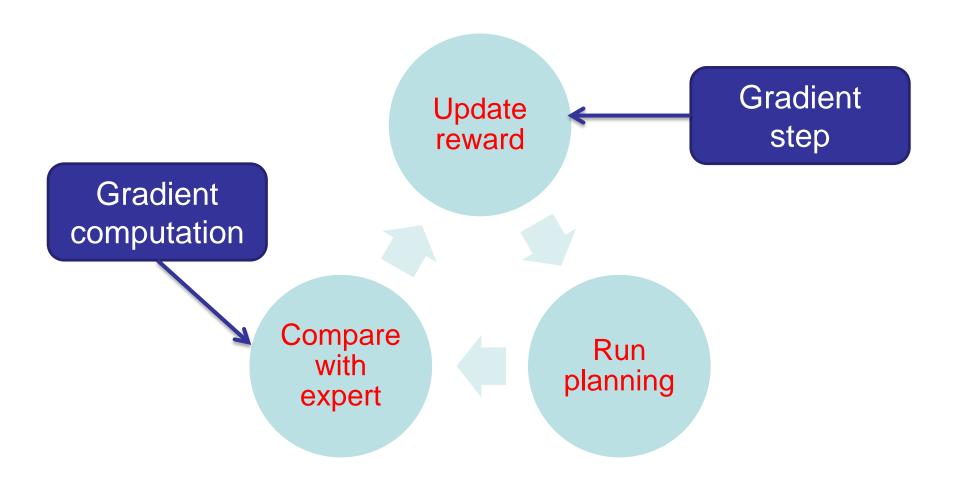
 Policy: sequence of decision rules that prescribe the action to be taken (depending on the current state)

Estimation Problem

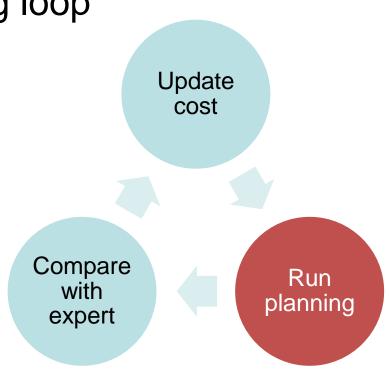


Assumptions:

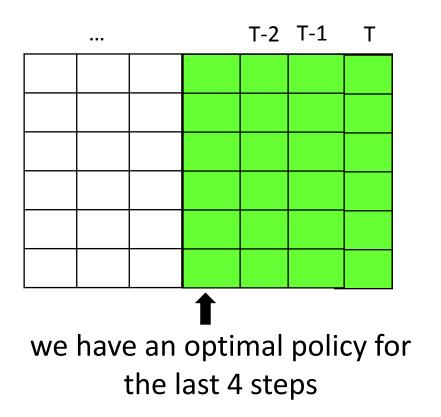
- Agents (pastoralists) are following a policy
- Rational: Policy is optimal with respect to (unknown) reward R
- **Goal:** estimate **R** from the trajectories

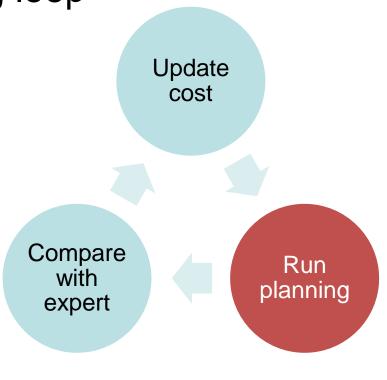


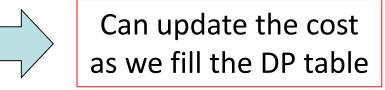
Expensive: have to solve a planning problem in a learning loop



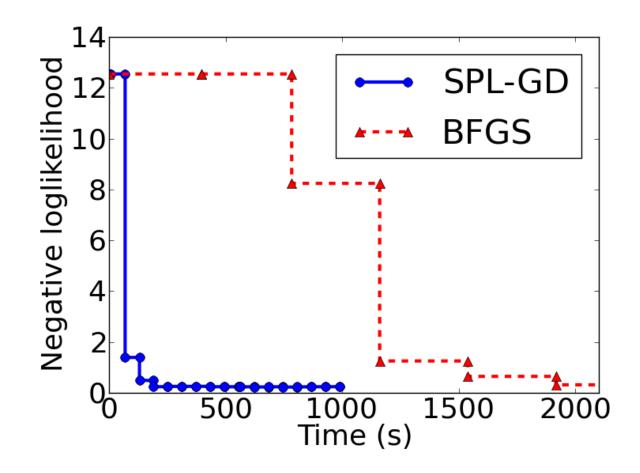
Expensive: have to solve a planning problem in a learning loop







Convergence Rate



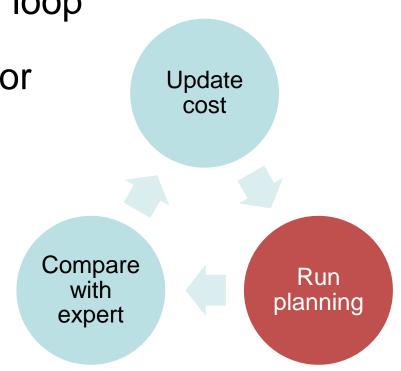
Our algorithm converges much faster (20x).

Expensive: have to solve a planning problem in a learning loop

What if state space is too big for Dynamic Programming?

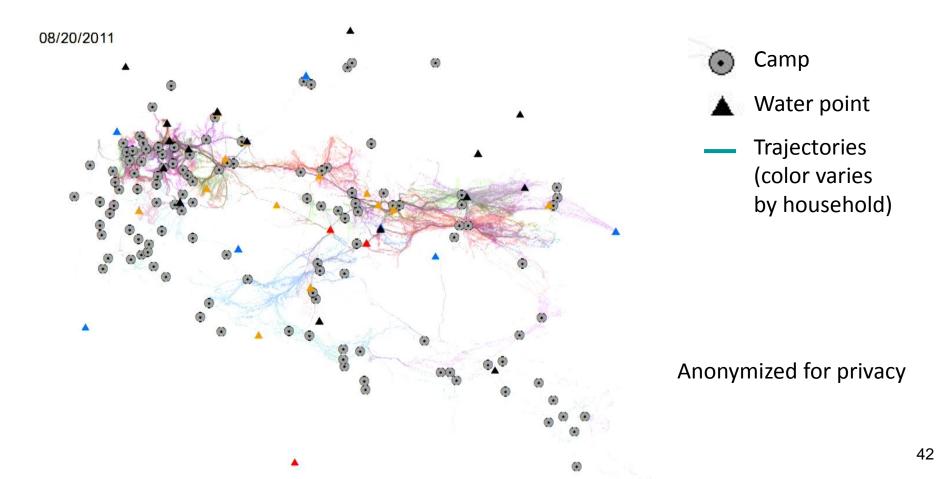
Policy gradient (with TRPO)

- Model free
- Fast
- Scales to high-dimensional, raw observations



Model-Free Imitation Learning with Policy Optimization" ICML-16

Features: distance between camps, greenness, dist. to water and village, distance to road, etc.



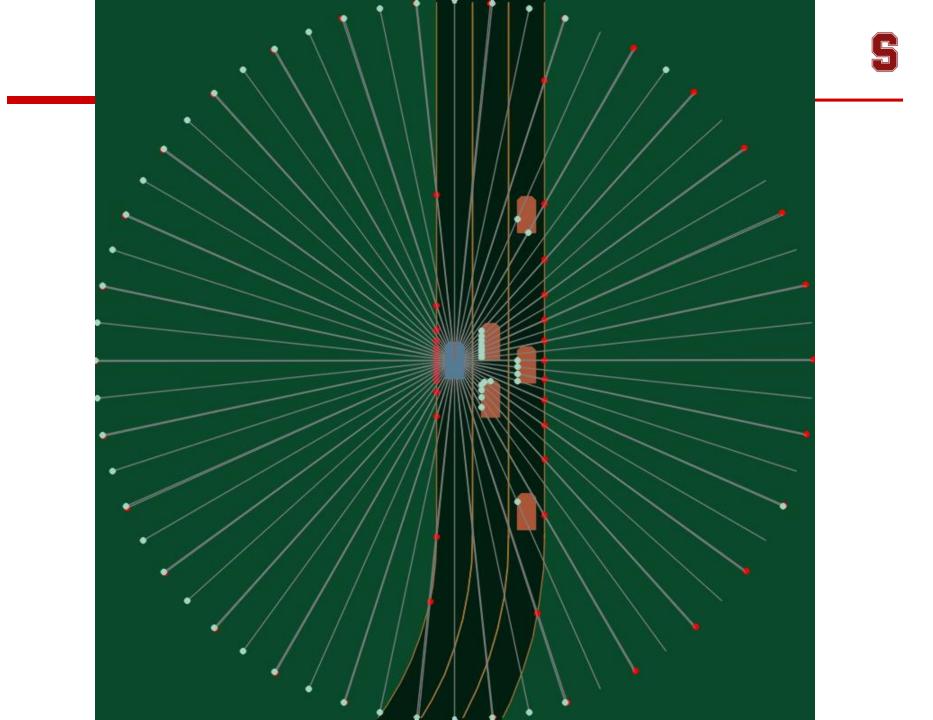
Evaluation

5

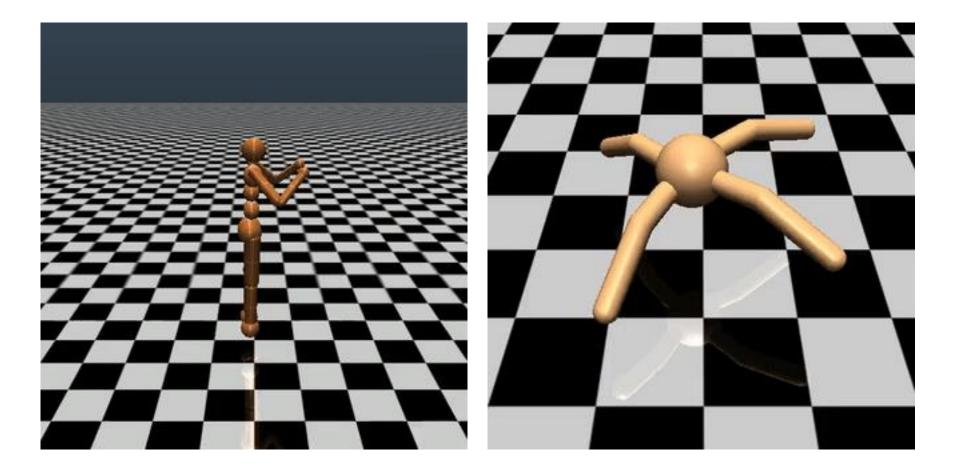
4 fold cross-validation: log-likelihood and number of predicted (movements)

	Fold 1		Fold 2		Fold 3		Fold 4	
Method	LogLik.	Moves (191)	LogLik.	Moves (85)	LogLik.	Moves (78)	LogLik.	Moves (116)
Markov	-8864.5	2209.8	-1807.8	372.2	-7265.7	1756.0	-4570.2	1214.1
MaxEnt IRL	-1524.4	424.6	-787.7	293.8	-796.7	339.7	-1004.2	299.4
Discrete Choice	-1422.1	102.5	-657.8	104.9	-643.4	115.9	-911.3	94.9

- Can fit well to the data
- The trained model recovers facts that are consistent with our intuition, e.g. herders prefer short travel distances
- Future work: compare what-if predictions with a randomized trial



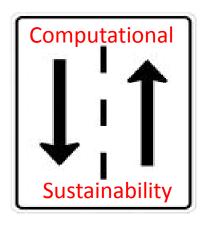
Ongoing work



Generative Adversarial Imitation Learning, 2016 on Arxiv

- Growing concerns about the threats of AI to the future of humanity
- Recent advances in AI also create enormous opportunities for having deeply beneficial influences on society (healthcare, education, sustainability, ...)

• New opportunities for CS research



Sustainability Sciences