From Secure MPC to Efficient Zero-Knowledge

David Wu
March, 2017

The Complexity Class NP

NP - the class of problems that are efficiently verifiable
a language \mathcal{L} is in NP if there exists a polynomial-time verifier R such that

$$
x \in \mathcal{L} \Leftrightarrow \exists w \in\{0,1\}^{\mathrm{poly}(|x|)} R(x, w)=1
$$

Interactive Proof Systems [GMR85]

NP admits efficient non-interactive proofs

verifier

Interactive Proof Systems [GMR85]

IP: class of languages that have an interactive proof system

Interactive Proof Systems [GMR85]

Interactive proof system modeled by two algorithms (P, V) with following properties:

- Completeness: $\quad \forall x \in \mathcal{L}: \operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
- Soundness: $\quad \forall x \notin \mathcal{L}, \forall P^{*}: \operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=0\right]=1$

Interactive Proof Systems [GMR85]

Interactive proof system modeled by two algorithms (P, following properties:

- Completeness:
- Soundness: $\quad \forall x \notin \mathcal{L}, \forall P^{*}: \operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=0\right]=1$

Interactive Proof Systems [GMR85]

Interactive proof system modeled by two algorithms (P, V) with following properties:

- Completeness: $\quad \forall x \in \mathcal{L}: \operatorname{Pr}[\langle P, V\rangle(x)=1]=1$
- Soundness: $\quad \forall x \notin \mathcal{L}, \forall P^{*}: \operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=0\right]=1$
- Efficiency: $\quad V$ runs in polynomial time (in $|x|$)

Interactive Proof Systems [GMR85]

IP: class of languages that have an interactive proof system

Zero-Knowledge Proofs [GMR85]

Can we prove to a verifier that a statement x is in a language \mathcal{L} without revealing anything more about x other than the fact that $x \in \mathcal{L}$?

Zero-Knowledge Proofs [GMR85]

common input: statement $x \in \mathcal{L}$

real distribution

ideal distribution

Zero-Knowledge: for all efficient verifiers V^{*}, there exists an efficient simulator \mathcal{S} such that:

$$
\forall x \in \mathcal{L}:\left\langle P, V^{*}\right\rangle(x) \approx_{c} \mathcal{S}(x)
$$

Zero-Knowledge Proofs [GMR85]

common input: statement $x \in \mathcal{L}$

$$
\forall x \in \mathcal{L}:\left\langle P, V^{*}\right\rangle(x) \approx \approx_{c} \delta(x)
$$

Zero-Knowledge Proofs [GMR85]

common input: statement $x \in \mathcal{L}$

real distribution

ideal distribution

Assuming the existence of one-way functions (OWFs), every NP (in fact, IP) language has a computational zero-knowledge proof system [GMW86]

Two-Party Computation

Zero knowledge is special case of two-party computation

Two-Party Computation

Zero knowledge is special case

Every message is a deterministic function of the party's input, its internal randomness, and the set of messages it has received

Two-Party Computation

Zero knowledge is special case of two-party computation

Correctness:

$$
y_{1}=f\left(w_{1}, w_{2}\right)=y_{2}
$$

Two-Party Computation

Zero knowledge is special case of two-party computation

Two-Party Computation

Zero knowledge is special case of two-party computation

Multiparty Computation (MPC)

Correctness: For all inputs \boldsymbol{w} and all $i \in[n]$

$$
\operatorname{Pr}\left[\Pi_{f, i}\left(\operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})\right)=f(\boldsymbol{w})\right]=1
$$

Multiparty Computation (MPC)

Correctness: For all inputs \boldsymbol{w} and all $i \in[n]$

$$
\operatorname{Pr}\left[\Pi_{f, i}\left(\operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})\right)=f(\boldsymbol{w})\right]=1
$$

Multiparty Computation (MPC)

\boldsymbol{t}-Privacy: For all $T \subseteq[n]$ where $|T| \leq t$, there exists an efficient simulator \mathcal{S}_{T} such that for all inputs \boldsymbol{w} :

$$
\left\{\operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})\right\}_{i \in T} \equiv \mathcal{S}_{T}\left(f,\left\{w_{i}\right\}_{i \in A}, f(\boldsymbol{w})\right)
$$

Multiparty Computation (MPC)

\boldsymbol{t}-Privacy: For all $T \subseteq[n]$ where $|T| \leq t$, there exists an efficient simulator \mathcal{S}_{T} such that for all inputs \boldsymbol{w} :

$$
\left\{\operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})\right\}_{i \in T} \equiv \mathcal{S}_{T}\left(f,\left\{w_{i}\right\}_{i \in A}, f(\boldsymbol{w})\right)
$$

Views of any t-subset of the parties do not reveal anything more about the private inputs of any other party

Multiparty Computation (MPC)

\boldsymbol{t}-Robustness: For all $T \subseteq[n]$ where $|T| \leq t$, and for all f where $f(\boldsymbol{w})=0$ for all \boldsymbol{w}, then $\operatorname{Pr}\left[\Pi_{f, i}\left(\operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})\right)=1\right]=0$
for all $i \in[n] \backslash T$ even if the players in T have been arbitrarily corrupted

Multiparty Computation (MPC)

\boldsymbol{t}-Robustness: For all $T \subseteq[n]$ where $|T| \leq t$, and for all f where $f(\boldsymbol{w})=0$ for all \boldsymbol{w}, then

$$
\operatorname{Pr}\left[\Pi_{f, i}\left(\operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})\right)=1\right]=0
$$

for all $i \in[n] \backslash T$ even if the players in T have been arbitrarily corrupted

If there are no inputs \boldsymbol{w} to f where $f(w)=1$, then a malicious adversary corrupting up to t parties cannot cause an honest party to output 1

Zero-Knowledge from Two-Party Computation

Zero knowledge is special case of two-party computation

- Given a statement x for an NP relation R, define the function

$$
f_{x}(w)=R(x, w)
$$

- We require a 1-private, 1-robust two-party computation protocol $\Pi_{f_{x}}$ for f_{x}
- The prover and verifier execute $\Pi_{f_{x}}$
- Prover's input: the witness w
- Verifier's input: none
- The verifier accepts if the output of $\Pi_{f_{x}}$ is 1

Zero-Knowledge from Two-Party Computation

Zero knowledge is special case of two-party computation

- General two-party computation with robustness against malicious adversaries requires oblivious transfer (OT) [Yao86, GMW87] and thus, cannot be instantiated from one-way functions

On the other hand, zero knowledge for NP is known from one-way functions (OWFs) [GMW86]

- Constructions very inefficient - relies on running a Karp reduction to an NPcomplete problem (e.g., 3-coloring)

This talk: constructing zero-knowledge for NP from OWFs + black-box use of any (semi-honest) MPC protocol

"MPC in the Head" [IKOSO7]

Let $R(x, w)$ be an NP relation and define the function

$$
f_{x}\left(w_{1}, \ldots, w_{n}\right)=R\left(x, w_{1} \oplus \cdots \oplus w_{n}\right)
$$

where $n \geq 3$

Key idea:

- Prover "simulates" an n-party MPC protocol $\Pi_{f_{x}}$ for the function f_{x}
- Verifier checks that the simulation is correct

Key advantage: relies only on OWFs and semi-honest secure MPC

"MPC in the Head" [IKOSO7]

Key cryptographic primitive: commitment scheme

$$
\text { Open }(c, r) \rightarrow m
$$

"MPC in the Head" [IKOSO7]

Key cryptographic primitive: commitment scheme

- Perfectly binding: each commitment can be opened in exactly one way

$$
\forall r_{0}, r_{1}: \operatorname{Commit}\left(m_{0} ; r_{0}\right)=\operatorname{Commit}\left(m_{1} ; r_{1}\right) \Rightarrow m_{0}=m_{1}
$$

- Computationally hiding: commitment hides committed value to any bounded adversary:
$\operatorname{Commit}\left(m_{0} ; r\right) \approx_{c} \operatorname{Commit}\left(m_{1} ; r\right)$
- Non-interactive commitments can be constructed from any injective OWF [Blu81]
- Interactive commitments can be constructed from any OWF
"MPC in the Head" [IKOSO7]

$$
f_{x}\left(w_{1}, \ldots, w_{n}\right)=R\left(x, w_{1} \oplus \cdots \oplus w_{n}\right)
$$

"MPC in the Head" [IKOSO7]

$$
f_{x}\left(w_{1}, \ldots, w_{n}\right)=R\left(x, w_{1} \oplus \cdots \oplus w_{n}\right)
$$

uniformly random strings

Step 1: Secret share the witness

"MPC in the Head" [IKOSO7]

$$
f_{x}\left(w_{1}, \ldots, w_{n}\right)=R\left(x, w_{1} \oplus \cdots \bigoplus w_{n}\right)
$$

uniformly random strings

Step 2: Simulate $\Pi_{f_{x}}$ using randomness \boldsymbol{r}
"MPC in the Head" [IKOSO7]

"MPC in the Head" [IKOSO7]

public input: statement x

Step 4: Prover sends the commitments to the verifier

"MPC in the Head" [IKOSO7]

public input: statement x

Step 5: Verifier challenges prover to open two of the views (at random)

"MPC in the Head" [IKOSO7]

public input: statement x

Step 6: Prover opens up commitments to requested views

"MPC in the Head" [IKOSO7]

Verification conditions:

1. Commitments are correctly opened
2. The outputs of both P_{i} and P_{j} is 1
3. The views View $P_{P_{i}}$ and $\operatorname{View}_{P_{j}}$ are consistent with an honest execution of $\Pi_{f_{x}}$

Step 7: Verifier checks the proof

"MPC in the Head" [IKOSO7]

Theorem [IKOSO7]. Suppose the commitment scheme is perfectly binding and computationally hiding and that $\Pi_{f_{x}}$ is perfectly correct and is 2-private (against semihonest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Completeness:

- Suppose $R(x, w)=1$
- Prover is honest so $w=w_{1} \bigoplus \cdots \bigoplus w_{n}$
- By construction, $f_{x}\left(w_{1}, \ldots, w_{n}\right)=R(x, w)=1$
- Perfect correctness of $\Pi_{f_{x}}$ implies that all parties in honest execution output $f_{x}\left(w_{1}, \ldots, w_{n}\right)=1$

"MPC in the Head" [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and computationally hiding and that $\Pi_{f_{x}}$ is perfectly correct and is 2-private (against semihonest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Soundness:

- Suppose $R(x, w)=0$ for all w
- By perfect correctness of $\Pi_{f_{x}}$, for all choices of w_{1}, \ldots, w_{n}, parties in an honest execution of $\Pi_{f_{x}}$ will output 0
- Either all outputs are 0 or there is at least one pair of views that are inconsistent
- Verifier rejects with probability at least $1 / n^{2}$ (commitments are perfectly binding)

"MPC in the Head" [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and computationally hiding and that $\Pi_{f_{x}}$ is perfectly correct and is 2-private (against semihonest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Soundness:

- Suppose $R(x, w)=0$ for all w
- By perfect correctness of $\Pi_{f_{x}}$, execution of $\Pi_{f_{x}}$ will output 0

Can be amplified by running the

 protocol multiple times (κn^{2} times to achieve negligible soundness error $2^{-\kappa}$)- Either all outputs are 0 or there is at leas pair of views that are inconsistent
- Verifier rejects with probability at least $1 / n^{2}$ (commitments are perfectly binding)

"MPC in the Head" [IKOSO7]

Theorem [IKOS07]. Suppose the commitment scheme is perfectly binding and computationally hiding and that $\Pi_{f_{x}}$ is perfectly correct and is 2-private (against semihonest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Zero-Knowledge:

- Suppose that $R(x, w)=1$
- View of verifier consists of committed views to all parties, and views
$\operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})$ and $\operatorname{View}_{P_{j}}(\boldsymbol{w} ; \boldsymbol{r})$ (which include w_{i} and w_{j}) for two of the parties
- When $n \geq 3, w_{i}, w_{j}$ are uniformly random strings
- By 2-privacy of $\Pi_{f_{x}}, \operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})$ and $\operatorname{View}_{P_{j}}(\boldsymbol{w} ; \boldsymbol{r})$ can be simulated given just $f_{x}, w_{i}, w_{j}, f_{x}(\boldsymbol{w})=1$

"MPC in the Head" [IKOSO7]

Theorem [IKOSO7]. Suppose the commitment scheme is perfectly binding and computationally hiding and that $\Pi_{f_{x}}$ is perfectly correct and is 2-private (against semihonest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Zero-Knowl

- Suppo

Since prover is honest here,

the proof only requires privacy

- View c

View $_{P_{i}}$ against semi-honest parties
b all parties, and views le w_{i} and w_{j}) for two of the parties

- When $n \geq w_{j}$ are uniformly random strings
- By 2-privacy of $\Pi_{f_{x}}, \operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})$ and $\operatorname{View}_{P_{j}}(\boldsymbol{w} ; \boldsymbol{r})$ can be simulated given just $f_{x}, w_{i}, w_{j}, f_{x}(\boldsymbol{w})=1$

"MPC in the Head" [IKOSO7]

Theorem [IKOSO7]. Suppose the commitment scheme is perfectly binding and computationally hiding and that $\Pi_{f_{x}}$ is perfectly correct and is 2 -private (against semihonest adversaries), then this protocol is a zero-knowledge proof for the NP-relation R.

Concrete instantiations:

- Information-theoretic: 5-party BGW protocol [BGW88]
- Computational (based on OT): 3-party GMW protocol [GMW87]
- ... and many more

"MPC in the Head" [IKOSO7]

Using an n-party MPC protocol, the soundness error is $1-1 / n^{2}$
Consequence: achieving negligible soundness $2^{-\kappa}$ requires $\Omega(\kappa)$ repetitions of the protocol

Can we obtain negligible soundness error without performing the $\Omega(\kappa)$ repetitions of the protocol?

"MPC in the Head" [IKOSO7]

Using an n-party MPC protocol, the soundness error is $1-1 / n^{2}$
Soundness error is large because verifier checks only a single view
Can reduce the soundness error by having the prover open up more views (e.g., $t=\Theta(\kappa)$ views)

- Zero-knowledge maintained as long as $\Pi_{f_{x}}$ is t-private
- Soundness amplification will rely on leveraging robustness of $\Pi_{f_{x}}$

"MPC in the Head" [IKOSO7]

Using an n-party MPC protocol, the soundness error is $1-1 / n^{2}$
Soundness error is large because
Can reduce the soundness error (e.g., $t=\Theta(\kappa)$ views)

Without robustness, even if the prover open $n-1$ views, the

 soundness error can still be $O\left(\frac{1}{n}\right)$- Zero-knowledge maintained as long as $\Pi_{f_{x}}$ is t-priva
- Soundness amplification will rely on leveraging robustness of $\Pi_{f_{x}}$

"MPC in the Head" [IKOSO7]

$$
n=\Theta(\kappa)
$$

$$
t=\Theta(n)
$$

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust

Verifier can now ask for t openings without compromising zero-knowledge

"MPC in the Head" [IKOSO7]

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust
To analyze soundness, define the inconsistency graph G for the prover's simulated MPC protocol:

- Nodes correspond to parties
- An edge between i and j denotes an inconsistency between View $_{P_{i}}$ and $\operatorname{View}_{P_{j}}$

"MPC in the Head" [IKOSO7]

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust
To analyze soundness, define the inconsistency graph G for the prover's simulated MPC protocol:

Verifier chooses some subset of nodes and rejects if induced subgraph on those nodes contains an edge

Verifier rejects

"MPC in the Head" [IKOSO7]

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust
To analyze soundness, define the inconsistency graph G for the prover's simulated MPC protocol:

Verifier chooses some subset of nodes and rejects if induced subgraph on those nodes contains an edge

Verifier may accept

"MPC in the Head" [IKOSO7]

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust
Case 1: Suppose G contains a vertex cover B of size at most t

$$
B=\{4,5\}
$$

> small number of corrupted parties \Rightarrow most parties are honest and will output 0 by robustness

"MPC in the Head" [IKOSO7]

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust
Case 1: Suppose G contains a vertex cover B of size at most t

- By definition, views of all nodes not in B are consistent (i.e., correspond to an honest protocol execution)
- $\Pi_{f_{x}}$ is t-robust, so all nodes not in B output 0 on a false statement

"MPC in the Head" [IKOSO7]

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust

- By definition, views of all nodes not in B are consistent (i.e., correspond to an honest protocol execution)
- $\Pi_{f_{x}}$ is t-robust, so all nodes not in B output 0 on a false statement
- Verifier can only accept if $T \subseteq B$, so soundness error is bounded by $(t / n)^{t}=2^{-\Omega(n)}=2^{-\Omega(\kappa)}$

"MPC in the Head" [IKOSO7]

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust
Case 2: Suppose the minimum vertex cover of G has size greater than t

large number of corrupted parties \Rightarrow likely to be detected by verifier

"MPC in the Head" [IKOSO7]

Suppose $\Pi_{f_{x}}$ is an n-party MPC protocol that is t-private and t-robust
Case 2: Suppose the minimum vertex cover of G has size greater than t

- Then G has a matching of size greater than $t / 2$

- Verifier accepts only if no edges in G between any of the nodes in T, and in particular, no edges in the matching
- Since $t=\Theta(n)$, the verifier misses all edges in the matching with probability $2^{-\Omega(n)}=2^{-\Omega(\kappa)}$

"MPC in the Head" [IKOSO7]

Theorem [IKOS07]. Suppose that the following holds:

- the commitment scheme is perfectly binding and computationally hiding,
- $\Pi_{f_{x}}$ is t-private (against semi-honest adversaries), and t-robust (against malicious adversaries) n-party protocol for f_{x}.
If $t=\Theta(\kappa)$ and $n=\Theta(t)$, then this protocol is an honest-verifier zeroknowledge proof for the NP-relation R with soundness error $2^{-\kappa}$.

Relies only on OWFs (for the commitments) and black-box access to $\Pi_{f_{x}}$.

"MPC in the Head" [IKOSO7]

Theorem [IKOSO7]. Suppose that the following holds:

- the commitment scheme is perff Can be boosted to zero-knowledge ionally hiding,
- $\quad \Pi_{f_{x}}$ is t-private (against semi-ho by having the verifier commit to its queries using a statistically-hiding ust (against malicious adversaries) n-parcy commitment scheme If $t=\Theta(\kappa)$ and $n=\Theta(t)$, then this protocol is an honest-verifier zeroknowledge proof for the NP-relation R with soundness error $2^{-\kappa}$.

Relies only on OWFs (for the commitments) and black-box access to $\Pi_{f_{x}}$.

"MPC in the Head" [IKOSO7]

Theorem [IKOSO7]. Suppose that the following holds:

- the commitment scheme is perfectly hindinannd nommintationglly hiding,
- $\quad \Pi_{f_{x}}$ is t-private (against semi-honest (against malicious adversaries) n-pa

Concrete parameters: for 2^{-80} soundness error, can
use $(n, t, r)=(92,64,64)$

If $t=\Theta(\kappa)$ and $n=\Theta(t)$, then this protocol is an honest-ven zeroknowledge proof for the NP-relation R with soundness error $2^{-\kappa}$.

Relies only on OWFs (for the commitments) and black-box access to $\Pi_{f_{x}}$.

ZKBoo [GMO16]

For concrete soundness targets (e.g., 2^{-80}), most efficient instantiation of IKOS is to use simple, non-robust multiparty computation protocol and amplify soundness by repeating the protocol

ZKBoo [GMO16]

For concrete soundness targets (e.g., 2^{-80}), most efficient instantiation of IKOS is to use simple, non-robust multiparty computation protocol and amplify soundness by repeating the protocol

ZKBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the standard model

ZKBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the standard model

$b \in\{0,1\}$

OT channel

ZKBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the standard model

ZKBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the standard model

- In MPC setting, channels are implemented using secure two-party computation
- In "MPC-in-the-head," can model them as ideal functionalities (e.g., as an oracle to the function f)

ZKBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the standard model

- In 1 does not trivialize the im| problem since protocol must o-party cor still provide privacy
- In "IVIPC e-nead," can model them as ideal functionalities (e.g., as an oracle to the function f)

ZKBoo [GMO16]

Emulating an MPC protocol cheaper than running the MPC protocol in the standard model

- In MPC setting, channels are implemented using secure two-party computation
- In "MPC-in-the-head," can model them as ideal functionalities (e.g., as an oracle to the function f)
- New design space for MPC protocols

ZKBoo [GMO16]

$$
f_{x}\left(w_{1}, \ldots, w_{n}\right)=R\left(x, w_{1} \oplus \cdots \oplus w_{n}\right)
$$

How to construct $\Pi_{f_{x}}$?

(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

$$
w=w_{1}+w_{2}+w_{3}
$$

(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

(2, 3)-Function Decompositions [GMO16]

A variant of the GMW protocol (can also be viewed as a function decomposition)

$$
\operatorname{View}_{P_{i}}(\boldsymbol{w} ; \boldsymbol{r})=\left\{w_{i}^{(0)}, \ldots, w_{i}^{(N)}\right\}
$$

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

$$
x=x_{1}+x_{2}+x_{3}
$$

$$
\left(x_{1}+\alpha\right)+x_{2}+x_{3}=x+\alpha
$$

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

$$
\begin{array}{cc}
x=x_{1}+x_{2}+x_{3} \\
y=y_{1}+y_{2}+y_{3} \\
x_{1}, y_{1} \quad & x_{2}, y_{2}
\end{array}
$$

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

$$
\begin{aligned}
& x=x_{1}+x_{2}+x_{3} \\
& y=y_{1}+y_{2}+y_{3}
\end{aligned}
$$

$$
\overbrace{\left(x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}\right)}^{\text {only depds on } x_{1}, y_{1}, x_{2}, y_{2}}+\overbrace{\left(x_{2} y_{2}+x_{3} y_{2}+x_{2} y_{3}\right)}^{\text {only depends on } x_{2}, y_{2}, x_{3}, y_{3}}+\overbrace{\left(x_{3} y_{3}+x_{1} y_{3}+x_{3} y_{1}\right)}^{\text {only depends on } x_{1}, y_{1}, x_{3}, y_{3}}=\left(x_{1}+x_{2}+x_{3}\right)\left(y_{1}+y_{2}+y_{3}\right)=x y
$$

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

x_{1}, y_{1}| $x=x_{1}+x_{2}+x_{3}$ |
| :--- |
| $y=y_{1}+y_{2}+y_{3}$ |
| x_{2}, y_{2} |x_{3}, y_{3}

cannot be 2-private: information about x_{3}, y_{3} revealed

$$
\frac{x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}}{x_{2} y_{2}+x_{3} y_{2}+x_{2} y_{3}} x_{3} y_{3}+x_{1} y_{3}+x_{3} y_{1}
$$

$$
\text { only depends on } x_{1}, y_{1}, x_{2}, y_{2} \quad \underbrace{\text { only depends on } x_{2}, y_{2}, x_{3}, y_{3}} \underbrace{\text { only depends on } x_{1}, y_{1}, x_{3}, y_{3}}
$$

$$
\overbrace{\left(x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}\right)}+\overbrace{\left(x_{2} y_{2}+x_{3} y_{2}+x_{2} y_{3}\right)}+\overbrace{\left(x_{3} y_{3}+x_{1} y_{3}+x_{3} y_{1}\right)}=\left(x_{1}+x_{2}+x_{3}\right)\left(y_{1}+y_{2}+y_{3}\right)=x y
$$

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

$\underbrace{\text { only depends on } x_{1}, y_{1}, x_{2}, y_{2}} \underbrace{\text { only depends on } x_{2}, y_{2}, x_{3}, y_{3}} \quad \underbrace{\text { only depends on } x_{1}, y_{1}, x_{3}, y_{3}}$

$$
\overbrace{\left(x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}\right)}+\overbrace{\left(x_{2} y_{2}+x_{3} y_{2}+x_{2} y_{3}\right)}+\overbrace{\left(x_{3} y_{3}+x_{1} y_{3}+x_{3} y_{1}\right)}=\left(x_{1}+x_{2}+x_{3}\right)\left(y_{1}+y_{2}+y_{3}\right)=x y
$$

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

only depends on $x_{1}, y_{1}, x_{2}, y_{2} \quad \underbrace{\text { only depends on } x_{2}, y_{2}, x_{3}, y_{3}}$ only depends on $x_{1}, y_{1}, x_{3}, y_{3}$

$$
\overbrace{\left(x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}\right)}+\overbrace{\left(x_{2} y_{2}+x_{3} y_{2}+x_{2} y_{3}\right)}+\overbrace{\left(x_{3} y_{3}+x_{1} y_{3}+x_{3} y_{1}\right)}=\left(x_{1}+x_{2}+x_{3}\right)\left(y_{1}+y_{2}+y_{3}\right)=x y
$$

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

only depends on $x_{1}, y_{1}, x_{2}, y_{2} \quad \underbrace{\text { only depends on } x_{2}, y_{2}, x_{3}, y_{3}}$ only depends on $x_{1}, y_{1}, x_{3}, y_{3}$

$$
\overbrace{\left(x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}\right)}+\overbrace{\left(x_{2} y_{2}+x_{3} y_{2}+x_{2} y_{3}\right)}^{\left(x_{3} y_{3}+x_{1} y_{3}+x_{3} y_{1}\right)}=\left(x_{1}+x_{2}+x_{3}\right)\left(y_{1}+y_{2}+y_{3}\right)=x y
$$

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

(2, 3)-Function Decompositions [GMO16]

Express f_{x} as an arithmetic circuit over finite field \mathbb{F}

Summary

- "MPC in the head" gives new paradigm for constructing efficient zero-knowledge proof systems
- New directions in designing efficient MPC protocols for zero-knowledge can be quite efficient in practice
- Zero-knowledge protocols can also be used for signature schemes (Fiat-Shamir) - including postquantum signatures!

Open Directions

- Designing new MPC protocols for more efficient zeroknowledge
- Many theoretical MPC protocols with better communication complexity - shorter proofs and (postquantum) signatures
- Alternative viewpoints: "MPC in the head" as a PCP with large alphabet (i.e., each party's view)

