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Constrained PRFs [BW13, BGI13, KPTZ13]

Constrained PRF: PRF with additional “constrain” functionality

Constrain𝐶

PRF key Constrained key

Can be used to evaluate at all 
points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1𝐹: 𝒦 ×𝒳 → 𝒴



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Correctness: constrained evaluation at 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1
yields PRF value at 𝑥



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Correctness: constrained evaluation at 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1
yields PRF value at 𝑥

Security: PRF value at points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 0 are 
indistinguishable from random given the constrained key
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Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Many applications:
• Punctured programming paradigm [SW14]

• Identity-based key exchange, broadcast encryption [BW13]
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Constrain𝐶

Known constructions:
• Puncturable PRFs from one-way functions [BW13, BGI13, KPTZ13]

Punctured key can be 
used to evaluate the PRF 

at all but one point



Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Known constructions:
• Puncturable PRFs from one-way functions [BW13, BGI13, KPTZ13]

• (Single-key) circuit-constrained PRFs from LWE [BV15]



Can we constrain other cryptographic primitives, 
such as pseudorandom permutations (PRPs)?
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Our Results

• Constrained PRPs for many natural classes of 
constraints do not exist

• However, the relaxed notion of a constrained 
invertible pseudorandom function (IPF) does exist



Pseudorandom Permutations (PRPs)

𝐹: 𝒦 ×𝒳 → 𝒳
𝐹(𝑘,⋅) implements a 
permutation over 𝒳



Constrained PRPs

𝐹: 𝒦 ×𝒳 → 𝒳

Constrained key 
enables forward and
backward evaluation

Set where 
𝐶 𝑥 = 1

Image of points 
where 𝐶 𝑥 = 1
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Correctness:
• Forward evaluation when 𝐶 𝑥 = 1
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Constrained PRPs

Correctness:
• Forward evaluation when 𝐶 𝑥 = 1
• Backward evaluation on points 𝑦 if 𝑦 = 𝐹(𝑘, 𝑥) and 𝐶 𝑥 = 1

Set where 
𝐶 𝑥 = 1

Image of points 
where 𝐶 𝑥 = 1



Difficulties in Constraining PRPs
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

[See paper for details]
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Difficulties in Constraining PRPs
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Puncturable PRPs 
do not exist.

Open Question: Do prefix-constrained PRPs (where prefix is 𝜔(log 𝜆)
bits) exist?

[See paper for details]



Relaxing the Notion
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Lower bound critically relies on the set of points that satisfy the 
constraint being a non-negligible fraction of the range of the PRP



Relaxing the Notion
Theorem (Informal). Any constrained PRP that allows issuing a 
constrained key that can evaluate on a non-negligible fraction of the 
domain is insecure.

Relaxation: Allow range to be much larger than the domain

Domain 𝒳 Range 𝒴
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Domain 𝒳 Range 𝒴

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦
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Invertible Pseudorandom Functions (IPFs)

An IPF 𝐹:𝒦 ×𝒳 → 𝒴 satisfies the following properties:
• 𝐹(𝑘,⋅) is injective for all 𝑘 ∈ 𝒦
• There exists an efficiently computable inverse 𝐹−1:𝒦 × 𝒴 → 𝒳 ∪ ⊥

• 𝐹−1 𝑘, 𝐹 𝑘, 𝑥 = 𝑥 for all 𝑥 ∈ 𝒳

• 𝐹−1 𝑘, 𝑦 = ⊥ for all 𝑦 not in the range of 𝐹(𝑘,⋅)

IPFs are closely related to the notion of 
deterministic authenticated encryption (DAE) [RS06]. 
IPFs can be used to build DAE, so our constrained 

IPF constructions imply constrained DAE.



Invertible Pseudorandom Functions (IPFs)
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Invertible Pseudorandom Functions (IPFs)
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When 𝒳 = 𝒴, security definition is equivalent to that for a strong PRP
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Constrained IPFs

Direct generalization of constrained PRFs

Constrain𝐶

IPF key Constrained key

Can be used to evaluate at all points 𝑥 ∈ 𝒳 where 
𝐶 𝑥 = 1 and invert at all points 𝑦 whenever
𝑦 = 𝐹(𝑘, 𝑥) for some 𝑥 where 𝐶 𝑥 = 1𝐹: 𝒦 ×𝒳 → 𝒴
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A Puncturable IPF

𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2
𝑦2 = 𝑥 ⊕ PRF2(𝑘2, 𝑦1)𝑦1 = PRF1 𝑘1, 𝑥

Starting point: DAE construction 
called synthetic IV (SIV) [RS06]

Can also be viewed as an 
unbalanced Feistel network 
(with one block set to all 0s)
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𝑥

PRF1(𝑘1,⋅)

PRF2(𝑘2,⋅)

𝑦1 𝑦2

How to puncture this construction?

First attempt: only puncture 𝑘1 at 𝑥∗

Second attempt: also puncture 𝑘2 at 
𝑦1
∗ = PRF1 𝑘1, 𝑥

∗
Punctured key 

reveals punctured 
point!

Solution: use 
private puncturing
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𝑥

PRF1(𝑘1,⋅)
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𝑦1 𝑦2

Master key: 𝑘 = (𝑘1, 𝑘2)
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• 𝑘1 punctured at 𝑥∗

• 𝑘2 privately punctured at 
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∗)

Can be instantiated from standard 
lattice assumptions [BKM17, CC17, BTVW17]
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Master key: 𝑘 = (𝑘1, 𝑘2)

For puncturing at 𝑥∗:
• Puncture 𝑘1 at 𝑥∗
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∗)

To constrain to circuit 𝐶:
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This set does not have a 
simple description unless 
PRF1 is efficiently invertible

See paper for 
construction
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Conclusions

Can we constrain other cryptographic primitives, such 
as pseudorandom permutations (PRPs)?

• Constrained PRPs for many natural classes of constraints do 
not exist

• (Single-key) circuit-constrained invertible pseudorandom 
functions (IPFs) where the range is superpolynomially larger 
than the domain can be constructed from standard lattice 
assumptions
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Open Problems

Can we construct constrained PRPs for sufficiently restrictive constraint 
classes (e.g., prefix-constrained PRPs)?

Can we build puncturable IPFs from weaker assumptions?

Can we construct a multi-key circuit-constrained IPF from standard 
assumptions?

Thank you!
https://eprint.iacr.org/2017/477


