
Constrained Keys for
Invertible Pseudorandom Functions

Dan Boneh, Sam Kim, and David J. Wu

Stanford University



Pseudorandom Functions (PRFs) [GGM84]

𝐹: 𝒦 ×𝒳 → 𝒴

≈𝑐

𝑥 ∈𝒳

𝐹 𝑘, 𝑥

𝑘՚
R
𝒦

Pseudorandom

𝑏

𝑥 ∈𝒳

𝑓(𝑥)

𝑓՚
R
Funs[𝒳,𝒴]

Random

𝑏



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrained PRF: PRF with additional “constrain” functionality

𝐹: 𝒦 ×𝒳 → 𝒴



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrained PRF: PRF with additional “constrain” functionality

Constrain𝐶

PRF key

𝐹: 𝒦 ×𝒳 → 𝒴



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrained PRF: PRF with additional “constrain” functionality

Constrain𝐶

PRF key Constrained key

Can be used to evaluate at all 
points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1𝐹: 𝒦 ×𝒳 → 𝒴



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Correctness: constrained evaluation at 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1
yields PRF value at 𝑥



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Correctness: constrained evaluation at 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1
yields PRF value at 𝑥

Security: PRF value at points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 0 are 
indistinguishable from random given the constrained key



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Many applications:
• Punctured programming paradigm [SW14]



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Many applications:
• Punctured programming paradigm [SW14]

• Identity-based key exchange, broadcast encryption [BW13]



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Known constructions:
• Puncturable PRFs from one-way functions [BW13, BGI13, KPTZ13]

Punctured key can be 
used to evaluate the PRF 

at all but one point



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Known constructions:
• Puncturable PRFs from one-way functions [BW13, BGI13, KPTZ13]

• (Single-key) circuit-constrained PRFs from LWE [BV15]



Can we constrain other cryptographic primitives, 
such as pseudorandom permutations (PRPs)?



Our Results

• Constrained PRPs for many natural classes of 
constraints do not exist



Our Results

• Constrained PRPs for many natural classes of 
constraints do not exist

• However, the relaxed notion of a constrained 
invertible pseudorandom function (IPF) does exist



Pseudorandom Permutations (PRPs)

𝐹: 𝒦 ×𝒳 → 𝒳
𝐹(𝑘,⋅) implements a 
permutation over 𝒳



Constrained PRPs

𝐹: 𝒦 ×𝒳 → 𝒳

Constrained key 
enables forward and
backward evaluation

Set where 
𝐶 𝑥 = 1

Image of points 
where 𝐶 𝑥 = 1



Constrained PRPs

Correctness:
• Forward evaluation when 𝐶 𝑥 = 1

Set where 
𝐶 𝑥 = 1

Image of points 
where 𝐶 𝑥 = 1



Constrained PRPs

Correctness:
• Forward evaluation when 𝐶 𝑥 = 1
• Backward evaluation on points 𝑦 if 𝑦 = 𝐹(𝑘, 𝑥) and 𝐶 𝑥 = 1

Set where 
𝐶 𝑥 = 1

Image of points 
where 𝐶 𝑥 = 1



Difficulties in Constraining PRPs
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

[See paper for details]



Difficulties in Constraining PRPs
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Puncturable PRPs 
do not exist.

[See paper for details]



Difficulties in Constraining PRPs
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Puncturable PRPs 
do not exist.

Open Question: Do prefix-constrained PRPs (where prefix is 𝜔(log 𝜆)
bits) exist?

[See paper for details]



Relaxing the Notion
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Lower bound critically relies on the set of points that satisfy the 
constraint being a non-negligible fraction of the range of the PRP



Relaxing the Notion
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Relaxation: Allow range to be much larger than the domain

Domain 𝒳 Range 𝒴



Invertible Pseudorandom Functions (IPFs)

Domain 𝒳 Range 𝒴

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:



Invertible Pseudorandom Functions (IPFs)

Domain 𝒳 Range 𝒴

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦



Invertible Pseudorandom Functions (IPFs)

Domain 𝒳 Range 𝒴

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦
• There exists an efficiently computable inverse 𝐹−1:𝒦 × 𝒴 → 𝒳 ∪ ⊥



Invertible Pseudorandom Functions (IPFs)

Domain 𝒳 Range 𝒴

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦
• There exists an efficiently computable inverse 𝐹−1:𝒦 × 𝒴 → 𝒳 ∪ ⊥

• 𝐹−1 𝑘, 𝐹 𝑘, 𝑥 = 𝑥 for all 𝑥 ∈ 𝒳



Invertible Pseudorandom Functions (IPFs)

Domain 𝒳 Range 𝒴

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦
• There exists an efficiently computable inverse 𝐹−1:𝒦 × 𝒴 → 𝒳 ∪ ⊥

• 𝐹−1 𝑘, 𝐹 𝑘, 𝑥 = 𝑥 for all 𝑥 ∈ 𝒳

• 𝐹−1 𝑘, 𝑦 = ⊥ for all 𝑦 not in the range of 𝐹(𝑘,⋅)



Invertible Pseudorandom Functions (IPFs)

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦
• There exists an efficiently computable inverse 𝐹−1:𝒦 × 𝒴 → 𝒳 ∪ ⊥

• 𝐹−1 𝑘, 𝐹 𝑘, 𝑥 = 𝑥 for all 𝑥 ∈ 𝒳

• 𝐹−1 𝑘, 𝑦 = ⊥ for all 𝑦 not in the range of 𝐹(𝑘,⋅)

IPFs are closely related to the notion of 
deterministic authenticated encryption (DAE) [RS06]. 
IPFs can be used to build DAE, so our constrained 

IPF constructions imply constrained DAE.



Invertible Pseudorandom Functions (IPFs)

≈𝑐

𝑥 ∈ 𝒳

𝐹 𝑘, 𝑥𝑘՚
R
𝒦

Pseudorandom

𝑏

𝑦 ∈ 𝒴

𝐹−1 𝑘, 𝑦

𝑓՚
R
InjFuns[𝒳,𝒴]

Random

𝑏
𝑥 ∈ 𝒳

𝑓(𝑥)

𝑦 ∈ 𝒴

𝑓−1(𝑦)

Set of 
injective functions

𝐹: 𝒦 ×𝒳 → 𝒴
Outputs ⊥ if 𝑦 has 
no inverse under 𝑓



Invertible Pseudorandom Functions (IPFs)

≈𝑐

𝑥 ∈ 𝒳

𝐹 𝑘, 𝑥𝑘՚
R
𝒦

Pseudorandom

𝑏

𝑦 ∈ 𝒴

𝐹−1 𝑘, 𝑦

𝑓՚
R
InjFuns[𝒳,𝒴]

Random

𝑏
𝑥 ∈ 𝒳

𝑓(𝑥)

𝑦 ∈ 𝒴

𝑓−1(𝑦)

When 𝒳 = 𝒴, security definition is equivalent to that for a strong PRP



Constrained IPFs

Direct generalization of constrained PRFs

Constrain𝐶

IPF key Constrained key

𝐹: 𝒦 ×𝒳 → 𝒴



Constrained IPFs

Direct generalization of constrained PRFs

Constrain𝐶

IPF key Constrained key

Can be used to evaluate at all points 𝑥 ∈ 𝒳 where 
𝐶 𝑥 = 1 and invert at all points 𝑦 whenever
𝑦 = 𝐹(𝑘, 𝑥) for some 𝑥 where 𝐶 𝑥 = 1𝐹: 𝒦 ×𝒳 → 𝒴



A Puncturable IPF

Starting point: DAE construction 
called synthetic IV (SIV) [RS06]



A Puncturable IPF

𝑥 Starting point: DAE construction 
called synthetic IV (SIV) [RS06]



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

𝑦1
𝑦1 = PRF1 𝑘1, 𝑥

Starting point: DAE construction 
called synthetic IV (SIV) [RS06]



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1
𝑦1 = PRF1 𝑘1, 𝑥

Starting point: DAE construction 
called synthetic IV (SIV) [RS06]



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2
𝑦2 = 𝑥 ⊕ PRF2(𝑘2, 𝑦1)𝑦1 = PRF1 𝑘1, 𝑥

Starting point: DAE construction 
called synthetic IV (SIV) [RS06]



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2
𝑦2 = 𝑥 ⊕ PRF2(𝑘2, 𝑦1)𝑦1 = PRF1 𝑘1, 𝑥

Starting point: DAE construction 
called synthetic IV (SIV) [RS06]

Can also be viewed as an 
unbalanced Feistel network 
(with one block set to all 0s)



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

PRF2(𝑘2,⋅)

𝑦1

𝑦2 = 𝑥 ⊕ PRF2(𝑘2, 𝑦1)𝑦1 = PRF1 𝑘1, 𝑥



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

𝑥

PRF2(𝑘2,⋅)

𝑦1 𝑦2

𝑦2 = 𝑥 ⊕ PRF2(𝑘2, 𝑦1)𝑦1 = PRF1 𝑘1, 𝑥



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

𝑥

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Verify 𝑦1 = PRF(𝑘1, 𝑥) and 
output ⊥ if 𝑦1 ≠ PRF(𝑘1, 𝑥)

𝑦2 = 𝑥 ⊕ PRF2(𝑘2, 𝑦1)𝑦1 = PRF1 𝑘1, 𝑥



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?

First attempt: only puncture 𝑘1 at 𝑥∗



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?

First attempt: only puncture 𝑘1 at 𝑥∗

Given challenge 𝑦1
∗, 𝑦2

∗ , 
can test whether

𝑦2
∗ ⊕PRF2 𝑘2, 𝑦1

∗ = 𝑥∗



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?

First attempt: only puncture 𝑘1 at 𝑥∗

Given challenge 𝑦1
∗, 𝑦2

∗ , 
can test whether

𝑦2
∗ ⊕PRF2 𝑘2, 𝑦1

∗ = 𝑥∗

Second attempt: also puncture 𝑘2 at 
𝑦1
∗ = PRF1 𝑘1, 𝑥

∗



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?

First attempt: only puncture 𝑘1 at 𝑥∗

Given challenge 𝑦1
∗, 𝑦2

∗ , 
can test whether

𝑦2
∗ ⊕PRF2 𝑘2, 𝑦1

∗ = 𝑥∗

Second attempt: also puncture 𝑘2 at 
𝑦1
∗ = PRF1 𝑘1, 𝑥

∗
Punctured key 

reveals punctured 
point!



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?

First attempt: only puncture 𝑘1 at 𝑥∗

Second attempt: also puncture 𝑘2 at 
𝑦1
∗ = PRF1 𝑘1, 𝑥

∗
Punctured key 

reveals punctured 
point!

Solution: use 
private puncturing



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)

𝑦1
∗ = PRF1 𝑘1, 𝑥

∗

𝑦2
∗ = 𝑥∗ ⊕PRF2(𝑘2, 𝑦1

∗)



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)

𝑦1
∗ = PRF1 𝑘1, 𝑥

∗

𝑦2
∗ = 𝑥∗ ⊕PRF2(𝑘2, 𝑦1

∗)

Indistinguishable from uniform by 
constrained security of PRF2



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)

𝑦1
∗ = PRF1 𝑘1, 𝑥

∗

𝑦2
∗ = 𝑥∗ ⊕PRF2(𝑘2, 𝑦1

∗)

Indistinguishable from uniform by 
constrained security of PRF2

Hides 𝑦1
∗



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)

𝑦1
∗ = PRF1 𝑘1, 𝑥

∗

𝑦2
∗ = 𝑥∗ ⊕PRF2(𝑘2, 𝑦1

∗)

Indistinguishable from uniform by 
constrained security of PRF2

Hides 𝑦1
∗

Indistinguishable from 
uniform by constrained 

security of PRF1



A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

Punctured key (punctured at 𝑥∗):
• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
PRF1(𝑘1, 𝑥

∗)

Can be instantiated from standard 
lattice assumptions [BKM17, CC17, BTVW17]



Circuit-Constrained IPFs

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)



Circuit-Constrained IPFs

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗

• Puncture 𝑘2 at PRF1(𝑘1, 𝑥
∗)



Circuit-Constrained IPFs

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗

• Puncture 𝑘2 at PRF1(𝑘1, 𝑥
∗)

To constrain to a circuit 𝐶:



Circuit-Constrained IPFs

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗

• Puncture 𝑘2 at PRF1(𝑘1, 𝑥
∗)

To constrain to a circuit 𝐶:
• Constrain 𝑘1 to 𝐶



Circuit-Constrained IPFs

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗

• Puncture 𝑘2 at PRF1(𝑘1, 𝑥
∗)

To constrain to a circuit 𝐶:
• Constrain 𝑘1 to 𝐶
• Difficulty: Need to constrain 𝑘2

on a pseudorandom set (the 
image of PRF1(𝑘1,⋅) on the 
points allowed by 𝐶)



Circuit-Constrained IPFs

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗

• Puncture 𝑘2 at PRF1(𝑘1, 𝑥
∗)

To constrain to circuit 𝐶:
• Constrain 𝑘1 to 𝐶
• Difficulty: Need to constrain 𝑘2

on a pseudorandom set (the 
image of PRF1(𝑘1,⋅) on the 
points allowed by 𝐶)

This set does not have a 
simple description unless 
PRF1 is efficiently invertible



Circuit-Constrained IPFs

Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗

• Puncture 𝑘2 at PRF1(𝑘1, 𝑥
∗)

To constrain to circuit 𝐶:
• Constrain 𝑘1 to 𝐶
• Difficulty: Need to constrain 𝑘2

on a pseudorandom set (the 
image of PRF1(𝑘1,⋅) on the 
points allowed by 𝐶)

This set does not have a 
simple description unless 
PRF1 is efficiently invertible

See paper for 
construction



Conclusions



Conclusions

Can we constrain other cryptographic primitives, such 
as pseudorandom permutations (PRPs)?



Conclusions

Can we constrain other cryptographic primitives, such 
as pseudorandom permutations (PRPs)?

• Constrained PRPs for many natural classes of constraints do 
not exist



Conclusions

Can we constrain other cryptographic primitives, such 
as pseudorandom permutations (PRPs)?

• Constrained PRPs for many natural classes of constraints do 
not exist

• (Single-key) circuit-constrained invertible pseudorandom 
functions (IPFs) where the range is superpolynomially larger 
than the domain can be constructed from standard lattice 
assumptions



Open Problems

Can we construct constrained PRPs for sufficiently restrictive constraint 
classes (e.g., prefix-constrained PRPs)?



Open Problems

Can we construct constrained PRPs for sufficiently restrictive constraint 
classes (e.g., prefix-constrained PRPs)?

Can we build puncturable IPFs from weaker assumptions?



Open Problems

Can we construct constrained PRPs for sufficiently restrictive constraint 
classes (e.g., prefix-constrained PRPs)?

Can we build puncturable IPFs from weaker assumptions?

Can we construct a multi-key circuit-constrained IPF from standard 
assumptions?



Open Problems

Can we construct constrained PRPs for sufficiently restrictive constraint 
classes (e.g., prefix-constrained PRPs)?

Can we build puncturable IPFs from weaker assumptions?

Can we construct a multi-key circuit-constrained IPF from standard 
assumptions?

Thank you!
https://eprint.iacr.org/2017/477


