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ABSTRACT
The problem of multiagent Gaussian inference in a dynamic
environment, also known as distributed Kalman filtering,
is formulated into the framework of message passing algo-
rithms. Upon generalizing the derivation of the standard
Kalman filter to the distributed case, we propose novel so-
lutions that outperform current state of the art techniques.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
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1. INTRODUCTION
Many distributed inference problems can be modeled as a

network G = (V, E) of sensing devices that can perform local
computations and communicate with other nodes, collabo-
rating to produce global information from individual local
data. In particular, the focus of this paper is on Bayesian es-
timation, where a probability model is assumed to be known
and one is interested in computing the posterior distribution
of a collection of hidden variables (“the state” x), given the
evidence collected in the network.

In many real world problems it is critical to introduce
the dynamics of the system into the model, for example
in the case of tracking a moving object or monitoring an
environment over time. Here we consider the case of a state
of the world x ∈ R

N evolving in time according to a discrete
time linear dynamical system:

xk+1 = Akxk + wk , (1)
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where the noise wk is Gaussian. Furthermore we assume
that each sensor i ∈ V in the network measures an output
yk(i) at each time step k that is a linear combination of the
state variables corrupted by additive Gaussian noise.

Ideally one would like to compute at each node i ∈ V

and for each time step k the minimum mean square error
estimate (that is also the maximum likelihood estimate) of
the state xk given by

x̂(k|k) , E[xk| ∪i∈V {yℓ(i)|ℓ ≤ k}] . (2)

Notice that this is a statistical causal inference problem,
because only information coming from the past can be used
to infer properties about the present (or future) states.

When there is only one agent, or one central node is as-
sumed to know all the information available in the network,
this formulation is analogous to a Kalman filtering problem.
However in many settings a centralized solution, in which
a single computational node receives and elaborates all the
information available, is either not feasible due to their com-
munication and energy restrictions or not desirable because
it introduces a single point of failure. Therefore there is a
need for distributed solutions where inference is performed
locally at each node on the basis of information that is re-
trieved both locally and by communication with neighboring
nodes.

In this paper, we show how to generalize the classical
result ([1]) that derives the Kalman filter in terms of Be-
lief Propagation (BP) to the distributed case by choosing
a suitable graphical model. The model defines an inference
problem that is equivalent to the system theoretic definition
given by equations (1) and (2), but embeds the structure
of the communication network G. This will naturally lead
to the definition of a message passing algorithm that at the
same time also defines a communication protocol, because
it is sufficient to interpret messages as real communications
that take place between nodes.

A key feature is that the graphical model proposed relies
heavily on the notion of spanning tree of the network, that
imposes an hierarchy among the nodes and therefore en-
forces an ordered flow of information in the corresponding
corresponding communication protocol. In a practical ap-
plication, the algorithm proposed in [3] for a static inference
problem can be used to organize the nodes of the network
into a spanning tree with high-quality communication links
and without need of central coordination.

The resulting solution enables all the nodes in the net-



work to compute an estimate that is as good as a central-
ized one while at the same time minimizing the total use of
communication resources. In fact the messages computed
according to the BP updates allow the nodes to locally elab-
orate and fuse the information they receive before transmit-
ting it again, being able to summarize it and thus reducing
the number of messages needed. Therefore the proposed
architecture distributes the computational burden and also
reduces the communication resources used.

Nevertheless, even if the algorithm is fully distributed and
causal, it might not be possible to use it in real-time if there
are latencies in the communication links. When the time
needed for the information to travel around the network is
greater than the time step of the dynamical system, the pre-
vious approach is not viable and it is not generally possible
to get an estimate as good as the centralized one anymore.

If that is the case, then the message passing approach is
particularly useful because it becomes fundamental to max-
imize the flow of information in order to be able to take
decisions readily, even on the base of the partial information
received. However dealing with delays is not an easy task,
mainly because an intrinsic feature of dynamic estimation
problems is that the temporal order in which information is
used becomes important. In particular, the graphical model
interpretation defines an exact solution that is expensive
both in terms of space and time complexity (KF-delayed),
yet also leads to a much more efficient approximation tech-
nique (BP-approx) based on message passing.

The performance of the approximate solution is compared
in simulation against a popular consensus based solution
([2]) developed specifically for this setting and that implic-
itly assumes communication latencies. The benchmark is a
tracking application, with an experimental setup very simi-
lar to the one described in [2].

We consider a target moving on noisy circular trajectories
in a plane. A network of 50 sensing devices is randomly
generated according to the random geometric model, and
the nodes make noisy measurements of the position of the
target either along the x-axis, or along the y-axis. Clearly,
no individual sensor can estimate the position of the target
by itself, but it becomes possible using information coming
from neighboring nodes.

We compare several approaches by measuring the average
error of the estimates of the nodes and their disagreement,
defined as the variance with respect to the average estimate.
Having a good level of agreement is helpful in many appli-
cations where nodes are also taking decisions based on their
estimated state, mainly because it improves the level of co-
operation. The approximate solution (BP-approx) and the
consensus based solution (DKF) are compared against the
centralized Kalman filter (CKF) that computes (2) using
all the information available at time k (not implementable
with communication latencies). We also consider the exact
estimation algorithm (KF-delayed), that represents a lower
bound for the average error in the presence of latencies. The
results are shown in figure 1(a) and 1(b) respectively.

The improvement of BP-approx over DKF on the average
error is of about 8%, while on average the improvement on
the disagreement is of almost 50%. Empirically we have also
seen that the performance gap tends to increase with higher
noise levels, measured by a larger trace of Q. Moreover
we can see that the approximation given by BP-approx is
almost as good as the theoretical optimum in presence of

delays given by KF-delayed.
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(a) Comparison of the performance of the algorithms in
terms of average error.
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(b) Comparison of the performance of the algorithms in
terms of disagreement.

Figure 1: Simulative comparison between the algo-

rithms.
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