From Secure MPC to Efficient
/ero-Knowledge

David Wu
March, 2017



The Complexity Class NP

NP — the class of problems that are efficiently verifiable

a language L is in NP if there exists a
polynomial-time verifier R such that

x € L & 3w € {0,1PUxD R(x, w) =1



Interactive Proof Systems [GMR8&5]

NP admits efficient non-interactive proofs

G is 3- public graph
colorable

prover  verifier



Interactive Proof Systems [GMR8&5]

IP: class of languages that have an interactive proof system

G is not 3-
colorable

prover and verifier
exchange a sequence of
messages

|

prover B verifier



Interactive Proof Systems [GMR8&5]

Interactive proof system modeled by two algorithms (P, V) with
following properties:

* Completeness: Vx € L:Pr[(P,V)(x) =1] =1
* Soundness: Vx &L, VP* : Pr[(P*,V)(x) =0] =1

prover verifier



Interactive Proof Systems [GMR8&5]

Interactive proof system modeled by two algorithms (P,
following properties:

* Completeness: Vx € L:Pr[(P,V)(x) =1] =
* Soundness: Vx &L, VP* : Pr[(P*,V)(x) =0] =1

can also allow

soundness error €

prover  verifier



Interactive Proof Systems [GMR8&5]

Interactive proof system modeled by two algorithms (P, V) with
following properties:

* Completeness: Vx € L:Pr[(P,V)(x) =1] =1
* Soundness: Vx &L, VP* : Pr[(P*,V)(x) =0] =1
* Efficiency: V runs in polynomial time (in |x|)

randomized,
efficient

computationally
unbounded

prover  verifier



Interactive Proof Systems [GMR8&5]

IP: class of languages that have an interactive proof system

dIP = NP
(dIP: interactive proofs with IP = PSPACE [LFKN90, Sha90]
deterministic verifier)

prover | verifier



Zero-Knowledge Proofs [GMR&5]

The proof reveals the
withess!

G is 3-
colorable

Can we prove to a verifier that a statement x is in a language L without
revealing anything more about x other than the fact that x € L?



/ero-Knowledge Proofs [GMR85]

common input: statement x € L

J

real distribution ideal distribution

Zero-Knowledge: for all efficient verifiers V™, there exists an efficient simulator
S such that:

Vx €L:(P,V)x) =, §(x)



/ero-Knowledge Proofs [GMR&5]

common input: statement x € L

honest verifier zero-knowledge
(HVZK): simulator exists only
for honest verifier

can also consider statistical
zero-knowledge and perfect

Zero-Knowledge: for all efficient verifiers V7, th zero-knowledge

S such that:

Vx € L:(P,V*)(x) =, S(x)



/ero-Knowledge Proofs [GMR85]

common input: statement x € L

real distribution ideal distribution

Assuming the existence of one-way functions (OWFs), every NP (in fact, IP)
language has a computational zero-knowledge proof system [GMWS86]



Two-Party Computation

Zero knowledge is special case of two-party computation




Two-Party Computation

Every message is a deterministic

function of the party’s input, its

internal randomness, and the set
of messages it has received

Zero knowledge is special case



Two-Party Computation

Zero knowledge is special case of two-party computation

Correctness:
y1 = f(wy,wy) =y,



Two-Party Computation

Zero knowledge is special case of two-party computation

VieWPl. (Wl, Wy, 1, 7"2) — (Wi; i) {ml})



Two-Party Computation

Zero knowledge is special case of two-party computation

VieWPl. (Wl, Wy, 1, 7"2) — (Wi; i) {ml})
y; =Ty, (View,, (w ;7))



Multiparty Computation (MPC)

Correctness: For all inputs w and all i € [n]
Pr [nf,l- (Viewpi(w ;r)) - f(w)] —1



Multiparty Computation (MPC)

Correctness: For all inputs w and all i € [n]
Pr [nf,l- (Viewpi(w ;r)) - f(w)] —1

@3’1 = f(w)
ys = fw) - Fw)

O

2= (W) ys = f(w)



Multiparty Computation (MPC)

t-Privacy: For all T < [n] where |T| < t, there exists an efficient simulator S

such that for all inputs w:
{Vi@Wpi(W ) T)} = CS‘T(f' {Wi}iEAJ f(W))

LET



Multiparty Computation (MPC)

t-Privacy: For all T < [n] where |T| < t, there exists an efficient simulator S
such that for all inputs w:

{Viewp, (w; 1)}

LET

= St(f, (Widiea f(W))

Views of any t-subset of the
parties do not reveal anything
more about the private inputs of
any other party




Multiparty Computation (MPC)

t-Robustness: For all T € [n] where |T| < t, and for all f where f(w) = 0 for all w, then
Pr [Hf,i (Viewpi(w;r)) = 1] =0

foralli € [n] \ T even if the players in T have been arbitrarily corrupted



Multiparty Computation (MPC)

t-Robustness: For all T € [n] where |T| < t, and for all f where f(w) = 0 for all w, then
Pr [Hf’l- (Viewpi(w;r)) = 1] =0

foralli € [n] \ T even if the players in T have been arbitrarily corrupted

@
&k

\

V5 =

If there are no inputsw to f
where f(w) = 1, then a

malicious adversary corrupting

up to t parties cannot cause

v, =0 an honest party to output 1



/ero-Knowledge from Two-Party Computation

Zero knowledge is special case of two-party computation
e Given a statement x for an NP relation R, define the function
fr(w) = R(x,w)
* We require a 1-private, 1-robust two-party computation protocol
[1f_for fy
* The prover and verifier execute 11¢
* Prover’s input: the witness w
 Verifier’s input: none
* The verifier accepts if the output of Il is 1



/ero-Knowledge from Two-Party Computation

Zero knowledge is special case of two-party computation

* General two-party computation with robustness against malicious adversaries
requires oblivious transfer (OT) [Yao86, GMW87] and thus, cannot be
instantiated from one-way functions

On the other hand, zero knowledge for NP is known from one-way
functions (OWFs) [GMWS86]

* Constructions very inefficient — relies on running a Karp reduction to an NP-
complete problem (e.g., 3-coloring)

This talk: constructing zero-knowledge for NP from OWFs + black-box
use of any (semi-honest) MPC protocol



“MPC in the Head” [IKOSO7]

Let R(x, w) be an NP relation and define the function

fx(Wl» ---»Wn) — R(X, W1 @ @ Wn);

wheren = 3

Key idea:
* Prover “simulates” an n-party MPC protocol Il¢_for the function f,

e Verifier checks that the simulation is correct

Key advantage: relies only on OWFs and semi-honest secure MPC




“MPC in the Head” [IKOSO7]

Key cryptographic primitive: commitment scheme

Commit(m;r) - ¢

Open(c,r) > m




“MPC in the Head” [IKOSO7]

Key cryptographic primitive: commitment scheme

* Perfectly binding: each commitment can be opened in exactly one way
V1,11 ¢ Commit(mg ;1ry) = Commit(m, ;1) = my = my

* Computationally hiding: commitment hides committed value to any
bounded adversary:

Commit(m, ;r) =, Commit(m, ;)

* Non-interactive commitments can be constructed from any injective OWF
[Blu81]

* Interactive commitments can be constructed from any OWF



“MPC in the Head” [IKOSO7]
fx(Wl' '"JWn) — R(X, Wi @ @ Wn)

R(x,w) is an NP relation



“MPC in the Head” [IKOSO7]
fx(WlJ "'JWn) — R(X, Wi @ @ Wn)

uniformly random strings

Step 1: Secret share the witness



“MPC in the Head” [IKOSO7]
fx(WlJ "'JWn) — R(X, Wi @ @ Wn)

w=w Dw,Dw; P w, P wg

uniformly random strings

Step 2: Simulate Il¢_using randomness r



“MPC in the Head” [IKOSO7]
fx(WlJ "'JWn) — R(X, Wi @ @ Wn)

¢, = Commit(Viewp (w;r);7{)

¢ = Commit(View, (w;r);7)

Step 3: Commit to the view of each party



“MPC in the Head” [IKOSO7]

public input: statement x

Step 4: Prover sends the commitments to the verifier



“MPC in the Head” [IKOSO7]

public input: statement x

1<i<j<n

Step 5: Verifier challenges prover to open two of the views (at random)



“MPC in the Head” [IKOSO7]

public input: statement x

C1,Cp, ..., Cy

1<i<j<n
————————————————————————————————————

Open(c;, 77), Open(c;, rl-')

Step 6: Prover opens up commitments to requested views



“MPC in the Head” [IKOSO7]

Verification conditions:
1. Commitments are correctly opened
2. The outputs of both P; and P;jis 1

3. The views Viewp, and Vieij are consistent with an honest execution of Il

C1,Cp, ..., Cy

1<i<j<n
————————————————————————————————————

Open(c;, 77), Open(c;, rl-')

Step 7: Verifier checks the proof



“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and
computationally hiding and that Tl¢_is perfectly correct and is 2-private (against semi-
honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Completeness:
 Suppose R(x,w) =1
* Proverishonestsow =w; @ --- D wy,
* By construction, f, (w4, ...,w,,) = R(x,w) =1
* Perfect correctness of 11 implies that all parties in honest execution
output £, (wq, ..., w,,) =1



“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and
computationally hiding and that Tl¢_is perfectly correct and is 2-private (against semi-
honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Soundness:

e Suppose R(x,w) = 0 forallw

* By perfect correctness of Il¢ , for all choices of wy, ..., wy, parties in an honest
execution of IIx_ will output O

Either all outputs are O or there is at least one pair of views that are inconsistent

 Verifier rejects with probability at least 1/n? (commitments are perfectly
binding)



“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and
computationally hiding and that I1¢_is perfectly correct and is 2-private (against semi-
honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Soundness:

Can be amplified by running the
protocol multiple times (kn?

Suppose R(x,w) = 0 for all : . o
PP (x, ) times to achieve negligible
By perfect correctness of Il¢ ,

—K
execution of IIx_ will output O soundness error 277)

Either all outputs are 0 or there is at lea e pair of views that are inconsistent

Verifier rejects with probability at least 1/n? (commitments are perfectly
binding)

onest




“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and
computationally hiding and that Tl¢_is perfectly correct and is 2-private (against semi-

honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Zero-Knowledge:
e Supposethat R(x,w) =1
* View of verifier consists of committed views to all parties, and views
Viewp. (w; 1) and Viewp, (w; r) (which include w; and w;) for two of the parties
* Whenn = 3, w;, w; are uniformly random strings
* By 2-privacy of Il¢ , Viewp (w; r) and Vieij (w; r) can be simulated given just

fowiwj, fr(w) =1



“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and
computationally hiding and that I1¢_is perfectly correct and is 2-private (against semi-

honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

ARG S ce D rover is honest here,

Sl_JIOIOO the proof only requires privacy
* Viewc

* By 2-privacy of Il¢ , Viewp (w; ) and Viewp (w; r) can be simulated given just
fx: Wi, Wj, fx(W) =1



“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and
computationally hiding and that Tl¢_is perfectly correct and is 2-private (against semi-
honest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Concrete instantiations:

* |Information-theoretic: 5-party BGW protocol [BGWS88]

 Computational (based on OT): 3-party GMW protocol [GMW87]
e ..and many more



“MPC in the Head” [IKOSO7]

Using an n-party MPC protocol, the soundness erroris 1 — 1/n?

Consequence: achieving negligible soundness 27" requires Q(k)
repetitions of the protocol

Can we obtain negligible soundness error without performing the
(k) repetitions of the protocol?



“MPC in the Head” [IKOSO7]

Using an n-party MPC protocol, the soundness erroris 1 — 1/n?
Soundness error is large because verifier checks only a single view

Can reduce the soundness error by having the prover open up more views
(e.g., t = O(k) views)

* Zero-knowledge maintained as long as Il _is t-private

* Soundness amplification will rely on leveraging robustness of 11



“MPC in the Head” [IKOSO7/]

Using an n-party MPC protocol, the soundness erroris 1 — 1/n?

Soundness error is large because

Without robustness, even if the

prover open n — 1 views, the

Can reduce the soundness error L WS
(e.g., t = O(k) views) n
* Zero-knowledge maintained as long as Il _is t-privs

* Soundness amplification will rely on leveraging robustness of 11

soundness error can still be O (n



“MPC in the Head” [IKOSO7]

Suppose Il¢_is an n-party MPC protocol that is t-private and t-robust

Cl, CZ, ran Cn

Verifier can now ask for t openings without compromising zero-knowledge



“MPC in the Head” [IKOSO7]

Suppose Ilg_is an n-party MPC protocol that is t-private and t-robust

To analyze soundness, define the inconsistency graph G for the prover’s
simulated MPC protocol:

O

* Nodes correspond to parties
* An edge between i and j denotes g O

an inconsistency between Viewp.

and Vieij O 5



“MPC in the Head” [IKOSO7]

Suppose Ilg_is an n-party MPC protocol that is t-private and t-robust

To analyze soundness, define the inconsistency graph G for the prover’s
simulated MPC protocol:

Verifier chooses some subset of nodes
and rejects if induced subgraph on © 2
those nodes contains an edge

Verifier rejects



“MPC in the Head” [IKOSO7]

Suppose Ilg_is an n-party MPC protocol that is t-private and t-robust

To analyze soundness, define the inconsistency graph G for the prover’s
simulated MPC protocol:

Verifier chooses some subset of nodes
and rejects if induced subgraph on 2
those nodes contains an edge

©

Verifier may accept



“MPC in the Head” [IKOSO7]

Suppose Il¢_is an n-party MPC protocol that is t-private and t-robust

Case 1: Suppose G contains a vertex cover B of size at most ¢t

small number of corrupted
parties = most parties are

honest and will output 0 by
robustness

B = {4,5)



“MPC in the Head” [IKOSO7]

Suppose ll¢ is an n-party MPC protocol that is t-private and t-robust

Case 1: Suppose G contains a vertex cover B of size at most ¢t

* By definition, views of all nodes not in B are
consistent (i.e., correspond to an honest
protocol execution)

* Ilg_is t-robust, so all nodes not in B output 0

on a false statement
corrupted

nodes

honest nodes



“MPC in the Head” [IKOSO7]

Suppose Il¢_is an n-party MPC protocol that is t-private and t-robust

SIEERUNEIELE 56 G contains a vertex cover B of size at most ¢
nodes chosen by

verifier fall in B

3
)

* By definition, views of all nodes not in B are
consistent (i.e., correspond to an honest
protocol execution)

* Ilg_is t-robust, so all nodes not in B output 0

on a false statement
* Verifier can only accept if T € B, so soundness

error is bounded by (t/n)t = 2% = 2-x)

5

corrupted
nodes

honest nodes



“MPC in the Head” [IKOSO7]

Suppose Il¢_is an n-party MPC protocol that is t-private and t-robust

Case 2: Suppose the minimum vertex cover of G has size greater than t

large number of corrupted

parties = likely to be detected
by verifier




“MPC in the Head” [IKOSO7]

Suppose Ilg_is an n-party MPC protocol that is t-private and t-robust

Case 2: Suppose the minimum vertex cover of G has size greater than t

* Then G has a matching of size greater than t/2
© ) * Verifier accepts only if no edges in G between
any of the nodes in T, and in particular, no
(5 ) O edges in the matching
* Since t = O(n), the verifier misses all edges in

O ©O the matching with probability 27 = 20



“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose that the following holds:
 the commitment scheme is perfectly binding and computationally
hiding,
* Il is t-private (against semi-honest adversaries), and t-robust
(against malicious adversaries) n-party protocol for f,.

If t = O(k) and n = O(t), then this protocol is an honest-verifier zero-
knowledge proof for the NP-relation R with soundness error 27%.

Relies only on OWFs (for the commitments) and black-box access to Iy, .



“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose that the foIIowmg holds
* the commitment scheme is perf Can be boosted to zero-knowledge

hldlng, by having the verifier commit to its

. Hf is t-private (against X=1011Male] queries using a statistically-hiding  [ISy
X o . commitment scheme [Ros04]
(against malicious adversaries) Edada-

If t = O(k) and n = O(t), then this protocol is an honest-verifier zero-
knowledge proof for the NP-relation R with soundness error 27%.

ionally

Relies only on OWFs (for the commitments) and black-box access to Iy, .



“MPC in the Head” [IKOSO7]

Theorem [IKOS07]. Suppose that the following holds
 the commitment scheme is perfectlyine = ang|ly
hiding, Concrete parameters: for
* [l is t-private (against semi-honest 2759 soundness error, can
(against malicious adversaries) n-pal i @il i)
If t = O(k) and n = O(t), then this protocol is an honest-ve Zero-
knowledge proof for the NP-relation R with soundness error 27,

Relies only on OWFs (for the commitments) and black-box access to Iy, .



/KBoo [GMO16]

Cl, CZ, RN Cn

S € [n] where |S| = t;
G———————————

{Open(c;, 1) }iepsy

For concrete soundness targets (e.g., 278%), most efficient instantiation of IKOS is to
use simple, non-robust multiparty computation protocol and amplify soundness by
repeating the protocol



/KBoo [GMO16]

Cl’ Cz, "en Cn

S C [n] where [S| = t4

! iterating a 3-party protocol with 2-
privacy yields proofs which contain
274 bits per multiplication gate for

soundness

n-party BGW protocol obtaining

soundness error 2780 requires
n=1122,t = 374 ol

For concrete soundness targets (e.g., 278%), most efficient instantiation of IKOS is to
use simple, non-robust multiparty computation protocol and amplify soundness by
repeating the protocol



/KBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the
standard model

[461
@ m
We / W, 1
point-to-point channel

!

OX© "




/KBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the
standard model

W1
@ mo, My b S {0;1}
/Oy




/KBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the
standard model

1461
& : )
o v 1

\ / }

@»@ f(x,y)




/KBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the
standard model

In MPC setting, channels are X y
implemented using secure two-party 1 1

computation arbitrary channel
In “MPC-in-the-head,” can model y

them as ideal functionalities (e.g., as 1
an oracle to the function f)
fx,y)




/KBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the
standard model

X y

— 1

arbitrary channel

them as ideal functionalities (e.g., as 1
an oracle to the function f)
f(xy)




/KBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the
standard model

In MPC setting, channels are X y
implemented using secure two-party 1 1

computation arbitrary channel
In “MPC-in-the-head,” can model y

them as ideal functionalities (e.g., as 1
an oracle to the function f) f(x,y)
New design space for MPC protocols 24




/KBoo [GMO16]
fx(Wl' '"JWn) — R(X, Wi @ @ Wn)

How to construct fo ?



(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

O ©p G eovrre

Function evaluation

on secret shared-
inputs




(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

. w=w;+w, + w;
protocol execution

proceeds in a
series of rounds

Each party
communicates with
one other party

gate-by-gate
evaluation of f

V1 Y2 Y3 y=y1tY, ty3



(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

Q
)
)
=
.
o
N
$
O
@)
@)
)
O
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o




(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

X X+ «a

Add,,




(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

no interaction X =X+ X3+ X3
needed X1 Xy X3
X X+« l l l
? 0 0

X1+ X5 X3

(x;+a)+x,+x3=x+a



(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

no interaction
needed

X

X =X+ Xy + X3

ax

ax, axs

ax; +ax, +axz = ax



(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

x:x1+x2+x3
Yy=Yy1tYy;+Yy3

X2,Y2 X3,)Y3

l l

T 7T

X1 +Y1 X2 + Y2 X3 + Y3

no interaction
needed

—

y

(X1 +y) +(x+y) +(x3+y3) =x+y



(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

x=x1+x2+x3
Yy=Yy1tYy;+Yy3

X1, Y1 X2,Y?2 X3,)Y3

y

only depends on x1,y1,X2,¥V> only depends on x5,y5,X3,V3 only depends on x1,y1,xX3,V3

EX1Y1 + X3y + x13’25 + Exzyz + X3y, + x2y35 + Ex3J’3 + X1y3 + x3y15 =1 +x,+x3)(y1 + ¥, +y3) =xy




(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

x=x1+x2+x3
Yy=Yy1tYy;+Yy3

X1, Y1 X2, Y2 X3, Y3

s

y

X1Y1 T X2Y1 + X1Y> v X3Y3 + X1Y3 + X3Y1

X2Y2 T X3Y2 + X2)3
only depends on x1,y1,X2,¥V> only depends on x5,,y,,x3,y3  only depends on x4,y1,X3,V3

(1 y1 + 2251 Fx1Y2) + (Y, + X3y, +x273) + (Y3 +x1y3 +x3y1) = (1 +x, +x3)(y1 + ¥, +y3) = xy



(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

x:x1+x2+x3
Yy=Yy1tYy;+Yy3

w . cannot. be 2-private:
information about x5, Vs

y

R

X1y1 + Xy1 T x@ X3y3 T+ X1Y3 T X3Y1

X2Y2 + X3y + x@

only depends‘on X1,Y1,X2,Y>  only depends‘on X2,Y2,X3,Y3  only depends‘on X1,Y1,X3,Y3

Ex1)’1 + X3y + x13’25 + EXZYZ + X3y, + xz)’35 + (x33’3 + X1y3 + x33’15 =1 +x,+x3)(y1 + ¥, +y3) =xy




(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

x:x1+x2+x3
Yy=Yy1tYy;+Yy3

X1, Y1 X2, Y2 X3, Y3

s

similar to GMW, blind

each intermediate
product

y

x1Y1 + X2y + %12 + Ri(c) — Ry(¢) 1 x3ys +x1y3 +x3y1 + R3(c) — R{(c)

X2Y2 + X3Y2 + X2¥3 + Ry(c) — R3(c)
only depends on x4,y1,X2,y>  only depends on x,,y,,x3,y3 only depends on x4,y1,X3,V3

(1 y1 + 2251 Fx1Y2) + (Y, + X3y, +x273) + (Y3 +x1y3 +x3y1) = (1 +x, +x3)(y1 + ¥, +y3) = xy



(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

similar to GMW, blind
each intermediate
product

random blinding factors
(R;(c) is randomness used

by i™ party on gate ¢)

x1Y1 + X2y + %12 + Ri(c) — Ry(¢) X3Y3 + X1¥3 + x3y; + R3(c) — R{(¢)

X2Y2 + X3Y2 + X2¥3 + Ry(c) — R3(c)
only depends‘on X1,Y1,X2,Y>  only depends‘on X2,Y2,X3,Y3  only depends‘on X1,Y1,X3,Y3

Ex1)’1 + X3y + x13’25 + EXZYZ + X3y, + xz)’35 + (x33’3 + X1y3 + x33’15 =1 +x,+x3)(y1 + ¥, +y3) =xy




(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

similar to GMW, blind
each intermediate
product

X1, Y1 X2, Y2 X3, Y3

1 bit per multiplication

x1Y1 + X2y + %12 + Ri(c) — Ry(¢) X3Y3 + X1¥3 + x3y; + R3(c) — R{(¢)

X2Y2 + X3Y2 + X2¥3 + Ry(c) — R3(c)
only depends on x4,y1,X2,y>  only depends on x,,y,,x3,y3 only depends on x4,y1,X3,V3

(1 y1 + 2251 Fx1Y2) + (Y, + X3y, +x273) + (Y3 +x1y3 +x3y1) = (1 +x, +x3)(y1 + ¥, +y3) = xy



(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

Computation on local shares Two-party computation



(2, 3)-Function Decompositions [GMO16]

Express f, as an arithmetic circuit over finite field [F

137 iterations + open 2 views =
274 bits of communication per
multiplication gate in ZKBoo

Computation on local shares Two-party computation



Ssummary

* “MPC in the head” gives new paradigm for
constructing efficient zero-knowledge proof systems

* New directions in designing efficient MPC protocols
for zero-knowledge can be quite efficient in practice

e Zero-knowledge protocols can also be used for
signature schemes (Fiat-Shamir) — including post-
guantum signatures!



Open Directions

* Designing new MPC protocols for more efficient zero-

knowledge

* Many theoretical MPC protocols with better
communication complexity — shorter proofs and (post-
guantum) signatures

e Alternative viewpoints: “MPC in the head” as a PCP
with large alphabet (i.e., each party’s view)



