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The Complexity Class NP

NP – the class of problems that are efficiently verifiable

a language ℒ is in NP if there exists a 
polynomial-time verifier 𝑅 such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 poly 𝑥 𝑅 𝑥,𝑤 = 1



Interactive Proof Systems [GMR85]

NP admits efficient non-interactive proofs

𝐺 is 3-
colorable

prover verifier

𝐺 =
public graph



Interactive Proof Systems [GMR85]

𝐺 is not 3-
colorable

prover verifier

prover and verifier 
exchange a sequence of 

messages

IP: class of languages that have an interactive proof system

accept



Interactive Proof Systems [GMR85]

Interactive proof system modeled by two algorithms 𝑃, 𝑉 with 
following properties:

• Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = 1 = 1

• Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 (𝑥) = 0 = 1

prover verifier



Interactive Proof Systems [GMR85]

Interactive proof system modeled by two algorithms 𝑃, 𝑉 with 
following properties:

• Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = 1 = 1

• Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 (𝑥) = 0 = 1

can also allow 
soundness error 𝜖

prover verifier



Interactive Proof Systems [GMR85]

prover verifier

Interactive proof system modeled by two algorithms 𝑃, 𝑉 with 
following properties:

• Completeness: ∀𝑥 ∈ ℒ ∶ Pr 𝑃, 𝑉 (𝑥) = 1 = 1

• Soundness: ∀𝑥 ∉ ℒ, ∀𝑃∗ ∶ Pr 𝑃∗, 𝑉 (𝑥) = 0 = 1

• Efficiency: 𝑉 runs in polynomial time (in 𝑥 )

randomized,
efficient

computationally 
unbounded



Interactive Proof Systems [GMR85]

prover verifier

IP: class of languages that have an interactive proof system

dIP = NP
(dIP: interactive proofs with 

deterministic verifier)
IP = PSPACE [LFKN90, Sha90]



Zero-Knowledge Proofs [GMR85]

𝐺 is 3-
colorable

𝐺 =
The proof reveals the 

witness!

Can we prove to a verifier that a statement 𝑥 is in a language ℒ without 
revealing anything more about 𝑥 other than the fact that 𝑥 ∈ ℒ?



Zero-Knowledge Proofs [GMR85]

𝑃, 𝑉∗ 𝑥

common input: statement 𝑥 ∈ ℒ

real distribution

𝒮(𝑥)

ideal distribution

Zero-Knowledge: for all efficient verifiers 𝑉∗, there exists an efficient simulator 
𝒮 such that:

∀𝑥 ∈ ℒ ∶ 𝑃, 𝑉∗ 𝑥 ≈𝑐 𝒮(𝑥)

≈𝑐



Zero-Knowledge Proofs [GMR85]

𝑃, 𝑉∗ 𝑥

real distribution

𝒮(𝑥)

ideal distribution

Zero-Knowledge: for all efficient verifiers 𝑉∗, there exists an efficient simulator 
𝒮 such that:

∀𝑥 ∈ ℒ ∶ 𝑃, 𝑉∗ 𝑥 ≈𝑐 𝒮(𝑥)

≈𝑐

honest verifier zero-knowledge 
(HVZK): simulator exists only 

for honest verifier
can also consider statistical 
zero-knowledge and perfect 

zero-knowledge

common input: statement 𝑥 ∈ ℒ



Zero-Knowledge Proofs [GMR85]

𝑃, 𝑉∗ 𝑥

real distribution

𝒮(𝑥)

ideal distribution

≈𝑐

common input: statement 𝑥 ∈ ℒ

Assuming the existence of one-way functions (OWFs), every NP (in fact, IP) 
language has a computational zero-knowledge proof system [GMW86]



Two-Party Computation

Zero knowledge is special case of two-party computation

𝑤1 𝑤2

𝑃1 𝑃2

𝑟1 𝑟2

𝑓



Two-Party Computation

Zero knowledge is special case of two-party computation

𝑤1 𝑤2

𝑃1 𝑃2

𝑚1

𝑚2

𝑚3

𝑟1 𝑟2

𝑓

Every message is a deterministic
function of the party’s input, its 

internal randomness, and the set 
of messages it has received



Two-Party Computation

Zero knowledge is special case of two-party computation

𝑤1 𝑤2

𝑦1 𝑦2

𝑃1 𝑃2

𝑚1

𝑚2

𝑚3

𝑟1 𝑟2

𝑓

Correctness:
𝑦1 = 𝑓 𝑤1, 𝑤2 = 𝑦2



Two-Party Computation

Zero knowledge is special case of two-party computation

𝑤1 𝑤2

𝑦1 𝑦2

𝑃1 𝑃2

𝑚1

𝑚2

𝑚3

View𝑃𝑖 𝑤1, 𝑤2; 𝑟1, 𝑟2 = 𝑤𝑖 , 𝑟𝑖 , 𝑚𝑖

𝑟1 𝑟2

𝑓



Two-Party Computation

Zero knowledge is special case of two-party computation

𝑤1 𝑤2

𝑦1 𝑦2

𝑃1 𝑃2

𝑚1

𝑚2

𝑚3

View𝑃𝑖 𝑤1, 𝑤2; 𝑟1, 𝑟2 = 𝑤𝑖 , 𝑟𝑖 , 𝑚𝑖

𝑦𝑖 = Π𝑓,𝑖 View𝑃𝑖 𝒘 ; 𝒓

𝑟1 𝑟2

𝑓



Multiparty Computation (MPC)
Correctness: For all inputs 𝒘 and all 𝑖 ∈ 𝑛

Pr Π𝑓,𝑖 View𝑃𝑖
𝒘 ; 𝒓 = 𝑓 𝒘 = 1

𝑤2

𝑤3𝑤4

𝑤5

𝑤1



Multiparty Computation (MPC)
Correctness: For all inputs 𝒘 and all 𝑖 ∈ 𝑛

Pr Π𝑓,𝑖 View𝑃𝑖
𝒘 ; 𝒓 = 𝑓 𝒘 = 1

𝑦2 = 𝑓(𝒘)

𝑦3 = 𝑓(𝒘)𝑦4 = 𝑓(𝒘)

𝑦5 = 𝑓(𝒘)

𝑦1 = 𝑓(𝒘)



Multiparty Computation (MPC)
𝒕-Privacy: For all 𝑇 ⊆ [𝑛] where 𝑇 ≤ 𝑡, there exists an efficient simulator 𝒮𝑇
such that for all inputs 𝒘:

View𝑃𝑖 𝒘 ; 𝒓
𝑖∈𝑇

≡ 𝒮𝑇 𝑓, 𝑤𝑖 𝑖∈𝐴, 𝑓 𝒘

𝑤2

𝑤3𝑤4

𝑤5

𝑤1



Multiparty Computation (MPC)
𝒕-Privacy: For all 𝑇 ⊆ [𝑛] where 𝑇 ≤ 𝑡, there exists an efficient simulator 𝒮𝑇
such that for all inputs 𝒘:

View𝑃𝑖 𝒘 ; 𝒓
𝑖∈𝑇

≡ 𝒮𝑇 𝑓, 𝑤𝑖 𝑖∈𝐴, 𝑓 𝒘

𝑤2

𝑤3𝑤4

𝑤5

𝑤1

Views of any 𝑡-subset of the 
parties do not reveal anything 

more about the private inputs of 
any other party



Multiparty Computation (MPC)
𝒕-Robustness: For all 𝑇 ⊆ [𝑛] where 𝑇 ≤ 𝑡, and for all 𝑓 where 𝑓 𝒘 = 0 for all 𝒘, then

Pr Π𝑓,𝑖 View𝑃𝑖 𝒘 ; 𝒓 = 1 = 0

for all 𝑖 ∈ [𝑛] ∖ 𝑇 even if the players in 𝑇 have been arbitrarily corrupted

𝑤2

𝑤3𝑤4

𝑤5

𝑤1



Multiparty Computation (MPC)
𝒕-Robustness: For all 𝑇 ⊆ [𝑛] where 𝑇 ≤ 𝑡, and for all 𝑓 where 𝑓 𝒘 = 0 for all 𝒘, then

Pr Π𝑓,𝑖 View𝑃𝑖 𝒘 ; 𝒓 = 1 = 0

for all 𝑖 ∈ [𝑛] ∖ 𝑇 even if the players in 𝑇 have been arbitrarily corrupted

𝑦4 = 0

𝑦5 = 0

𝑦1 = 0

If there are no inputs 𝒘 to 𝑓
where 𝑓 𝒘 = 1, then a 

malicious adversary corrupting 
up to 𝑡 parties cannot cause 
an honest party to output 1



Zero-Knowledge from Two-Party Computation

Zero knowledge is special case of two-party computation

• Given a statement 𝑥 for an NP relation 𝑅, define the function 
𝑓𝑥 𝑤 = 𝑅(𝑥, 𝑤)

• We require a 1-private, 1-robust two-party computation protocol 
Π𝑓𝑥 for 𝑓𝑥

• The prover and verifier execute Π𝑓𝑥
• Prover’s input: the witness 𝑤

• Verifier’s input: none

• The verifier accepts if the output of Π𝑓𝑥 is 1



Zero-Knowledge from Two-Party Computation

Zero knowledge is special case of two-party computation
• General two-party computation with robustness against malicious adversaries 

requires oblivious transfer (OT) [Yao86, GMW87] and thus, cannot be 
instantiated from one-way functions

On the other hand, zero knowledge for NP is known from one-way 
functions (OWFs) [GMW86]

• Constructions very inefficient – relies on running a Karp reduction to an NP-
complete problem (e.g., 3-coloring)

This talk: constructing zero-knowledge for NP from OWFs + black-box 
use of any (semi-honest) MPC protocol



“MPC in the Head” [IKOS07]

Let 𝑅(𝑥, 𝑤) be an NP relation and define the function
𝑓𝑥 𝑤1, … , 𝑤𝑛 = 𝑅 𝑥,𝑤1 ⊕⋯⊕𝑤𝑛 ,

where 𝑛 ≥ 3

Key idea:

• Prover “simulates” an 𝑛-party MPC protocol Π𝑓𝑥 for the function 𝑓𝑥
• Verifier checks that the simulation is correct

Key advantage: relies only on OWFs and semi-honest secure MPC



“MPC in the Head” [IKOS07]

Key cryptographic primitive: commitment scheme

𝑚

𝑚

Commit 𝑚; 𝑟 → 𝑐

Open 𝑐, 𝑟 → 𝑚



“MPC in the Head” [IKOS07]
Key cryptographic primitive: commitment scheme

• Perfectly binding: each commitment can be opened in exactly one way

∀𝑟0, 𝑟1 ∶ Commit 𝑚0 ; 𝑟0 = Commit 𝑚1 ; 𝑟1 ⇒ 𝑚0 = 𝑚1

• Computationally hiding: commitment hides committed value to any 
bounded adversary:

Commit 𝑚0 ; 𝑟 ≈𝑐 Commit(𝑚1 ; 𝑟)

• Non-interactive commitments can be constructed from any injective OWF 
[Blu81]

• Interactive commitments can be constructed from any OWF



“MPC in the Head” [IKOS07]

(𝑥, 𝑤)

𝑅(𝑥, 𝑤) is an NP relation

𝑓𝑥 𝑤1, … , 𝑤𝑛 = 𝑅 𝑥,𝑤1 ⊕⋯⊕𝑤𝑛

Π𝑓𝑥



“MPC in the Head” [IKOS07]
𝑓𝑥 𝑤1, … , 𝑤𝑛 = 𝑅 𝑥,𝑤1 ⊕⋯⊕𝑤𝑛

Π𝑓𝑥Step 1: Secret share the witness

𝑤 =

uniformly random strings

𝑤1 ⊕ 𝑤2 ⊕ 𝑤3 ⊕ 𝑤4 ⊕ 𝑤5𝑤1 𝑤2 𝑤3 𝑤4 𝑤5



“MPC in the Head” [IKOS07]
𝑓𝑥 𝑤1, … , 𝑤𝑛 = 𝑅 𝑥,𝑤1 ⊕⋯⊕𝑤𝑛

Π𝑓𝑥Step 2: Simulate Π𝑓𝑥 using randomness 𝒓

𝑤 =

uniformly random strings

𝑤1 ⊕ 𝑤2 ⊕ 𝑤3 ⊕ 𝑤4 ⊕ 𝑤5

𝑤1

𝑤2

𝑤3𝑤4

𝑤5



“MPC in the Head” [IKOS07]
𝑓𝑥 𝑤1, … , 𝑤𝑛 = 𝑅 𝑥,𝑤1 ⊕⋯⊕𝑤𝑛

Π𝑓𝑥Step 3: Commit to the view of each party

𝑤1

𝑤2

𝑤3𝑤4

𝑤5

𝑐1 = Commit View𝑃1 𝒘; 𝒓 ; 𝑟1
′

⋮
𝑐𝑛 = Commit View𝑃𝑛 𝒘; 𝒓 ; 𝑟𝑛

′



“MPC in the Head” [IKOS07]

(𝑥, 𝑤)
𝑐1, 𝑐2, … , 𝑐𝑛

public input: statement 𝑥

Step 4: Prover sends the commitments to the verifier



“MPC in the Head” [IKOS07]

(𝑥, 𝑤)

Step 5: Verifier challenges prover to open two of the views (at random)

public input: statement 𝑥

1 ≤ 𝑖 < 𝑗 ≤ 𝑛

𝑐1, 𝑐2, … , 𝑐𝑛



“MPC in the Head” [IKOS07]

(𝑥, 𝑤)

Step 6: Prover opens up commitments to requested views

1 ≤ 𝑖 < 𝑗 ≤ 𝑛

Open 𝑐𝑖 , 𝑟𝑖
′ , Open(𝑐𝑗 , 𝑟𝑗

′)

public input: statement 𝑥

𝑐1, 𝑐2, … , 𝑐𝑛



“MPC in the Head” [IKOS07]

Step 7: Verifier checks the proof

Verification conditions:
1. Commitments are correctly opened
2. The outputs of both 𝑃𝑖 and 𝑃𝑗 is 1

3. The views View𝑃𝑖 and View𝑃𝑗 are consistent with an honest execution of Π𝑓𝑥

(𝑥, 𝑤)

1 ≤ 𝑖 < 𝑗 ≤ 𝑛

Open 𝑐𝑖 , 𝑟𝑖
′ , Open(𝑐𝑗 , 𝑟𝑗

′)

𝑐1, 𝑐2, … , 𝑐𝑛



“MPC in the Head” [IKOS07]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and 
computationally hiding and that Π𝑓𝑥 is perfectly correct and is 2-private (against semi-

honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation 𝑅.

Completeness:
• Suppose 𝑅 𝑥,𝑤 = 1
• Prover is honest so 𝑤 = 𝑤1 ⊕⋯⊕𝑤𝑛

• By construction, 𝑓𝑥 𝑤1, … , 𝑤𝑛 = 𝑅 𝑥,𝑤 = 1
• Perfect correctness of Π𝑓𝑥 implies that all parties in honest execution 

output 𝑓𝑥 𝑤1, … , 𝑤𝑛 = 1



“MPC in the Head” [IKOS07]

Soundness:
• Suppose 𝑅 𝑥,𝑤 = 0 for all 𝑤
• By perfect correctness of Π𝑓𝑥, for all choices of 𝑤1, … , 𝑤𝑛, parties in an honest 

execution of Π𝑓𝑥 will output 0

• Either all outputs are 0 or there is at least one pair of views that are inconsistent
• Verifier rejects with probability at least 1/𝑛2 (commitments are perfectly 

binding)

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and 
computationally hiding and that Π𝑓𝑥 is perfectly correct and is 2-private (against semi-

honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation 𝑅.



“MPC in the Head” [IKOS07]

Soundness:
• Suppose 𝑅 𝑥,𝑤 = 0 for all 𝑤
• By perfect correctness of Π𝑓𝑥, for all choices of 𝑤1, … , 𝑤𝑛, parties in an honest 

execution of Π𝑓𝑥 will output 0

• Either all outputs are 0 or there is at least one pair of views that are inconsistent
• Verifier rejects with probability at least 1/𝑛2 (commitments are perfectly 

binding)

Can be amplified by running the 
protocol multiple times (𝜅𝑛2

times to achieve negligible 
soundness error 2−𝜅)

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and 
computationally hiding and that Π𝑓𝑥 is perfectly correct and is 2-private (against semi-

honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation 𝑅.



“MPC in the Head” [IKOS07]

Zero-Knowledge:
• Suppose that 𝑅 𝑥,𝑤 = 1
• View of verifier consists of committed views to all parties, and views 

View𝑃𝑖(𝒘; 𝒓) and View𝑃𝑗(𝒘; 𝒓) (which include 𝑤𝑖 and 𝑤𝑗) for two of the parties

• When 𝑛 ≥ 3, 𝑤𝑖 , 𝑤𝑗 are uniformly random strings

• By 2-privacy of Π𝑓𝑥, View𝑃𝑖(𝒘; 𝒓) and View𝑃𝑗(𝒘; 𝒓) can be simulated given just 

𝑓𝑥 , 𝑤𝑖 , 𝑤𝑗 , 𝑓𝑥 𝒘 = 1

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and 
computationally hiding and that Π𝑓𝑥 is perfectly correct and is 2-private (against semi-

honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation 𝑅.



Zero-Knowledge:
• Suppose that 𝑅 𝑥,𝑤 = 1
• View of verifier consists of committed views to all parties, and views 

View𝑃𝑖(𝒘; 𝒓) and View𝑃𝑗(𝒘; 𝒓) (which include 𝑤𝑖 and 𝑤𝑗) for two of the parties

• When 𝑛 ≥ 3, 𝑤𝑖 , 𝑤𝑗 are uniformly random strings

• By 2-privacy of Π𝑓𝑥, View𝑃𝑖(𝒘; 𝒓) and View𝑃𝑗(𝒘; 𝒓) can be simulated given just 

𝑓𝑥 , 𝑤𝑖 , 𝑤𝑗 , 𝑓𝑥 𝒘 = 1

“MPC in the Head” [IKOS07]

Since prover is honest here, 
the proof only requires privacy 

against semi-honest parties

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and 
computationally hiding and that Π𝑓𝑥 is perfectly correct and is 2-private (against semi-

honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation 𝑅.



“MPC in the Head” [IKOS07]

Concrete instantiations:
• Information-theoretic: 5-party BGW protocol [BGW88]
• Computational (based on OT): 3-party GMW protocol [GMW87]
• … and many more

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and 
computationally hiding and that Π𝑓𝑥 is perfectly correct and is 2-private (against semi-

honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation 𝑅.



“MPC in the Head” [IKOS07]

Using an 𝑛-party MPC protocol, the soundness error is 1 − 1/𝑛2

Consequence: achieving negligible soundness 2−𝜅 requires Ω(𝜅)
repetitions of the protocol

Can we obtain negligible soundness error without performing the 
Ω(𝜅) repetitions of the protocol?



“MPC in the Head” [IKOS07]

Using an 𝑛-party MPC protocol, the soundness error is 1 − 1/𝑛2

Soundness error is large because verifier checks only a single view

Can reduce the soundness error by having the prover open up more views 
(e.g., 𝑡 = Θ(𝜅) views)

• Zero-knowledge maintained as long as Π𝑓𝑥 is 𝑡-private

• Soundness amplification will rely on leveraging robustness of Π𝑓𝑥



“MPC in the Head” [IKOS07]

Using an 𝑛-party MPC protocol, the soundness error is 1 − 1/𝑛2

Soundness error is large because verifier checks only a single view

Can reduce the soundness error by having the prover open up more views 
(e.g., 𝑡 = Θ(𝜅) views)

• Zero-knowledge maintained as long as Π𝑓𝑥 is 𝑡-private

• Soundness amplification will rely on leveraging robustness of Π𝑓𝑥

Without robustness, even if the 
prover open 𝑛 − 1 views, the 

soundness error can still be 𝑂
1

𝑛



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

(𝑥, 𝑤)

𝑇 ⊆ [𝑛] where 𝑇 = 𝑡

𝑐1, 𝑐2, … , 𝑐𝑛

Open 𝑐𝑖 , 𝑟𝑖
′

𝑖∈[𝑇]

Verifier can now ask for 𝑡 openings without compromising zero-knowledge

𝑛 = Θ(𝜅) 𝑡 = Θ(𝑛)



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

To analyze soundness, define the inconsistency graph 𝐺 for the prover’s 
simulated MPC protocol:

1

5

4 3

2
• Nodes correspond to parties
• An edge between 𝑖 and 𝑗 denotes 

an inconsistency between View𝑃𝑖

and View𝑃𝑗



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

To analyze soundness, define the inconsistency graph 𝐺 for the prover’s 
simulated MPC protocol:

1

5

4 3

2
Verifier chooses some subset of nodes 
and rejects if induced subgraph on 
those nodes contains an edge

Verifier rejects



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

To analyze soundness, define the inconsistency graph 𝐺 for the prover’s 
simulated MPC protocol:

1

5

4 3

2
Verifier chooses some subset of nodes 
and rejects if induced subgraph on 
those nodes contains an edge

Verifier may accept



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

Case 1: Suppose 𝐺 contains a vertex cover 𝐵 of size at most 𝑡

1

5

4 3

2

𝐵 = 4,5

small number of corrupted 
parties ⇒ most parties are 
honest and will output 0 by 

robustness



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

Case 1: Suppose 𝐺 contains a vertex cover 𝐵 of size at most 𝑡

1

5

4 3

2

• By definition, views of all nodes not in 𝐵 are 
consistent (i.e., correspond to an honest 
protocol execution)

• Π𝑓𝑥 is 𝑡-robust, so all nodes not in 𝐵 output 0

on a false statement𝐵
corrupted 

nodes

honest nodes



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

Case 1: Suppose 𝐺 contains a vertex cover 𝐵 of size at most 𝑡

1

5

4 3

2

• By definition, views of all nodes not in 𝐵 are 
consistent (i.e., correspond to an honest 
protocol execution)

• Π𝑓𝑥 is 𝑡-robust, so all nodes not in 𝐵 output 0

on a false statement
• Verifier can only accept if 𝑇 ⊆ 𝐵, so soundness 

error is bounded by  𝑡 𝑛 𝑡 = 2−Ω 𝑛 = 2−Ω 𝜅

𝐵
corrupted 

nodes

honest nodes

Failure only if all
nodes chosen by 
verifier fall in 𝐵



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

Case 2: Suppose the minimum vertex cover of 𝐺 has size greater than 𝑡

1

2

34

5

6

large number of corrupted 
parties ⇒ likely to be detected 

by verifier



“MPC in the Head” [IKOS07]

Suppose Π𝑓𝑥 is an 𝑛-party MPC protocol that is 𝑡-private and 𝑡-robust

Case 2: Suppose the minimum vertex cover of 𝐺 has size greater than 𝑡

1

2

34

5

6

• Then 𝐺 has a matching of size greater than 𝑡/2
• Verifier accepts only if no edges in 𝐺 between 

any of the nodes in 𝑇, and in particular, no 
edges in the matching

• Since 𝑡 = Θ(𝑛), the verifier misses all edges in 

the matching with probability 2−Ω 𝑛 = 2−Ω 𝜅



“MPC in the Head” [IKOS07]

Theorem [IKOS07]. Suppose that the following holds:
• the commitment scheme is perfectly binding and computationally 

hiding,
• Π𝑓𝑥 is 𝑡-private (against semi-honest adversaries), and 𝑡-robust 

(against malicious adversaries) 𝑛-party protocol for 𝑓𝑥.
If 𝑡 = Θ(𝜅) and 𝑛 = Θ(𝑡), then this protocol is an honest-verifier zero-
knowledge proof for the NP-relation 𝑅 with soundness error 2−𝜅.

Relies only on OWFs (for the commitments) and black-box access to 𝛱𝑓𝑥.



“MPC in the Head” [IKOS07]

Theorem [IKOS07]. Suppose that the following holds:
• the commitment scheme is perfectly binding and computationally 

hiding,
• Π𝑓𝑥 is 𝑡-private (against semi-honest adversaries), and 𝑡-robust 

(against malicious adversaries) 𝑛-party protocol for 𝑓𝑥.
If 𝑡 = Θ(𝜅) and 𝑛 = Θ(𝑡), then this protocol is an honest-verifier zero-
knowledge proof for the NP-relation 𝑅 with soundness error 2−𝜅.

Relies only on OWFs (for the commitments) and black-box access to 𝛱𝑓𝑥.

Can be boosted to zero-knowledge 
by having the verifier commit to its 
queries using a statistically-hiding

commitment scheme [Ros04]



“MPC in the Head” [IKOS07]

Theorem [IKOS07]. Suppose that the following holds:
• the commitment scheme is perfectly binding and computationally 

hiding,
• Π𝑓𝑥 is 𝑡-private (against semi-honest adversaries), and 𝑡-robust 

(against malicious adversaries) 𝑛-party protocol for 𝑓𝑥.
If 𝑡 = Θ(𝜅) and 𝑛 = Θ(𝑡), then this protocol is an honest-verifier zero-
knowledge proof for the NP-relation 𝑅 with soundness error 2−𝜅.

Relies only on OWFs (for the commitments) and black-box access to 𝛱𝑓𝑥.

Concrete parameters: for 
2−80 soundness error, can 
use (𝑛, 𝑡, 𝑟) = 92,64,64



ZKBoo [GMO16]

𝑆 ⊆ [𝑛] where 𝑆 = 𝑡1

𝑐1, 𝑐2, … , 𝑐𝑛

Open 𝑐𝑖 , 𝑟𝑖
′

𝑖∈[𝑆]

For concrete soundness targets (e.g., 2−80), most efficient instantiation of IKOS is to 
use simple, non-robust multiparty computation protocol and amplify soundness by 

repeating the protocol



ZKBoo [GMO16]

𝑆 ⊆ [𝑛] where 𝑆 = 𝑡1

𝑐1, 𝑐2, … , 𝑐𝑛

Open 𝑐𝑖 , 𝑟𝑖
′

𝑖∈[𝑆]

For concrete soundness targets (e.g., 2−80), most efficient instantiation of IKOS is to 
use simple, non-robust multiparty computation protocol and amplify soundness by 

repeating the protocol

𝑛-party BGW protocol obtaining 
soundness error 2−80 requires

𝑛 = 1122, 𝑡 = 374

iterating a 3-party protocol with 2-
privacy yields proofs which contain 
274 bits per multiplication gate for 

2−80 soundness



ZKBoo [GMO16] 

𝑤2

𝑤3𝑤4

𝑤5

𝑤1

Emulating an MPC protocol cheaper than running the MPC protocol in the 
standard model

point-to-point channel

𝑚

𝑚



ZKBoo [GMO16] 

𝑤2

𝑤3𝑤4

𝑤5

𝑤1

Emulating an MPC protocol cheaper than running the MPC protocol in the 
standard model

𝑚0, 𝑚1 𝑏 ∈ 0,1

OT channel

𝑚𝑏



ZKBoo [GMO16] 

𝑤2

𝑤3𝑤4

𝑤5

𝑤1

Emulating an MPC protocol cheaper than running the MPC protocol in the 
standard model

𝑥

𝑓(𝑥, 𝑦)

𝑦

arbitrary channel



ZKBoo [GMO16] 

Emulating an MPC protocol cheaper than running the MPC protocol in the 
standard model

• In MPC setting, channels are 
implemented using secure two-party 
computation

• In “MPC-in-the-head,” can model 
them as ideal functionalities (e.g., as 
an oracle to the function 𝑓)

𝑥

𝑓(𝑥, 𝑦)

𝑦

arbitrary channel



ZKBoo [GMO16] 

Emulating an MPC protocol cheaper than running the MPC protocol in the 
standard model

• In MPC setting, channels are 
implemented using secure two-party 
computation

• In “MPC-in-the-head,” can model 
them as ideal functionalities (e.g., as 
an oracle to the function 𝑓)

𝑥

𝑓(𝑥, 𝑦)

𝑦

arbitrary channel

does not trivialize the 
problem since protocol must 

still provide privacy



ZKBoo [GMO16] 

Emulating an MPC protocol cheaper than running the MPC protocol in the 
standard model

• In MPC setting, channels are 
implemented using secure two-party 
computation

• In “MPC-in-the-head,” can model 
them as ideal functionalities (e.g., as 
an oracle to the function 𝑓)

• New design space for MPC protocols

𝑥

𝑓(𝑥, 𝑦)

𝑦

arbitrary channel



ZKBoo [GMO16] 
𝑓𝑥 𝑤1, … , 𝑤𝑛 = 𝑅 𝑥,𝑤1 ⊕⋯⊕𝑤𝑛

Π𝑓𝑥How to construct 𝛱𝑓𝑥?

𝑤1

𝑤2

𝑤3𝑤4

𝑤5(𝑥, 𝑤)



(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

𝑤1
0 𝑤2

0
𝑤3

0 𝑤 = 𝑤1 + 𝑤2 + 𝑤3

Function evaluation 
on secret shared-

inputs



(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

𝑤1
0 𝑤2

0
𝑤3

0

𝑓1
(1)

𝑓2
(1)

𝑓3
(1)

𝑓1
(2)

𝑓2
(2)

𝑓3
(2)

⋮ ⋮ ⋮
𝑦1 𝑦2 𝑦3

𝑤 = 𝑤1 + 𝑤2 + 𝑤3

𝑦 = 𝑦1 + 𝑦2 + 𝑦3

gate-by-gate 
evaluation of 𝑓

𝑤1
1

𝑤3
1

𝑤2
1

Each party 
communicates with 

one other party

protocol execution 
proceeds in a 

series of rounds



(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

𝑤1
0 𝑤2

0
𝑤3

0

𝑓1
(1)

𝑓2
(1)

𝑓3
(1)

𝑓1
(2)

𝑓2
(2)

𝑓3
(2)

⋮ ⋮ ⋮
𝑦1 𝑦2 𝑦3

𝑤1
1

𝑤3
1

𝑤2
1

View𝑃𝑖 𝒘 ; 𝒓 = 𝑤𝑖
0
, … , 𝑤𝑖

𝑁

protocol is 2-private



(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

Add𝛼
𝑥 𝑥 + 𝛼

Multiply𝛼
𝑥 𝛼𝑥

Add
𝑥

𝑦

𝑥 + 𝑦

Multiply
𝑥

𝑦

𝑥𝑦



(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

Add𝛼
𝑥 𝑥 + 𝛼

𝑥1 𝑥2 𝑥3

𝑓1 𝑓2 𝑓3

𝑥1 + 𝛼 𝑥2 𝑥3

𝑥 = 𝑥1 + 𝑥2 + 𝑥3

𝑥1 + 𝛼 + 𝑥2 + 𝑥3 = 𝑥 + 𝛼

no interaction 
needed



Multiply𝛼
𝑥 𝛼𝑥

(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

𝑥1 𝑥2 𝑥3

𝑓1 𝑓2 𝑓3

𝛼𝑥1 𝛼𝑥2 𝛼𝑥3

𝑥 = 𝑥1 + 𝑥2 + 𝑥3

𝛼𝑥1 + 𝛼𝑥2 + 𝛼𝑥3 = 𝛼𝑥

no interaction 
needed



Add
𝑥

𝑦

𝑥 + 𝑦

(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

𝑥1, 𝑦1 𝑥2, 𝑦2 𝑥3, 𝑦3

𝑓1 𝑓2 𝑓3

𝑥1 + 𝑦1 𝑥2 + 𝑦2 𝑥3 + 𝑦3

𝑥 = 𝑥1 + 𝑥2 + 𝑥3

𝑥1 + 𝑦1 + 𝑥2 + 𝑦2 + 𝑥3 + 𝑦3 = 𝑥 + 𝑦

𝑦 = 𝑦1 + 𝑦2 + 𝑦3no interaction 
needed



Multiply
𝑥

𝑦

𝑥𝑦

(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽
𝑥 = 𝑥1 + 𝑥2 + 𝑥3

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2

only depends on 𝑥1,𝑦1,𝑥2,𝑦2

+ 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3

only depends on 𝑥2,𝑦2,𝑥3,𝑦3

+ 𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1

only depends on 𝑥1,𝑦1,𝑥3,𝑦3

= 𝑥1 + 𝑥2 + 𝑥3 𝑦1 + 𝑦2 + 𝑦3 = 𝑥𝑦

𝑦 = 𝑦1 + 𝑦2 + 𝑦3

𝑥1, 𝑦1 𝑥2, 𝑦2 𝑥3, 𝑦3



Multiply
𝑥

𝑦

𝑥𝑦

(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

𝑥1, 𝑦1 𝑥2, 𝑦2 𝑥3, 𝑦3

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2

𝑥 = 𝑥1 + 𝑥2 + 𝑥3
𝑦 = 𝑦1 + 𝑦2 + 𝑦3

𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3

𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1

𝑓1 𝑓2 𝑓3

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2

only depends on 𝑥1,𝑦1,𝑥2,𝑦2

+ 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3

only depends on 𝑥2,𝑦2,𝑥3,𝑦3

+ 𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1

only depends on 𝑥1,𝑦1,𝑥3,𝑦3

= 𝑥1 + 𝑥2 + 𝑥3 𝑦1 + 𝑦2 + 𝑦3 = 𝑥𝑦



Multiply
𝑥

𝑦

𝑥𝑦

(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

𝑥1, 𝑦1 𝑥2, 𝑦2 𝑥3, 𝑦3

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2

𝑥 = 𝑥1 + 𝑥2 + 𝑥3
𝑦 = 𝑦1 + 𝑦2 + 𝑦3

𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3

𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1

cannot be 2-private: 
information about 𝑥3, 𝑦3

revealed

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2

only depends on 𝑥1,𝑦1,𝑥2,𝑦2

+ 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3

only depends on 𝑥2,𝑦2,𝑥3,𝑦3

+ 𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1

only depends on 𝑥1,𝑦1,𝑥3,𝑦3

= 𝑥1 + 𝑥2 + 𝑥3 𝑦1 + 𝑦2 + 𝑦3 = 𝑥𝑦



Multiply
𝑥

𝑦

𝑥𝑦

(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

𝑥1, 𝑦1 𝑥2, 𝑦2 𝑥3, 𝑦3

𝑓1 𝑓2 𝑓3

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2 + 𝑅1 𝑐 − 𝑅2(𝑐)

𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3 + 𝑅2 𝑐 − 𝑅3(𝑐)

𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑅3 𝑐 − 𝑅1(𝑐)

𝑥 = 𝑥1 + 𝑥2 + 𝑥3
𝑦 = 𝑦1 + 𝑦2 + 𝑦3

similar to GMW, blind 
each intermediate 

product

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2

only depends on 𝑥1,𝑦1,𝑥2,𝑦2

+ 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3

only depends on 𝑥2,𝑦2,𝑥3,𝑦3

+ 𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1

only depends on 𝑥1,𝑦1,𝑥3,𝑦3

= 𝑥1 + 𝑥2 + 𝑥3 𝑦1 + 𝑦2 + 𝑦3 = 𝑥𝑦



Multiply
𝑥

𝑦

𝑥𝑦

(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

𝑥1, 𝑦1 𝑥2, 𝑦2 𝑥3, 𝑦3

𝑓1 𝑓2 𝑓3

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2 + 𝑅1 𝑐 − 𝑅2(𝑐)

𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3 + 𝑅2 𝑐 − 𝑅3(𝑐)

𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑅3 𝑐 − 𝑅1(𝑐)

𝑥 = 𝑥1 + 𝑥2 + 𝑥3
𝑦 = 𝑦1 + 𝑦2 + 𝑦3

random blinding factors 
(𝑅𝑖(𝑐) is randomness used 

by 𝑖th party on gate 𝑐)

similar to GMW, blind 
each intermediate 

product

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2

only depends on 𝑥1,𝑦1,𝑥2,𝑦2

+ 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3

only depends on 𝑥2,𝑦2,𝑥3,𝑦3

+ 𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1

only depends on 𝑥1,𝑦1,𝑥3,𝑦3

= 𝑥1 + 𝑥2 + 𝑥3 𝑦1 + 𝑦2 + 𝑦3 = 𝑥𝑦



Multiply
𝑥

𝑦

𝑥𝑦

(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

𝑥1, 𝑦1 𝑥2, 𝑦2 𝑥3, 𝑦3

𝑓1 𝑓2 𝑓3

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2 + 𝑅1 𝑐 − 𝑅2(𝑐)

𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3 + 𝑅2 𝑐 − 𝑅3(𝑐)

𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑅3 𝑐 − 𝑅1(𝑐)

𝑥 = 𝑥1 + 𝑥2 + 𝑥3
𝑦 = 𝑦1 + 𝑦2 + 𝑦3

1 bit per multiplication

similar to GMW, blind 
each intermediate 

product

𝑥1𝑦1 + 𝑥2𝑦1 + 𝑥1𝑦2

only depends on 𝑥1,𝑦1,𝑥2,𝑦2

+ 𝑥2𝑦2 + 𝑥3𝑦2 + 𝑥2𝑦3

only depends on 𝑥2,𝑦2,𝑥3,𝑦3

+ 𝑥3𝑦3 + 𝑥1𝑦3 + 𝑥3𝑦1

only depends on 𝑥1,𝑦1,𝑥3,𝑦3

= 𝑥1 + 𝑥2 + 𝑥3 𝑦1 + 𝑦2 + 𝑦3 = 𝑥𝑦



(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

Add𝛼
𝑥 𝑥 + 𝛼

Multiply𝛼
𝑥 𝛼𝑥

Add
𝑥

𝑦

𝑥 + 𝑦

Multiply
𝑥

𝑦

𝑥𝑦

Computation on local shares Two-party computation



(2, 3)-Function Decompositions [GMO16]

Express 𝑓𝑥 as an arithmetic circuit over finite field 𝔽

Add𝛼
𝑥 𝑥 + 𝛼

Multiply𝛼
𝑥 𝛼𝑥

Add
𝑥

𝑦

𝑥 + 𝑦

Multiply
𝑥

𝑦

𝑥𝑦

Computation on local shares Two-party computation

137 iterations + open 2 views =  
274 bits of communication per 

multiplication gate in ZKBoo



Summary

• “MPC in the head” gives new paradigm for 
constructing efficient zero-knowledge proof systems

• New directions in designing efficient MPC protocols 
for zero-knowledge can be quite efficient in practice

• Zero-knowledge protocols can also be used for 
signature schemes (Fiat-Shamir) – including post-
quantum signatures!



Open Directions

• Designing new MPC protocols for more efficient zero-
knowledge
• Many theoretical MPC protocols with better 

communication complexity – shorter proofs and (post-
quantum) signatures

• Alternative viewpoints: “MPC in the head” as a PCP 
with large alphabet (i.e., each party’s view)


