Machine Learning 1: Linear Regression

Stefano Ermon

March 31, 2016

Plan for today

Plan for today:

• Supervised Machine Learning: linear regression

Renewable electricity generation in the U.S

	Hydropower	Solar ¹	Wind	Geothermal	Biomass	Total Renewables
2004	6.7%	0.0%	0.4%	0.4%	1.3%	8.8%
2005	6.7%	0.0%	0.4%	0.4%	1.3%	8.8%
2006	7.1%	0.0%	0.7%	0.4%	1.3%	9.5%
2007	5.9%	0.0%	0.8%	0.4%	1.3%	8.5%
2008	6.2%	0.1%	1.3%	0.4%	1.3%	9.3%
2009	6.9%	0.1%	1.9%	0.4%	1.4%	10.6%
2010	6.3%	0.1%	2.3%	0.4%	1.4%	10.4%
2011	7.8%	0.2%	2.9%	0.4%	1.4%	12.6%
2012	6.8%	0.3%	3.4%	0.4%	1.4%	12.4%
2013	6.6%	0.5%	4.1%	0.4%	1.5%	13.1%
2014	6.3%	0.8%	4.4%	0.4%	1.6%	13.5%

Source: Renewable energy data book, NREL

Challenges for the grid

- Wind and solar are intermittent
- We will need traditional power plants when the wind stops
 - Many power plants (e.g., nuclear) cannot be easily turned on/off or quickly ramped up/down
- With more accurate forecasts, wind and solar power become more efficient alternatives
 - A few years ago, Xcel Energy (Colorado) ran ads opposing a proposal that it use 10% of renewable sources
 - Thanks to wind forecasting (ML) algorithms developed at NCAR, they now aim for 30 percent. Accurate forecasting saved the utility \$6-\$10 million per year

Motivation

- Solar and wind are intermittent
- Can we accurately forecast how much energy will we consume tomorrow?
 - Difficult to estimate from "a priori" models
 - But, we have lots of data from which to build a model

Typical electricity consumption

Data: PJM http://www.pjm.com

Predict peak demand from high temperature

- What will peak demand be tomorrow?
- If we know something else about tomorrow (like the high temperature), we can use this to *predict* peak demand

Data: PJM, Weather Underground (summer months, June-August)

Stefano Ermon

Machine Learning 1: Linear Regression

A simple model

• A linear model that predicts demand:

predicted peak demand = $\theta_1 \cdot (\text{high temperature}) + \theta_2$

• Parameters of model: $\theta_1, \theta_2 \in \mathbb{R}$ ($\theta_1 = 0.046, \theta_2 = -1.46$)

A simple model

- We can use a model like this to make predictions
- What will be the peak demand tomorrow?
 - I know from weather report that high temperature will be 80°F (ignore, for the moment, that this too is a prediction)
- Then predicted peak demand is:

$$\theta_1 \cdot 80 + \theta_2 = 0.046 \cdot 80 - 1.46 = 2.19 \text{ GW}$$

Formal problem setting

- Input: $x_i \in \mathbb{R}^n$, i = 1, ..., m• E.g.: $x_i \in \mathbb{R}^1 = \{ \text{high temperature for day } i \}$
- Output: $y_i \in \mathbb{R}$ (regression task) • E.g.: $y_i \in \mathbb{R} = \{\text{peak demand for day } i\}$
- Model Parameters: $\theta \in \mathbb{R}^k$
- Predicted Output: $\hat{y}_i \in \mathbb{R}$

$$\mathsf{E.g.:} \ \hat{y}_i = \theta_1 \cdot x_i + \theta_2$$

• For convenience, we define a function that maps inputs to *feature* vectors

$$\phi: \mathbb{R}^n \to \mathbb{R}^k$$

• For example, in our task above, if we define

$$\phi(x_i) = \left[egin{array}{c} x_i \\ 1 \end{array}
ight]$$
 (here $n=1$, $k=2$)

then we can write

$$\hat{y}_i = \sum_{j=1}^k \theta_j \cdot \phi_j(x_i) \equiv \theta^T \phi(x_i)$$

Loss functions

• Want a model that performs "well" on the data we have

I.e.,
$$\hat{y}_i \approx y_i$$
, $\forall i$

• We measure "closeness" of \hat{y}_i and y_i using loss function

 $\ell:\mathbb{R}\times\mathbb{R}\to\mathbb{R}_+$

• Example: squared loss

$$\ell(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

Finding model parameters, and optimization

• Want to find model parameters such that minimize sum of costs over all input/output pairs

$$J(\theta) = \sum_{i=1}^{m} \ell(\hat{y}_i, y_i) = \sum_{i=1}^{m} (\theta^T \phi(x_i) - y_i)^2$$

• Write our objective formally as

$$\underset{\theta}{\text{minimize}} \quad J(\theta)$$

simple example of an *optimization problem*; these will dominate our development of algorithms throughout the course

How do we optimize a function

- Search algorithm: Start with an initial guess for θ. Keep changing θ (by a little bit) to reduce J(θ)
- Animation https://www.youtube.com/watch?v=vWFjqgb-ylQ

Gradient descent

• Search algorithm: Start with an initial guess for θ . Keep changing θ (by a little bit) to reduce $J(\theta)$

$$J(\theta) = \sum_{i=1}^{m} \ell(\hat{y}_i, y_i) = \sum_{i=1}^{m} (\theta^T \phi(x_i) - y_i)^2$$

• Gradient descent:
$$heta_j = heta_j - lpha rac{\partial J(heta)}{\partial heta_j}$$
, for all j

$$\frac{\partial J}{\partial \theta_j} = \frac{\partial \sum_{i=1}^m (\theta^T \phi(x_i) - y_i)^2}{\partial \theta_j} = \sum_{i=1}^m \frac{\partial (\theta^T \phi(x_i) - y_i)^2}{\partial \theta_j}$$
$$= \sum_{i=1}^m 2(\theta^T \phi(x_i) - y_i) \frac{\partial (\theta^T \phi(x_i) - y_i)}{\partial \theta_j}$$
$$= \sum_{i=1}^m 2(\theta^T \phi(x_i) - y_i) \phi(x_i)_j$$

Stefano Ermon

Gradient descent

• Repeat until "convergence":

$$\theta_j = \theta_j - \alpha \sum_{i=1}^m 2(\theta^T \phi(x_i) - y_i)\phi(x_i)_j$$
, for all j

• Demo:

https://lukaszkujawa.github.io/gradient-descent.html

• Stochastic gradient descent

• Let's write $J(\theta)$ a little more compactly using matrix notation; define

$$\Phi \in \mathbb{R}^{m \times k} = \begin{bmatrix} - & \phi(x_1)^T & - \\ - & \phi(x_2)^T & - \\ \vdots & \\ - & \phi(x_m)^T & - \end{bmatrix}, \quad y \in \mathbb{R}^m = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

then

$$J(\theta) = \sum_{i=1}^{m} (\theta^{T} \phi(x_{i}) - y_{i})^{2} = \|\Phi\theta - y\|_{2}^{2}$$

 $(\|z\|_2 \text{ is } \ell_2 \text{ norm of a vector: } \|z\|_2 \equiv \sqrt{\sum_{i=1}^m z_i^2} = \sqrt{z^T z})$

• Called least-squares objective function

• How do we optimize a function? 1-D case ($\theta \in \mathbb{R}$):

• Multi-variate case: $\theta \in \mathbb{R}^k$, $J : \mathbb{R}^k \to \mathbb{R}$

Generalized condition: $\nabla_{\theta} J(\theta)|_{\theta^{\star}} = 0$

• $\nabla_{\theta} J(\theta)$ denotes gradient of J with respect to θ

$$\nabla_{\theta} J(\theta) \in \mathbb{R}^{k} \equiv \begin{bmatrix} \frac{\partial J}{\partial \theta_{1}} \\ \frac{\partial J}{\partial \theta_{2}} \\ \vdots \\ \frac{\partial J}{\partial \theta_{k}} \end{bmatrix}$$

• Some important rules and common gradient

$$\begin{aligned} \nabla_{\theta}(af(\theta) + bg(\theta)) &= a \nabla_{\theta} f(\theta) + b \nabla_{\theta} g(\theta), \quad (a, b \in \mathbb{R}) \\ \nabla_{\theta}(\theta^{T} A \theta) &= (A + A^{T})\theta, \quad (A \in \mathbb{R}^{k \times k}) \\ \nabla_{\theta}(b^{T} \theta) &= b, \quad (b \in \mathbb{R}^{k}) \end{aligned}$$

• Optimizing least-squares objective

$$J(\theta) = \|\Phi\theta - y\|_2^2$$

= $(\Phi\theta - y)^T (\Phi\theta - y)$
= $\theta^T \Phi^T \Phi\theta - 2y^T \Phi\theta + y^T y$

• Using the previous gradient rules

$$\begin{aligned} \nabla_{\theta} J(\theta) &= \nabla_{\theta} (\theta^T \Phi^T \Phi \theta - 2y^T \Phi \theta + y^T y) \\ &= \nabla_{\theta} (\theta^T \Phi^T \Phi \theta) - 2 \nabla_{\theta} (y^T \Phi \theta) + \nabla_{\theta} (y^T y) \\ &= 2 \Phi^T \Phi \theta - 2 \Phi^T y \end{aligned}$$

• Setting gradient equal to zero

$$2\Phi^T\Phi\theta^\star-2\Phi^Ty=0 \Longleftrightarrow \theta^\star=(\Phi^T\Phi)^{-1}\Phi^Ty$$

known as the normal equations

Let's see how this looks in MATLAB code

```
X = load(high_temperature.txt);
y = load(peak_demand.txt);
n = size(X,2);
m = size(X,1);
Phi = [X ones(m,1)];
theta = inv(Phi<sup>*</sup> * Phi) * Phi<sup>*</sup> * y;
theta =
    0.0466
-1.4600
```

The normal equations are so common that MATLAB has a special operation for them

```
% same as inv(Phi<sup>*</sup> * Phi) * Phi<sup>*</sup> * y
theta = Phi \ y;
```

Higher-dimensional inputs

• Input:
$$x \in \mathbb{R}^2 = \left[egin{array}{c} \mathsf{temperature} \\ \mathsf{hour} \text{ of day} \end{array}
ight]$$

• Output: $y \in \mathbb{R} = \text{demand}$

• Features:
$$\phi(x) \in \mathbb{R}^3 = \begin{bmatrix} \text{temperature} \\ \text{hour of day} \\ 1 \end{bmatrix}$$

• Same matrices as before

$$\Phi \in \mathbb{R}^{m \times k} = \begin{bmatrix} - & \phi(x_1)^T & - \\ & \vdots & \\ - & \phi(x_m)^T & - \end{bmatrix}, \quad y \in \mathbb{R}^m = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

• Same solution as before

$$\theta \in \mathbb{R}^3 = (\Phi^T \Phi)^{-1} \Phi^T y$$