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Plan for today

Plan for today:

@ Supervised Machine Learning: linear regression
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Renewable electricity generation in the U.S

‘ Hydropower Solar' Wind Geothermal Biomass Total Renewables
6.7% 00% | 0.4% 0.4% _ 13%
6.7% 00% | 0.4% 0.4% _ 13% -
7.1% 00% |l 0.7% 0.4% _ 13% _
5.9% 00% |l 0.8% 0.4% _ 13% _
6.2% 0.1% ' 1.3% 0.4% _ 1.3% _
6.9% 0.1% _ 1.9% 0.4% _ 1.4% _
6.3% 0.1% _ 2.3% 0.4% _ 1.4% _
7.8% 0.2% _ 2.9% 0.4% _ 1.4% —
6.8% 0.3% _ 3.4% 0.4% _ 1.4% —
66% || 0.5% - 41% 0.4% _ 1.5% — 13.1%
63% | o08% - 4.4% 0.4% _ 1.6% — 13.5%

Source: Renewable energy data book, NREL
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Challenges for the grid

@ Wind and solar are intermittent

@ We will need traditional power plants when the wind stops

e Many power plants (e.g., nuclear) cannot be easily turned on/off or
quickly ramped up/down

@ With more accurate forecasts, wind and solar power become more
efficient alternatives
o A few years ago, Xcel Energy (Colorado) ran ads opposing a proposal
that it use 10% of renewable sources

o Thanks to wind forecasting (ML) algorithms developed at NCAR, they
now aim for 30 percent. Accurate forecasting saved the utility $6-$10
million per year
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Motivation

@ Solar and wind are intermittent

@ Can we accurately forecast how much energy will we consume
tomorrow?

e Difficult to estimate from “a priori” models

e But, we have lots of data from which to build a model
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Typical electricity consumption
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Data: PJM http://www.pjm.com
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Predict peak demand from high temperature

@ What will peak demand be tomorrow?

e If we know something else about tomorrow (like the high temperature),
we can use this to predict peak demand
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Data: PJM, Weather Underground (summer months, June-August)
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A simple model
@ A linear model that predicts demand:

predicted peak demand = 6; - (high temperature) + 65
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@ Parameters of model: 61,02 € R (01 = 0.046, 62 = —1.46)
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A simple model

@ We can use a model like this to make predictions

@ What will be the peak demand tomorrow?

o | know from weather report that high temperature will be 80°F (ignore,
for the moment, that this too is a prediction)

@ Then predicted peak demand is:

01 -80+ 603 =0.046 - 80 — 1.46 = 2.19 GW

Stefano Ermon Machine Learning 1: Linear Regression March 31, 2016 9/25



Formal problem setting
Input: z; e R", i=1,....,m
o E.g.: x; € R! = {high temperature for day i}

Output: y; € R (regression task)
o E.g.: y; € R = {peak demand for day i}

Model Parameters: 6 € RF

Predicted Output: §; € R

E.g.: gjz = 91 “ X+ 02
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@ For convenience, we define a function that maps inputs to feature

vectors
¢:R" — R*

@ For example, in our task above, if we define
Z;

gb(xi):[ X ] (heren =1, k = 2)

then we can write

k

J=1
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Loss functions

@ Want a model that performs “well” on the data we have
le., 9; ~vy;, Vi
@ We measure “closeness” of ¢; and y; using loss function

(:RxR— Ry

@ Example: squared loss

~

(i, yi) = (9 — vi)?
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Finding model parameters, and optimization

@ Want to find model parameters such that minimize sum of costs over all
input/output pairs

m m

> (0T (@) —yi)?

=1 =1

<
—~
s
N~—
I
~
—
QS>
<
oy
N~—
I

@ Write our objective formally as
miniamize J(0)

simple example of an optimization problem; these will dominate our
development of algorithms throughout the course
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How do we optimize a function

@ Search algorithm: Start with an initial guess for 6. Keep changing 6 (by
a little bit) to reduce J(0)

@ Animation https://www.youtube.com/watch?v=vWFjqgb-ylQ
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Gradient descent

@ Search algorithm: Start with an initial guess for 6. Keep changing 6 (by
a little bit) to reduce J(0)
JO) =D L yi) = > _ (0" o) — i)
i=1 i=1
- C = — o20) ;
@ Gradient descent: 0; = 0; — « o0, for all j
07 _ OXT\(0" 0w~ i) _ § 00" (ar) = i)

00; 0, 90,

=1

U T () — s
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Gradient descent

@ Repeat until “convergence”:

0; =0, —aY 2007¢(x;) — yi)p(:);, for all j

i=1

e Demo:
https://lukaszkujawa.github.io/gradient-descent.html

@ Stochastic gradient descent
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@ Let's write J(0) a little more compactly using matrix notation; define

— ¢(x)" — Y1
PeR™k=| ¢(:D.2)T |, yerm= "
— Olam)" — Ym
then .
J(O) =Y (07 éx:) —v)* = |90 — w3
i=1
(/lz]l2 is £2 norm of a vector: ||z]|2 = /> 1t 22 = V2T2)

o Called least-squares objective function
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e How do we optimize a function? 1-D case (6 € R):

4 -

A

dJ
* minimum — ﬂ =0
de o*
= 20" —-2=0
—= 0" =1
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@ Multi-variate case: # € R*, J:RF 5 R

Generalized condition: VyJ(8)|y. =0

e VyJ(0) denotes gradient of J with respect to 6

9
901

aJ
VoJ(0) € R = | 9
a7
00y

@ Some important rules and common gradient

Vo(af(0) +bg(0)) = aVaf(0) +bVeg(0), (a,beR)
V(0T A0) = (A+ AT)0, (A e RF*F)
Vo(b10) =b, (beRF)
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o Optimizing least-squares objective
J(0) = |20 — ylI3
= (20 — )" (20 — y)
=0ToTd0 — 29700 + yTy
@ Using the previous gradient rules
Vo J(0) = Vo(0T DT D0 — 247 D0 + yTy)
= V(0727 ®0) — 2V,(y" ®0) + Vo (y'y)
= 20730 — 287y
o Setting gradient equal to zero
20700 — 207y =0 = 0* = (2T0) o7y

known as the normal equations
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@ Let's see how this looks in MATLAB code

X = load(high_temperature.txt) ;
y = load(peak_demand.txt);

n = size(X,2);

m = size(X,1);

Phi = [X ones(m,1)];

theta = inv(Phi~ * Phi) * Phi~ * y;

theta =
0.0466
-1.4600

@ The normal equations are so common that MATLAB has a special
operation for them

% same as inv(Phi~ * Phi) * Phi~ * y
theta = Phi \ y; J

Stefano Ermon Machine Learning 1: Linear Regression March 31, 2016 21 /25



Higher-dimensional inputs

o Input: € R? = [ temperature ]

hour of day

e Output: y € R = demand
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temperature
e Features: ¢(x) € R3 = | hour of day
1

@ Same matrices as before

— o(z)" — 1
- @Z)(l‘m)T - Ym

@ Same solution as before

6 c R = (&7Td)" 1oy
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