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Abstract

Given a probabilistic graphical model, itsdensity of statesis a distribution that,
for any likelihood value, gives the number of configurationswith that probabil-
ity. We introduce a novel message-passing algorithm calledDensity Propagation
(DP) for estimating this distribution. We show that DP is exact for tree-structured
graphical models and is, in general, a strict generalization of both sum-product and
max-product algorithms. Further, we use density of states and tree decomposition
to introduce a new family of upper and lower bounds on thepartition function.
For any tree decomposition, the new upper bound based on finer-grained density
of state information is provably at least as tight as previously known bounds based
on convexity of the log-partition function, and strictly stronger if a general con-
dition holds. We conclude with empirical evidence of improvement over convex
relaxations and mean-field based bounds.

1 Introduction

Associated with any undirected graphical model [1] is the so-called density of states, a term bor-
rowed from statistical physics indicating a distribution that, for any likelihood value, gives the
number of configurations with that probability. The densityof states plays an important role in
statistical physics because it provides a fine grained description of the system, and can be used to
efficiently compute many properties of interests, such as the partition function and its parameterized
version [2, 3]. It can be seen that computing the density of states is computationally intractable in
the worst case, since it subsumes a #-P complete problem (computing the partition function) and an
NP-hard one (MAP inference). All current approximate techniques estimating the density of states
are based on sampling, the most prominent being the Wang-Landau algorithm [3] and its improved
variants [2]. These methods have been shown to be very effective in practice. However, they do not
provide any guarantee on the quality of the results. Furthermore, they ignore the structure of the
underlying graphical model, effectively treating the energy function (which is proportional to the
negative log-likelihood of a configuration) as a black-box.

As a first step towards exploiting the structure of the graphical model when computing the density
of states, we propose an algorithm called DENSITYPROPAGATION (DP). The algorithm is based on
dynamic programming and can be conveniently expressed in terms of message passing on the graph-
ical model. We show that DENSITYPROPAGATION computes the density of states exactly for any
tree-structured graphical model. It is closely related to the popular Sum-Product (Belief Propaga-
tion, BP) and Max-Product (MP) algorithms, and can be seen asa generalization of both. However,
it computes something much richer, namely the density of states, which contains information such
as the partition function and variable marginals. Althoughwe do not work at the level of individual
configurations, DENSITYPROPAGATION allows us to reason in terms of groups of configurations
with the same probability (energy).
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Being able to solve inference tasks for certain tractable classes of problems (e.g., trees) is important
because one can often decompose a complex problem into tractable subproblems (such as spanning
trees) [4], and the solutions to these simpler problems can be combined to recover useful properties
of the original graphical model [5, 6]. In this paper we show that by combining the additional
information given by the density of states, we can obtain a new family of upper and lower bounds on
the partition function. We prove that the new upper bound is always at least as tight as the one based
on the convexity of the log-partition function [4], and we provide a general condition where the
new bound is strictly tighter. Further, we illustrate empirically that the new upper bound improves
upon the convexity-based one on Ising grid and clique models, and that the new lower bound is
empirically slightly stronger than the one given by mean-field theory [4, 7].

2 Problem definition and setup

We consider a graphical model specified as a factor graph withN = |V | discrete random variables
xi, i ∈ V wherexi ∈ Xi. The global random vectorx = {xs, s ∈ V } takes value in the Cartesian
productX = X1×X2×· · ·×XN , with cardinalityD = |X | =

∏N
i=1 |Xi|. We consider a probability

distribution over elementsx ∈ X (called configurations)

p(x) =
1

Z

∏

α∈I

ψα({x}α) (1)

that factors into factorsψα : {x}α → R
+, whereI is an index set and{x}α ⊆ V a subset of

variables the factorψα depends on, andZ is a normalization constant known as partition function.
The corresponding factor graph is a bipartite graph with vertex setV ∪ I. In the factor graph, each
variable nodei ∈ V is connected with all the factorsα ∈ I that depend oni. Similarly, each factor
nodeα ∈ I is connected with all the variable nodesi ∈ {x}α. We denote the neighbors ofi andα
by N (i) andN (α) respectively.

We will also make use of the related exponential representation [8]. Letφ be a collection of potential
functions{φα, α ∈ I}, defined over the index setI. Given an exponential parameter vectorΘ =
{Θα, α ∈ I}, the exponential family defined byφ is the family of probability distributions overX
defined as follows:

p(x,Θ) =
1

Z(Θ)
exp(Θ · φ(x)) =

1

Z(Θ)
exp

(

∑

α∈I

Θαφα({x}α)

)

(2)

where we assumep(x) = p(x,Θ∗). Given an exponential family, we define thedensity of states[2]
as the following distribution:

n(E,Θ) =
∑

x∈X

δ (E −Θ · φ(x)) (3)

whereδ (E −Θ · φ(x)) indicates a Dirac delta centered atΘ · φ(x). For any exponential parameter
Θ, it holds that

∫ A

−∞

n(E,Θ)dE = |{x ∈ X |Θ · φ(x) ≤ A}|

and
∫

R
n(E,Θ)dE = |X |. We will refer to the quantity

∑

α∈I Θ∗
αφα({x}α) =

∑

α∈I logψα({x}α) as the energy of a configurationx, although it has an additional minus sign
with respect to the conventional energy in statistical physics.

3 Density Propagation

Since any propositional Satisfiability (SAT) instance can be efficiently encoded as a factor graph
(e.g., by defining a uniform probability measure over satisfying assignments), it is clear that com-
puting the density of states is computationally intractable in the worst case, as a generalization of an
NP-Complete problem (satisfiability testing) and a #-P complete problem (model counting).

We show that the density of states can be computed efficiently1 for acyclic graphical models. We
provide a Dynamic Programming algorithm, which can also be interpreted as a message passing
algorithm on the factor graph, called DENSITYPROPAGATION (DP), which computes the density of
states exactly for acyclic graphical models.

1Polynomial in the cardinality of the support, which could be exponential inN in the worst case.
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3.1 Density propagation equations

DENSITYPROPAGATION works by exchanging messages from variable to factor nodes and vice
versa. Unlike traditional message passing algorithms, where messages represent marginal probabil-
ities (vectors of real numbers), for everyxi ∈ Xi a DENSITYPROPAGATION messagema→i(xi) is
a distribution (a “marginal” density of states), i.e.ma→i(xi) =

∑

k ck(a → i, xi)δEk(a→i,xi) is a
sum of Dirac deltas.

At every iteration, messages are updated according to the following rules. The message from vari-
able nodei to factor nodea is updated as follows:

mi→a(xi) =
⊗

b∈N (i)\a

mb→i(xi) (4)

where
⊗

is the convolution operator (commutative, associative anddistributive). Intuitively, the
convolution operation gives the distribution of the sum of (conditionally) independent random vari-
ables, in this case corresponding to distinct subtrees in a tree-structured graphical model. The mes-
sage from factora to variablei is updated as follows:

ma→i(xi) =
∑

{x}α\i





⊗

j∈N (a)\i

mj→a(xj)





⊗

δEα({x}α) (5)

whereδEα({x}α) is a Dirac delta function centered atEα(xα) = logψα({x}α).

For tree structured graphical models, DENSITYPROPAGATION converges after a finite number of
iterations, independent of the initial condition, to the true density of states. Formally,
Theorem 1. For any variablei ∈ V andA ∈ R, for any initial condition, after a finite number of

iterations
(

∑

q∈Xs

⊗

b∈N (i)mb→i(q)
)

(E) = n(E,Θ∗).

The proof is by induction on the size of the tree (omitted due to lack of space).

3.1.1 Complexity and Approximation with Energy Bins

The most efficient message update schedule for tree structured models is a two-pass procedure where
messages are first sent from the leaves to the root node, and then propagated backwards from the
root to the leaves. However, as with other message-passing algorithms, for tree structured instances
the algorithm will converge with either a sequential or a parallel update schedule, with any initial
condition for the messages. Although DP requires the same number of messages updates as BP
and MP, DP updates are more expensive because they require the computation of convolutions.
Specifically, each variable-to-factor update rule (4) requires(N − 2)L convolutions, whereN is the
number of neighbors of the variable node andL is the number of states in the random variable. Each
factor-to-variable update rule (5) requires summation overN −1 variables, each of sizeL, requiring
O(LN ) convolutions. Using Fast Fourier Transform (FFT), each convolution takesO(K logK),
whereK is the maximum number of non-zero entries in a message. In theworst case, the density of
states can have an exponential number of non-zero entries (i.e., the finite number of possible energy
values, which we will also refer to as “buckets”), for instance when potentials are set to logarithms
of prime numbers, making everyx ∈ X have a different probability. However, in many practical
problems of interest (e.g., SAT/CSP models and certain grounded Markov Logic Networks [9]), the
number of energy “buckets” is limited, e.g., bounded by the total number of constraints. For general
graphical models, coarse-grain energy bins can be used, similar to the Wang-Landau algorithm [3],
without losing much precision. Specifically, if we use bins of sizeǫ/M , where each bin corresponds
to configurations with energy in the interval[kǫ/M, (k + 1)ǫ/M), the energy estimated for each
configuration throughO(M) convolutions is at most anO(ǫ) additive value away from its true
energy (as the quantization error introduced by energy binning is summed up across convolution
steps). This also guarantees that the density of states withcoarse-grain energy bins gives a constant
factor approximation of the true partition function.

3.1.2 Relationship with sum and max product algorithms

DENSITYPROPAGATION is closely related to traditional message passing algorithms such as BP
(Belief Propagation, Sum-Product) and MP (Max-Product), since it is based on the same (condi-
tional) independence assumptions. Specifically, as shown by the next theorem, both BP and MP can
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be seen as simplified versions of DENSITYPROPAGATION that consider only certain global statistics
of the distributions represented by DENSITYPROPAGATION messages.

Theorem 2. With the same initial condition and message update schedule, at every iteration we can
recover Belief Propagation and Max-Product marginals fromDENSITYPROPAGATION messages.

Proof. Given a DP messagemi→j(xj) =
∑

k ck(i→ j, xj)δEk(i→j,xj), the Max-Product algorithm
corresponds to considering only the entry associated with the highest probability, i.e.γi→j(xj) =

f(mi→j(xj)) , maxk{Ek(i → j, xj)}. According to DP updates in equations (4) and (5), the
quantitiesγi→j(xj) are updated as follows

γi→a(xi) = f





⊗

b∈N (i)\a

mb→i(xi)



 =
∑

b∈N (i)\a

γb→i(xi)

γa→i(xi) = f





∑

{x}α\i





⊗

j∈N (a)\i

mj→a(xj)





⊗

δEα({x}α)



 = max
{x}α\i

∑

j∈N (a)\i

γj→a(xj) + Eα({x}α)

These results show that the quantitiesγi→j(xj) are updated according to the Max-Product algorithm
(with messages in log-scale). To see the relationship with BP, for every DP messagemi→j(xj), let
us define

µi→j(xj) = ||mi→j(xj)(E) exp(E)||1 =

∫

R

mi→j(xj)(E) exp(E)dE

Notice thatµi→j(xj) would correspond to an unnormalized marginal probability,assuming that
mi→j(xj) is the density of states of the instance when variablej is clamped to valuexj . According
to DP updates in equation (4) and (5)

µi→a(xi) = ||mi→a(xi)(E) exp(E)||1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

⊗

b∈N (i)\a

mb→i(xi)(E) exp(E)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

=
∏

b∈N (i)\a

µb→i(xi)

µa→i(xi) = ||µa→i(xi)(E) exp(E)||1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

{x}α\i





⊗

j∈N (a)\i

mj→a(xj)





⊗

δEα({x}α)(E) exp(E)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

=
∑

{x}α\i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





⊗

j∈N (a)\i

mj→a(xj)





⊗

δEα({x}α)(E) exp(E)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

=
∑

{x}α\i

ψα({x}α)
∏

j∈N (a)\i

µj→a(xi)

that is we recover BP updates for theµi→j quantities. Similarly, if we define temperature versions
of the marginalsµT

i→j(xj) , ||mi→j(xj)(E) exp(E/T )||1, we recover the temperature-versions of
Belief Propagation updates, similar to [10] and [11].

As other message passing algorithms, DENSITYPROPAGATION updates are well defined also for
loopy graphical models, even though there is no guarantee ofconvergence or correctness [12]. The
correspondence with BP and MP (Theorem 2) however still holds: if loopy BP converges, then
the corresponding quantitiesµi→j computed from DP messages will converge as well, and to the
same value (assuming the same initial condition and update schedule). Notice however that the
convergence of theµi→j does not imply the convergence of DENSITYPROPAGATION messages
(e.g., in probability, law, orLp). In fact, we have observed empirically that the situation where
µi→j converge butmi→j do not converge (not even in distribution) is fairly common.It would
be interesting to see if there is a variational interpretation for DENSITYPROPAGATION equations,
similar to [13]. Notice also that Junction Tree style algorithms could also be used in conjunction
with DP updates for the messages, as an instance of generalized distributive law [14].

4 Bounds on the density of states using tractable families

Using techniques such as DENSITYPROPAGATION, we can compute the density of states exactly for
tractable families such as tree-structured graphical models. Let p(x,Θ∗) be a general (intractable)
probabilistic model of interest, and letΘi be a family of tractable parameters (e.g., corresponding to
trees) such thatΘ∗ is a convex combination ofΘi, as defined formally below and used previously
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by Wainwright et al. [5, 6]. See below (Figure 1) for an example of a possible decomposition of
a 2 × 2 Ising model into2 tractable distributions. By computing the partition function or MAP
estimates for the tree structured subproblems, Wainwrightet al. showed that one can recover useful
information about the original intractable problem, for instance by exploiting convexity of the log-
partition functionlogZ(Θ).

We present a way to exploit the decomposition idea to derive an upper bound on the density of states
n(E,Θ∗) of the original intractable model, despite the fact that density of states isnot a convex
function of Θ∗. The result below gives a point-by-point upper bound which,to the best of our
knowledge, is the first bound of this kind for density of states. In the following, with some abuse
of the notation, we denoten(E,Θ∗) =

∑

x∈X

(

1{Θ∗·φ(x)=E}

)

the function giving the number of
configurations with energyE (zero almost everywhere).

Theorem 3. LetΘ∗ =
∑n

i=1 γiΘi,
∑n

i=1 γi = 1, andyn = E −
∑n−1

i=1 yi. Then

n(E,Θ∗) ≤

∫

R

∫

R

. . .

∫

R

n
min
i=1

{n(yi, γiΘi)} dy1dy2 . . . dyn−1

Proof. From the definition of density of states and using1{} to denote the 0-1 indicator function,

n(E,Θ∗) =
∑

x∈X

1{Θ∗φ(x)=E} =
∑

x∈X

1{(
∑

i
γiΘi)φ(x)=E}

=
∑

x∈X

∫

R

∫

R

. . .

∫

R

(

n
∏

i=1

1{γiΘiφ(x)=yi}

)

dy1dy2 . . . dyn−1 whereyn = E −
n−1
∑

i=1

yi

=

∫

R

∫

R

. . .

∫

R

∑

x∈X

(

n
∏

i=1

1{γiΘiφ(x)=yi}

)

dy1dy2 . . . dyn−1

=

∫

R

∫

R

. . .

∫

R

∑

x∈X

(

n
min
i=1

{

1{γiΘiφ(x)=yi}

}

)

dy1dy2 . . . dyn−1

≤

∫

R

∫

R

. . .

∫

R

n
min
i=1

{

∑

x∈X

(

1{γiΘiφ(x)=yi}

)

}

dy1dy2 . . . dyn−1

Observing that
∑

x∈X

(

1{γiΘiφ(x)=yi}

)

is preciselyn(yi, γiΘi) finishes the proof.

5 Bounds on the partition function usingn-dimensional matching

The density of statesn(E,Θ∗) can be used to compute the partition function, since by definition
Z(Θ∗) = ||n(E,Θ∗) exp(E)||1. We can therefore get an upper bound onZ(Θ∗) by integrating the
point-by-point upper bound onn(E,Θ∗) from Theorem 3. This bound can be tighter than the known
bound [6] obtained by applying Jensen’s inequality to the log-partition function (which is convex),
given bylogZ(Θ∗) ≤

∑

i γi logZ(Θi). For instance, consider a graphical model with weights that
are large enough such that the density of states based sum definingZ(Θ∗) is dominated by the contri-
bution of the highest-energy bucket. As a concrete example,consider the decomposition in Figure 1.
As the edge weightw (w = 2 in the figure) grows, the convexity-based bound will approximately
equal the geometric average of2 exp(6w) and8 exp(2w), which is4 exp(4w). On the other hand,
the bound based on Theorem 3 will approximately equalmin{2, 8} exp((2+ 6)w/2) = 2 exp(4w).
In general, the latter bound will always be strictly better for large enoughw unless the highest-energy
bucket counts are identical across allΘi.

While this is already promising, we can, in fact, obtain a muchtighter bound by taking into account
the interactions between different energy levels across any parameter decomposition, e.g., by en-
forcing the fact that there are a total of|X | configurations. For compactness, in the following let us
defineyi(x) = exp(Θi · φ(x)) for anyx ∈ X andi = 1, · · · , n. Then,

Z(Θ∗) =
∑

x∈X

exp(Θ∗ · φ(x)) =
∑

x∈X

∏

i

yi(x)
γi

Theorem 4. LetΠ be the (finite) set of all possible permutations ofX . Givenσ = (σ1, · · · , σn) ∈
Πn, letZ(Θ∗,σ) =

∑

x∈X

∏

i yi(σi(x))
γi . Then,

min
σ∈Πn

Z(Θ∗,σ) ≤ Z(Θ∗) ≤ max
σ∈Πn

Z(Θ∗,σ) (6)
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Algorithm 1 Greedy algorithm for the maximum matching (upper bound).
1: while there existsE such thatn(E,Θi) > 0 do
2: Emax(Θi)← maxE {E|n(E,Θi) > 0)}, for i = 1, · · · , n
3: c′ ← min {n(Emax(Θ1),Θ1), · · · , n(Emax(Θn),Θn)}
4: ub(γ1Emax(Θ1) + · · ·+ γnEmax(Θn),Θ1, · · · ,Θn)← c′

5: n(Emax(Θi),Θi)← n(Emax(Θi),Θi)− c
′, for i = 1, · · · , n

6: end while

Proof. Let σI ∈ Πn denote a collection ofn identity permutations. Then we haveZ(Θ∗) =
Z(Θ∗,σI), which proves the upper and lower bounds in equation (6).

We can think ofσ ∈ Πn as ann-dimensional matchingover the exponential size configuration
spaceX . For anyi, j, σi(x) matches withσj(x), andσ(x) gives the corresponding hyper-edge.
If we define the weight of each hyper-edge in the matching graph asw(σ(x)) =

∏

i yi(σi(x))
γi

thenZ(Θ∗,σ) =
∑

x∈X w(σ(x)) corresponds to the weight of the matching represented byσ. We
can therefore think the bounds in equation (6) as given by a maximum and a minimum matching,
respectively. Intuitively, the maximum matching corresponds to the case where the configurations
in the high energy buckets of the densities happen to be the same configuration (matching), so that
their energies are summed up.

5.1 Upper bound

The maximum matchingmaxσ Z(Θ
∗,σ) (i.e., the upper bound on the partition function) can be

computed using Algorithm 1. Algorithm 1 returns a distributionub such that
∫

ub(E)dE = |X | and
∫

ub(E) exp(E)dE = maxσ Z(Θ
∗,σ). Notice however thatub(E) is not a valid point-by-point

upper bound on the densityn(E,Θ∗) of the original mode.

Proposition 1. Algorithm 1 computes the maximum matching and its runtime isbounded by the
total number of non-empty buckets

∑

i |{E|n(E,Θi) > 0}|.

Proof. The correctness of Algorithm 1 follows from observing thatexp(E1+E2)+exp(E′
1+E

′
2) ≥

exp(E1 + E′
2) + exp(E′

1 + E2) whenE1 ≥ E′
1 andE2 ≥ E′

2. Intuitively, this means that for
n = 2 parameters it is always optimal to connect the highest energy configurations, therefore the
greedy method is optimal. This result can be generalized forn > 2 by induction. The runtime is
proportional to the total number of buckets because we remove one bucket from at least one density
at every iteration.

A key property of Algorithm 1 is that even though it defines a matching over an exponential num-
ber of configurations|X |, its runtime proportional only to the total number of buckets, because it
matches configurations in groupsat the bucket level.

The following result shows that the value of the maximum matching is at least as tight as the
bound provided by the convexity of the log-partition function, which is used for example by Tree
Reweighted Belief Propagation (TRWBP) [6].

Theorem 5. For any parameter decomposition
∑n

i=1 γiΘi = Θ∗, the upper bound given by the
maximum matching in equation (6) and computed using Algorithm 1 is always at least as tight as
the bound obtained using the convexity of the log-partitionfunction.

Proof. The bound obtained by applying Jensen’s inequality to the log-partition function (which is
convex), given bylogZ(Θ∗) ≤

∑

i γi logZ(Θi) [6], leads to the following geometric average
boundZ(Θ∗) ≤

∏

i (
∑

x yi(x))
γi . Given anyn permutations of the configurationsσi : X → X for

i = 1, · · · , n (in particular, it holds for the one attaining the maximum matching value) we have

∑

x

∏

i

yi(σi(x))
γi = ||

∏

i

yi(σi(x))
γi ||1 ≤

∏

i

||yi(σi(x))
γi ||1/γi

=
∏

i

(

∑

x

yi(σi(x))

)γi

where we used Generalized Holder inequality and the norm|| · ||ℓ indicates a sum overX .
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Algorithm 2 Greedy algorithm for the minimum matching withn = 2 parameters (lower bound).
1: while there existsE such thatn(E,Θi) > 0 do
2: Emax(Θi)← maxE {E|n(E,Θi) > 0)}; Emin(Θ2)← minE {E|n(E,Θ2) > 0)}
3: c′ ← min {n(Emax(Θ1),Θ1), n(Emin(Θ2),Θ2)}
4: lb(γ1Emax(Θ1) + γ2Emin(Θ2),Θ1,Θ2)← c′

5: n(Emax(Θ1),Θ1)← n(Emax(Θ1),Θ1)− c
′; n(Emin(Θ2),Θ2)← n(Emin(Θ2),Θ2)− c

′

6: end while

5.2 Lower bound

We also provide Algorithm 2 to compute the minimum matching when there aren = 2 parameters.
The proof of correctness is similar to that for Proposition 1.

Proposition 2. For n = 2, Algorithm 2 computes the minimum matching and its runtime is bounded
by the total number of non-empty buckets

∑

i |{E|n(E,Θi) > 0}|.

For the minimum matching case, the induction argument does not apply and the result does not
extend to the casen > 2. For that case, we can obtain a weaker lower bound by applyingRe-
verse Generalized Holder inequality [15], obtaining from adifferent perspective a bound previously
derived in [16]. Specifically, lets1, · · · , sn−1 < 0 andsn such that

∑

1
si

= 1. We then have

min
σ
Z(Θ∗,σ) =

∑

x

∏

i

yi(σmin,i(x))
γi = ||

∏

i

yi(σmin,i(x))
γi ||1 ≥ (7)

∏

i

||yi(σmin,i(x))
γi ||si =

∏

i

(

∑

x

yi(σmin,i(x))
siγi

)
1

si

=
∏

i

(

∑

x

yi(x)
siγi

)
1

si

Notice this result cannot be applied ifyi(x) = 0, i.e. there are factors assigning probability zero
(hard constraints) in the probabilistic model.

6 Empirical evaluation

To evaluate the quality of the bounds, we consider an Ising model from statistical physics,
where given a graph(V,E), single node variablesxs, s ∈ V are Bernoulli distributed
(xs ∈ {0, 1})), and the global random vector is distributed according top(x,Θ) =

1
Z(Θ) exp

(

∑

s∈V Θsxs +
∑

(i,j)∈E Θij1{xi=xj}

)

. Figure 1 shows a simple2 × 2 grid Ising

model with exponential parameterΘ∗ = [0, 0, 0, 0, 1, 1, 1, 1] (Θs = 0 andΘij = 1) decom-
posed as the convex sum of two parametersΘ1 andΘ2 corresponding to tractable distributions,
i.e. Θ∗ = (1/2)Θ1 + (1/2)Θ2. The corresponding partition function isZ(Θ∗) = 2 + 12 exp(2) +
2 exp(4) ≈ 199.86. In panels 1(d) and 1(e) we report the corresponding densityof statesn(E,Θ1)
andn(E,Θ2) as histograms. For instance, for the model corresponding toΘ2 there are only two
global configurations (all variables positive and all negative) that give an energy of6. It can be seen
from the densities reported thatZ(Θ1) = 2 + 6 exp(2) + 6 exp(4) + 2 exp(6) ≈ 1180.8, while
Z(Θ2) = 8 + 8 exp(2) ≈ 67.11. The corresponding geometric average (obtained from the con-
vexity of the log-partition function) is

√

(Z(Θ1))
√

(Z(Θ2)) ≈ 281.50. In panels 1(f) and 1(c) we
showub andlb computed using Algorithms 1 and 2, i.e. the solutions to the maximum and minimum
matching problems, respectively. For instance, for the maximum matching case the 2 configurations
with energy 6 fromn(E,Θ1) are matched with 2 of the 8 with energy 2 fromn(E,Θ2), giving an
energy6/2 + 2/2 = 4. Notice thatub andlb are not valid bounds on individual densities of states
themselves, but they nonetheless provide upper and lower bounds on the partition function as shown
in the figure:≈ 248.01 and134.27, respectively. The bound (8) given by inverse Holder inequality
with s1 = −1, s2 = 1/2 is ≈ 126.22, while the mean field lower bound [4, 7] is≈ 117.91. In this
case, the additional information provided by the density leads to tighter upper and lower bounds on
the partition function.

In Figure 2 we report the upper bounds obtained for several types of Ising models (in all cases,
Θs = 0, i.e., there is no external field). In the two left plots, we consider aN×N square Ising model,
once with attractive interactions (Θij ∈ [0, w]) and once with mixed interactions (Θij ∈ [−w,w]).
In the two right plots, we use a complete graph (a clique) withN = 15 vertices. For each model,
we compute the upper bound given by TRWBP (with edge appearance probabilitiesµe based on a
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(c) Zub = 2 + 6e+ 6e3 + 2e4.
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(d) Histogramn(E,Θ1)
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(f) Zlb = 2e+ 12e2 + 2e3

Figure 1: Decomposition of a2 × 2 Ising model, densities obtained with maximum and minimum
matching algorithms, and the corresponding upper and lowerbounds onZ(Θ∗).

(a) 15× 15 grid, attractive. (b) 10× 10 grid, mixed. (c) 15-Clique, attractive. (d) 15-Clique, mixed.

Figure 2: Relative error of the upper bounds.

subset of10 randomly selected spanning trees) and the mean-field bound using the implementations
in libDAI [17]. We then compute the bound based on the maximummatching using the same set
of spanning trees. For the grid case, we also use a combination of 2 spanning trees and compute
the corresponding lower bound based on the minimum matching(notice it is not possible to cover
all the edges in a clique with only2 spanning tree). For each bound, we report the relative error,
defined as(log(bound)− log(Z)) / log(Z), whereZ is the true partition function, computed using
the junction tree method.

In these experiments, both our upper and lower bounds improve over the ones obtained with TR-
WBP [6] and mean-field respectively. The lower bound based on minimum matching visually over-
laps with the mean-field bound and is thus omitted from Figure2. It is, however, strictly better, even
if by a small amount. Notice that we might be able to get a better bound by choosing a different
set of parametersΘi (which may be suboptimal for TRW-BP). By optimizing the parameterssi in
the inverse Holder bound (8) using numerical optimization (BFGS and BOBYQA [18]), we were
always able to obtain a lower bound at least as good as the one given by mean field.

7 Conclusions

We presented DENSITYPROPAGATION, a novel message passing algorithm for computing the den-
sity of states while exploiting the structure of the underlying graphical model. We showed that
DENSITYPROPAGATION computes the exact density for tree structured graphical models and is a
generalization of both Belief Propagation and Max-Productalgorithms. We introduced a new family
of bounds on the partition function based onn-dimensional matching and tree decomposition but
without relying on convexity. The additional information provided by the density of states leads,
both theoretically and empirically, to tighter bounds thanknown convexity-based ones.
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