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Plan for today

Plan for today:

Supervised Machine Learning: linear regression
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Renewable electricity generation in the U.S

Source: Renewable energy data book, NREL
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Challenges for the grid

Wind and solar are intermittent

We will need traditional power plants when the wind stops

Many power plants (e.g., nuclear) cannot be easily turned on/off or
quickly ramped up/down

With more accurate forecasts, wind and solar power become more
efficient alternatives

A few years ago, Xcel Energy (Colorado) ran ads opposing a proposal
that it use 10% of renewable sources

Thanks to wind forecasting (ML) algorithms developed at NCAR, they
now aim for 30 percent. Accurate forecasting saved the utility $6-$10
million per year
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Motivation

Solar and wind are intermittent

Can we accurately forecast how much energy will we consume
tomorrow?

Difficult to estimate from “a priori” models

But, we have lots of data from which to build a model
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Typical electricity consumption
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Data: PJM http://www.pjm.com
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Predict peak demand from high temperature

What will peak demand be tomorrow?

If we know something else about tomorrow (like the high temperature),
we can use this to predict peak demand
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Data: PJM, Weather Underground (summer months, June-August)
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A simple model

A linear model that predicts demand:

predicted peak demand = θ1 · (high temperature) + θ2
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Observed data
Linear regression prediction

Parameters of model: θ1, θ2 ∈ R (θ1 = 0.046, θ2 = −1.46)
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A simple model

We can use a model like this to make predictions

What will be the peak demand tomorrow?

I know from weather report that high temperature will be 80◦F (ignore,
for the moment, that this too is a prediction)

Then predicted peak demand is:

θ1 · 80 + θ2 = 0.046 · 80− 1.46 = 2.19 GW
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Formal problem setting

Input: xi ∈ Rn, i = 1, . . . ,m

E.g.: xi ∈ R1 = {high temperature for day i}

Output: yi ∈ R (regression task)

E.g.: yi ∈ R = {peak demand for day i}

Model Parameters: θ ∈ Rk

Predicted Output: ŷi ∈ R

E.g.: ŷi = θ1 · xi + θ2
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For convenience, we define a function that maps inputs to feature
vectors

φ : Rn → Rk

For example, in our task above, if we define

φ(xi) =

[
xi
1

]
(here n = 1, k = 2)

then we can write

ŷi =

k∑
j=1

θj · φj(xi) ≡ θTφ(xi)

Stefano Ermon Machine Learning 1: Linear Regression March 31, 2016 11 / 25



Loss functions

Want a model that performs “well” on the data we have

I.e., ŷi ≈ yi, ∀i

We measure “closeness” of ŷi and yi using loss function

` : R× R→ R+

Example: squared loss

`(ŷi, yi) = (ŷi − yi)2
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Finding model parameters, and optimization

Want to find model parameters such that minimize sum of costs over all
input/output pairs

J(θ) =

m∑
i=1

`(ŷi, yi) =

m∑
i=1

(θTφ(xi)− yi)2

Write our objective formally as

minimize
θ

J(θ)

simple example of an optimization problem; these will dominate our
development of algorithms throughout the course
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How do we optimize a function

Search algorithm: Start with an initial guess for θ. Keep changing θ (by
a little bit) to reduce J(θ)

Animation https://www.youtube.com/watch?v=vWFjqgb-ylQ

Stefano Ermon Machine Learning 1: Linear Regression March 31, 2016 14 / 25

https://www.youtube.com/watch?v=vWFjqgb-ylQ


Gradient descent

Search algorithm: Start with an initial guess for θ. Keep changing θ (by
a little bit) to reduce J(θ)

J(θ) =

m∑
i=1

`(ŷi, yi) =

m∑
i=1

(θTφ(xi)− yi)2

Gradient descent: θj = θj − α∂J(θ)∂θj
, for all j

∂J

∂θj
=
∂
∑m

i=1(θ
Tφ(xi)− yi)2

∂θj
=

m∑
i=1

∂(θTφ(xi)− yi)2

∂θj

=

m∑
i=1

2(θTφ(xi)− yi)
∂(θTφ(xi)− yi)

∂θj

=

m∑
i=1

2(θTφ(xi)− yi)φ(xi)j
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Gradient descent

Repeat until “convergence”:

θj = θj − α
m∑
i=1

2(θTφ(xi)− yi)φ(xi)j , for all j

Demo:
https://lukaszkujawa.github.io/gradient-descent.html

Stochastic gradient descent
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Let’s write J(θ) a little more compactly using matrix notation; define

Φ ∈ Rm×k =


— φ(x1)

T —
— φ(x2)

T —
...

— φ(xm)T —

 , y ∈ Rm =


y1
y2
...
ym


then

J(θ) =

m∑
i=1

(θTφ(xi)− yi)2 = ‖Φθ − y‖22

(‖z‖2 is `2 norm of a vector: ‖z‖2 ≡
√∑m

i=1 z
2
i =
√
zT z)

Called least-squares objective function
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How do we optimize a function? 1-D case (θ ∈ R):
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Multi-variate case: θ ∈ Rk, J : Rk → R

Generalized condition: ∇θJ(θ)|θ? = 0

∇θJ(θ) denotes gradient of J with respect to θ

∇θJ(θ) ∈ Rk ≡


∂J
∂θ1

∂J
∂θ2
...
∂J
∂θk


Some important rules and common gradient

∇θ(af(θ) + bg(θ)) = a∇θf(θ) + b∇θg(θ), (a, b ∈ R)

∇θ(θTAθ) = (A+AT )θ, (A ∈ Rk×k)
∇θ(bT θ) = b, (b ∈ Rk)
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Optimizing least-squares objective

J(θ) = ‖Φθ − y‖22
= (Φθ − y)T (Φθ − y)

= θTΦTΦθ − 2yTΦθ + yT y

Using the previous gradient rules

∇θJ(θ) = ∇θ(θTΦTΦθ − 2yTΦθ + yT y)

= ∇θ(θTΦTΦθ)− 2∇θ(yTΦθ) +∇θ(yT y)

= 2ΦTΦθ − 2ΦT y

Setting gradient equal to zero

2ΦTΦθ? − 2ΦT y = 0⇐⇒ θ? = (ΦTΦ)−1ΦT y

known as the normal equations
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Let’s see how this looks in MATLAB code

X = load(h́igh_temperature.txt)́;

y = load(ṕeak_demand.txt)́;

n = size(X,2);

m = size(X,1);

Phi = [X ones(m,1)];

theta = inv(Phi´ * Phi) * Phi´ * y;

theta =

0.0466

-1.4600

The normal equations are so common that MATLAB has a special
operation for them

% same as inv(Phi´ * Phi) * Phi´ * y

theta = Phi \ y;
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Higher-dimensional inputs

Input: x ∈ R2 =

[
temperature
hour of day

]

Output: y ∈ R = demand

Stefano Ermon Machine Learning 1: Linear Regression March 31, 2016 22 / 25



Stefano Ermon Machine Learning 1: Linear Regression March 31, 2016 23 / 25



Features: φ(x) ∈ R3 =

 temperature
hour of day

1


Same matrices as before

Φ ∈ Rm×k =

 — φ(x1)
T —

...
— φ(xm)T —

 , y ∈ Rm =

 y1
...
ym


Same solution as before

θ ∈ R3 = (ΦTΦ)−1ΦT y
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