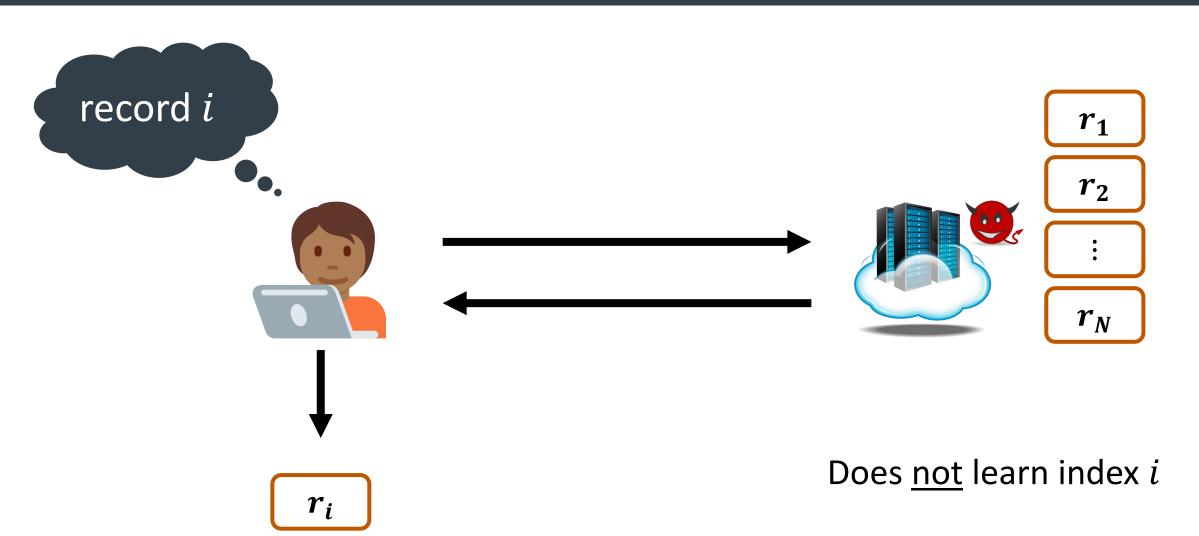
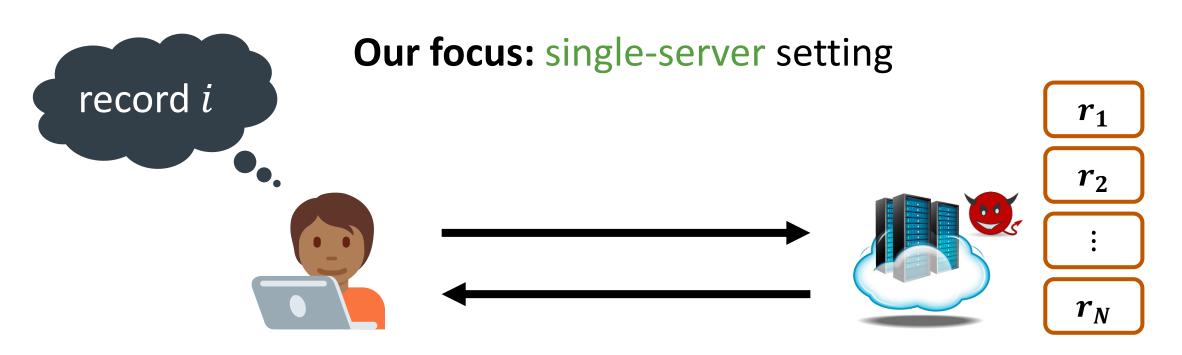
Spiral: Fast High-Rate Single-Server Private Information Retrieval

Samir Menon and <u>David Wu</u>

Private Information Retrieval (PIR)



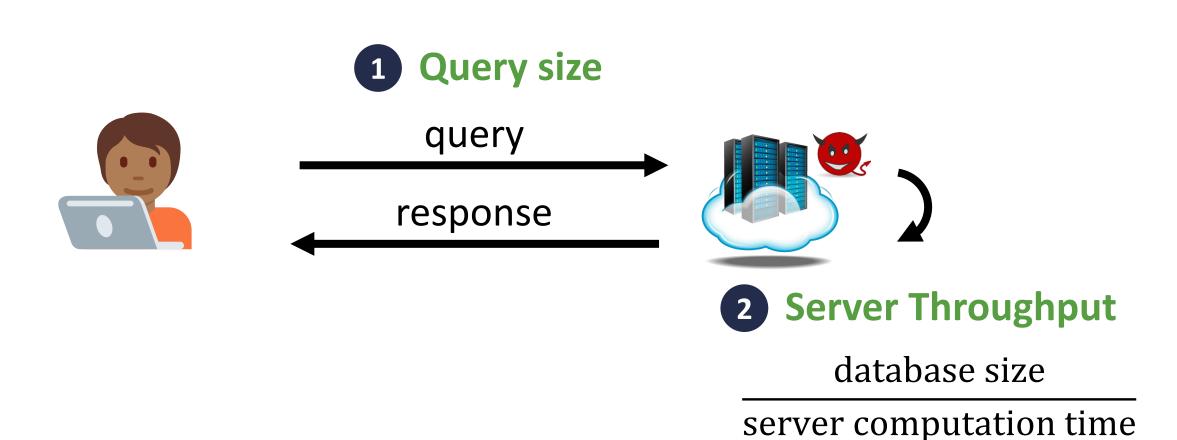
Private Information Retrieval (PIR)



Basic building block in many privacy-preserving protocols

Safe browsing

Efficiency Metrics



"measures how fast the server can respond as a function of database size"

Efficiency Metrics

1 Query size

response

Without preprocessing, server must perform a linear scan over the database

2 Server Throughput

database size

server computation time

"measures how fast the server can respond as a function of database size"

Efficiency Metrics

Client generates a reusable set of public parameters

public parameters

query

response

record size

response size

"measures communication overhead in responses"

4 Public parameter size

2 Server Throughput

database size

server computation time

"measures how fast the server can respond as a function of database size"

The Spiral Family of PIR Protocols

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection based on database configuration

Base version of Spiral

Query size: 14 KB $4.5 \times \text{ smaller}$

Rate: 0.41 $2.1 \times \text{higher}$

Throughput: 333 MB/s $2.9 \times$ higher

(Database with 2^{14} records of size 100 KB)

Cost: 3.4× larger public parameters (17 MB)

Streaming versions of Spiral

Rate: 0.81 $3.4 \times$ smaller responses

Throughput: 1.9 GB/s $12.3 \times$ higher

Best previous protocol:

Rate: 0.24

Throughput: 158 MB/s

The Spiral Family of PIR Protocols

Techniques to translate between FHE sch

Automatic parameter selection based on

Higher throughput than running software AES over database (Primary operation: 64-bit integer arithmetic)

Base version of Spiral

Query size: 14 KB $4.5 \times \text{ smaller}$

Rate: 0.41 $2.1 \times \text{higher}$

Throughput: 333 MB/s $2.9 \times$ higher

(Database with 2^{14} records of size 100 KB)

Cost: $3.4 \times$ larger public parameters (17 MB)

Streaming versions of Spiral

Rate: 0.81 $3.4 \times$ smaller responses

Throughput: 1.9 GB/s $12.3 \times$ higher

Best previous protocol:

Rate: 0.24

Throughput: 158 MB/s

The Spiral Family of PIR Protocols

Techniques to translate between FHE schemes enable

Automatic parameter selection based on database co

Cost of privately streaming a 2 GB movie from database of 2¹⁴ movies estimated to be 1.9× more expensive than <u>no-privacy</u> baseline (based on AWS compute costs)

Base version of Spiral

Query size: 14 KB $4.5 \times \text{ smaller}$

Rate: 0.41 $2.1 \times \text{higher}$

Throughput: 333 MB/s $2.9 \times$ higher

(Database with 2^{14} records of size 100 KB)

Cost: $3.4 \times$ larger public parameters (17 MB)

Streaming versions of Spiral

Rate: 0.81 $3.4 \times$ smaller responses

Throughput: 1.9 GB/s $12.3 \times \text{ higher}$

Best previous protocol:

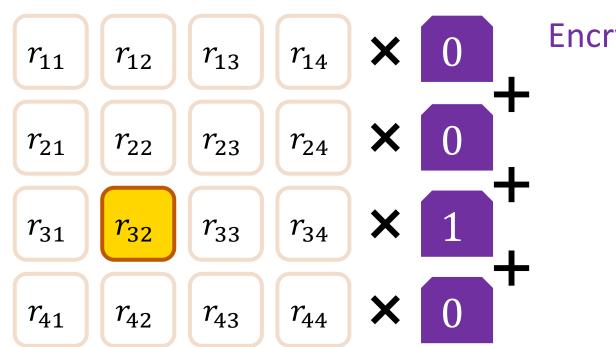
Rate: 0.24

Throughput: 158 MB/s

Starting point: a \sqrt{N} construction (N = number of records)

Arrange the database as a \sqrt{N} -by- \sqrt{N} matrix

Starting point: a \sqrt{N} construction (N = number of records)

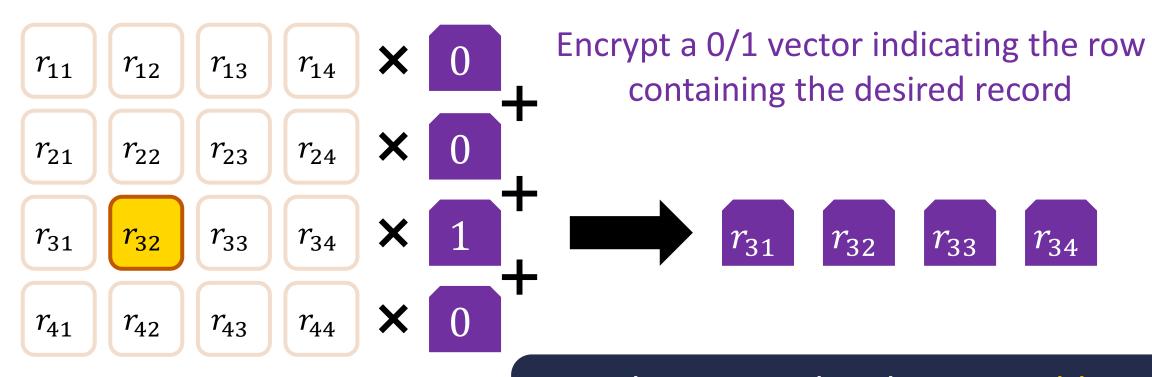


Encrypt a 0/1 vector indicating the row containing the desired record

Arrange the database as a \sqrt{N} -by- \sqrt{N} matrix

Homomorphically compute product between query vector and database matrix

Starting point: a \sqrt{N} construction (N = number of records)



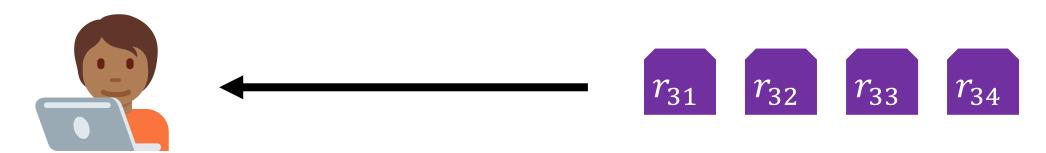
Arrange the database as a \sqrt{N} -by- \sqrt{N} matrix

Database is in the clear, so *additive* homomorphism suffices

Starting point: a \sqrt{N} construction (N = number of records)

Client decrypts to learn records

Encrypt a 0/1 vector indicating the row containing the desired record



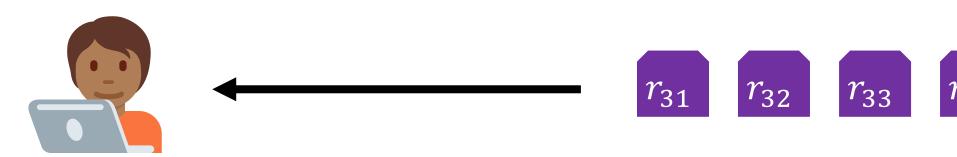
Response size: $\sqrt{N} \cdot \text{poly}(\lambda)$

Homomorphically compute product between query vector and database matrix

Starting point: a \sqrt{N} construction (N = number of records)

Client decrypts to learn records

Encrypt a 0/1 vector indicating the row containing the desired record



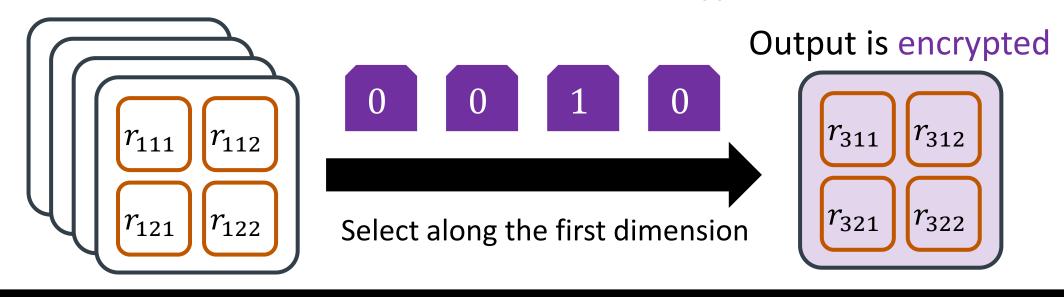
Response size: $\sqrt{N} \cdot \text{poly}(\lambda)$

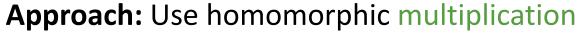
ciphertext size (λ is security parameter)

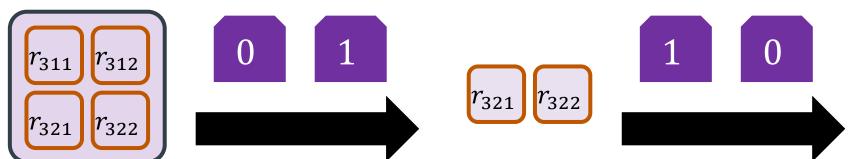
Homomorphically compute product between query vector and database matrix

[KO97]

Beyond \sqrt{N} communication: view the database as hypercube







Gentry-Halevi [GH19] OnionPIR [MCR21]

SPIRAL: Composing FHE Schemes

Follows Gentry-Halevi blueprint of composing two lattice-based FHE schemes:

FHE ciphertexts are noisy encodings

Homomorphic operations increase noise; more noise = larger parameters = less efficiency

Scheme 1: Regev's encryption scheme [Reg04]

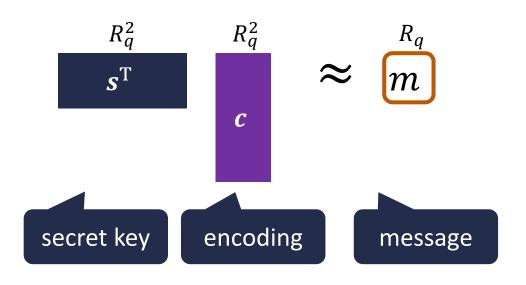
High-rate; only supports additive homomorphism

Scheme 2: Gentry-Sahai-Waters encryption scheme [GSW13]

Low rate; supports homomorphic multiplication (with <u>additive</u> noise growth)

Goal: get the best of *both* worlds

Regev Encodings (over Rings)



- Regev encoding of a scalar $m \in R$: Secret key allows recovery of noisy version of original message
 - To support decryption of "small" values $t \in$ R_p , we encode t as (q/p)t
 - Decryption recovers noisy version of (q/p)tand rounding yields t

$$rate = \frac{\log p}{2 \log q} < \frac{1}{2}$$

OnionPIR: rate = 0.24

[PVW08, LPR10]

Matrix Regev Encodings (over Rings)

Regev encoding of a matrix $M \in R_a^{n \times n}$: Idea: "Reuse" encryption randomness

 $R_q^{n\times(n+1)}$ $R_q^{(n+1)\times n}$ S^{T} \sim M

rate =
$$\frac{n^2 \log p}{n(n+1) \log q} = \frac{n^2}{n^2 + n} \frac{\log p}{\log q}$$

Additively homomorphic:

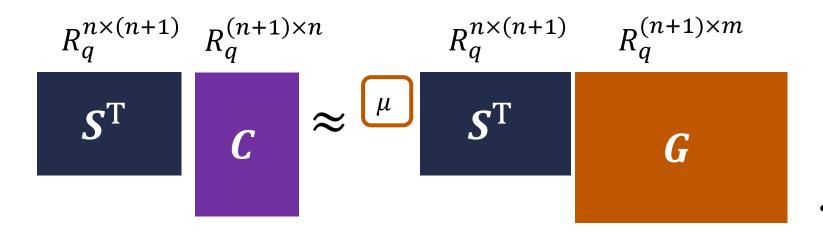
$$S^{\mathrm{T}}C_1 \approx M_1$$
 $S^{\mathrm{T}}C_2 \approx M_2$
 $S^{\mathrm{T}}(C_1 + C_2) \approx M_1 + M_2$

All elements are polynomials in the ring $R = \mathbb{Z}[x]/(x^d + 1)$ where $d = 2^k$

Gentry-Sahai-Waters Encodings

GSW encoding of a bit $\mu \in \{0,1\}$:

Gadget matrix [MP12]:



$$m{G} = egin{bmatrix} m{g}^{\mathrm{T}} & & & & \\ & \ddots & & & \\ & & m{g}^{\mathrm{T}} \end{bmatrix}$$
 $m{g}^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 2^2 & \cdots & 2^{\lfloor \log_z q \rfloor} \end{bmatrix}$

"Powers-of-2" matrix

Construction will use other decomposition bases

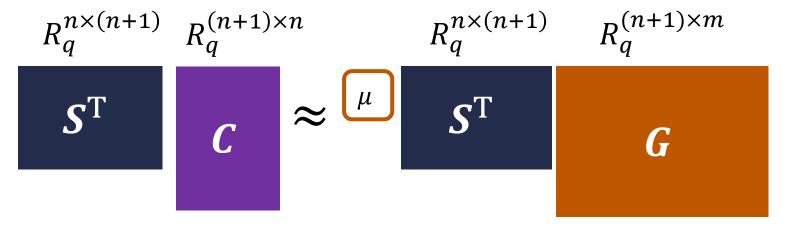
All elements are polynomials in the ring $R = \mathbb{Z}[x]/(x^d + 1)$ where $d = 2^k$

 $m = (n+1)\log q$

Gentry-Sahai-Waters Encodings

GSW encoding of a bit $\mu \in \{0,1\}$:

Gadget matrix [MP12]:



$$m = (n+1)\log q$$

$$oldsymbol{G} = egin{bmatrix} oldsymbol{g}^{\mathrm{T}} & & & & & \\ & & \ddots & & & \\ & & oldsymbol{g}^{\mathrm{T}} \end{bmatrix}$$
 $oldsymbol{g}^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 2^2 & \cdots & 2^{\lfloor \log_z q \rfloor} \end{bmatrix}$

"Powers-of-2" matrix

Main property: for every vector $\boldsymbol{v} \in \mathbb{Z}_q^{n+1}$, can define $G^{-1}(v) \in \{0,1\}^m$ where $GG^{-1}(v) = v$ "binary decomposition"

Construction will use other decomposition bases

All elements are polynomials in the ring $R = \mathbb{Z}[x]/(x^d + 1)$ where $d = 2^k$

Gentry-Sahai-Waters Encodings

GSW encoding of a bit $\mu \in \{0,1\}$:

$R_a^{n\times(n+1)} \quad R_a^{(n+1)\times n} \qquad \qquad R_a^{n\times(n+1)} \qquad R_a^{(n+1)}$

$$R_q^{(n+1)\times m}$$

C

 $rate = \frac{1}{d(n+1)^2 \log q}$

G

 $m = (n+1)\log q$

Gadget matrix [MP12]:

$$oldsymbol{G} = egin{bmatrix} oldsymbol{g}^{ ext{T}} & & & & \ & \ddots & & & \ & & oldsymbol{g}^{ ext{T}} \end{bmatrix}$$

$$\boldsymbol{g}^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 2^2 & \cdots & 2^{\lfloor \log_z q \rfloor} \end{bmatrix}$$

"Powers-of-2" matrix

Construction will use other decomposition bases

Concretely: $d = 2048, n \ge 1, q = 2^{56}$

All elements are polynomials in the ring $R = \mathbb{Z}[x]/(x^d + 1)$ where $d = 2^k$

Regev-GSW Homomorphism

$$S^{\mathrm{T}}C_{\mathrm{Reg}} \approx M$$

$$S^{\mathrm{T}}C_{\mathrm{GSW}} \approx \mu S^{\mathrm{T}}G$$

With noise terms:

$$\mathbf{S}^{\mathrm{T}}\mathbf{C}_{\mathrm{GSW}}\mathbf{G}^{-1}(\mathbf{C}_{\mathrm{Reg}}) = \mu\mathbf{M} + \mathbf{E}_{\mathrm{GSW}}\mathbf{G}^{-1}(\mathbf{C}_{\mathrm{Reg}}) + \mu E_{\mathrm{Reg}}$$

<u>Asymmetric</u> noise growth: if all GSW ciphertexts are "fresh," then noise accumulation is <u>additive</u> in the number of multiplications

$$S^{\mathrm{T}}C_{\mathrm{GSW}}G^{-1}(C_{\mathrm{Reg}}) \approx \mu S^{\mathrm{T}}C_{\mathrm{Reg}} \approx \mu M$$

$$m{\mathcal{C}}_{\mathrm{GSW}} m{\mathcal{G}}^{-1} m{\mathcal{C}}_{\mathrm{Reg}}$$
 is a Regev encoding of $\mu m{M}$

Database is represented as $2^{\nu_1} \times \underbrace{2 \times 2 \times \cdots \times 2}_{2^{\nu_2}}$ hypercube

Query contains 2^{ν_1} matrix Regev ciphertexts

0

 I_n

0

0

Indicator for index along first dimension

Response is a <u>single</u> matrix Regev ciphertext Query contains v_2 GSW ciphertexts

0

1

1

0

Each GSW ciphertext participates in only <u>one</u> multiplication with a Regev ciphertext!

Indicator for index along subsequent dimensions

The Gentry-Halevi Blueprint

Database is represented as $2^{\nu_1} \times \underbrace{2 \times 2 \times \cdots \times 2}_{2^{\nu_2}}$ hypercube

Drawback: large queries

Can compress using polynomial encoding method of Angel et al.

[ACLS18]

Query contains 2^{ν_1} matrix Regev ciphertexts

0

Indicator for index along first dimension

Estimated size:

4 MB/ciphertext

Estimated query size:

30 MB

Query contains ν_2 GSW ciphertexts

0

Indicator for index along subsequent dimensions

The Gentry-Halevi Blueprint

Database is represented as $2^{\nu_1} \times \underbrace{2 \times 2 \times \cdots \times 2}_{2^{\nu_2}}$ hypercube

Drawback: large queries

Can compress using polynomial encoding method of Angel et al. [ACLS18]

Query contains 2^{ν_1} matrix Regev ciphertexts

0

Indicator for index along first dimension

SealPIR query size: 66 KB

Estimated query size: 30 MB

Query contains ν_2 GSW ciphertexts

0

1

1

0

Indicator for index along subsequent dimensions

OnionPIR

High-level: Gentry-Halevi approach with *scalar* Regev ciphertexts (n = 1)

Leverages Chen et al. approach [CCR19] to "assemble" GSW ciphertext using Regev-GSW multiplication

Regev ciphertexts can be packed using polynomial encoding method [ACLS18, CCR19]

Use of scalar Regev ciphertexts reduces the rate to ≈ 0.24 (over 4× response overhead)

This Work: Translating Between Regev and GSW

"Best of both worlds": Small queries (as in OnionPIR) with the high rate/throughput of the Gentry-Halevi scheme

Query size: 14 KB $2000 \times$ smaller than Gentry-Halevi (4.5 \times smaller than OnionPIR)

Rate: 0.41 $2.1 \times \text{higher than OnionPIR}$

Throughput: 333 MB/s 2.9× higher than OnionPIR

(Database with 2^{14} records of size 100 KB)

Comparable improvements for other database configurations; more speed-ups in streaming setting

Cost: 3.4× larger public parameters for extra translation keys

Leverage simple key-switching techniques for query and response compression

Scalar Regev → Matrix Regev

Matrix Regev → GSW

Scalar Regev → Matrix Regev

Query compression

Response compression (for large records)

Scalar Regev → Matrix Regev

Input: encoding c where $s_1^T c \approx m$

Output: encoding C where $S_2^T C \approx m I_n$

$$S_2^{\mathrm{T}}C = mI_n$$

Can replace with S_2 with arbitrary secret key using standard key-switching techniques

 $\mathbf{s}_{1}^{\mathrm{T}} = [-\tilde{s}_{0} \mid 1] \in R_{a}^{2}$

 $\boldsymbol{c}^{\mathrm{T}} = [c_0 \mid c_1] \in R_a^2$

Goal: use Regev encodings to construct C such that $S^{T}C \approx \mu S^{T}G$

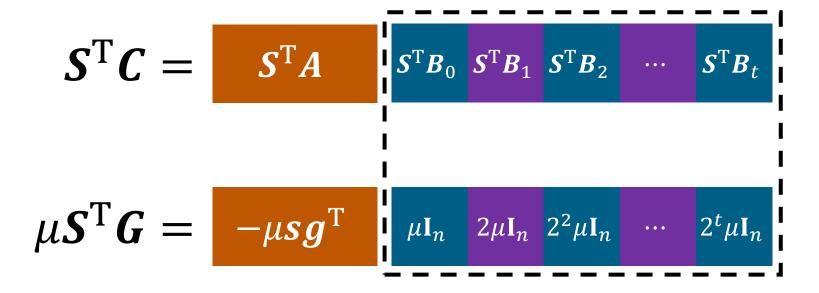
$$\mathbf{S}^{\mathrm{T}} = [-\mathbf{s} \mid \mathbf{I}_n] \in R_q^{n \times (n+1)}$$

$$\mu S^{\mathrm{T}}G = \begin{bmatrix} -\mu s g^{\mathrm{T}} & \mu \mathbf{I}_n & 2\mu \mathbf{I}_n & 2^2\mu \mathbf{I}_n & \cdots & 2^t\mu \mathbf{I}_n \end{bmatrix}$$

$$C = \begin{bmatrix} A & B_0 & B_1 & B_2 & \cdots & B_t \end{bmatrix}$$

Break C into blocks

Goal: use Regev encodings to construct C such that $S^{T}C \approx \mu S^{T}G$



 $B_0, ..., B_t$ are matrix Regev ciphertexts encrypting $\mu \mathbf{I}_n, 2\mu \mathbf{I}_n, ..., 2^t \mu \mathbf{I}_n$

Can derive from scalar Regev encodings of μ , 2μ , ..., $2^t\mu$

Goal: use Regev encodings to construct C such that $S^{T}C \approx \mu S^{T}G$

$$\boldsymbol{S}^{\mathrm{T}}\boldsymbol{C} = \begin{bmatrix} \boldsymbol{S}^{\mathrm{T}}\boldsymbol{A} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{0} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{1} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{2} & \cdots & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{t} \\ & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{0} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{1} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{2} & \cdots & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{t} \\ & \boldsymbol{Let} \, \boldsymbol{s}_{\mathrm{Reg}} \, \, \mathrm{be} \, \, \mathrm{the} \, \, \mathrm{key} \, \mathrm{for} \, \, \mathrm{a} \, \, \mathrm{Regev} \\ & \mathrm{encoding} \, \, \mathrm{scheme} \\ \\ \boldsymbol{\mu} \boldsymbol{S}^{\mathrm{T}} \boldsymbol{G} = \begin{bmatrix} -\boldsymbol{\mu} \boldsymbol{s} \, \boldsymbol{g}^{\mathrm{T}} & \boldsymbol{\mu} \boldsymbol{I}_{n} & 2\boldsymbol{\mu} \boldsymbol{I}_{n} & 2\boldsymbol{\mu} \boldsymbol{I}_{n} & 2\boldsymbol{\mu} \boldsymbol{I}_{n} & \cdots & 2\boldsymbol{I}_{n} \boldsymbol{I}_{n} \\ & \boldsymbol{S}^{\mathrm{T}} \boldsymbol{W} \approx -\boldsymbol{s} \left(\boldsymbol{s}_{\mathrm{Reg}}^{\mathrm{T}} \otimes \boldsymbol{g}^{\mathrm{T}} \right) \end{bmatrix}$$

Let $oldsymbol{s}_{\mathsf{Reg}}$ be the key for a Regev

$$S^{\mathrm{T}}W \approx -s\left(s_{\mathrm{Reg}}^{\mathrm{T}} \otimes g^{\mathrm{T}}\right)$$

Let $c_0, \dots c_t$ be encodings of $\mu, \dots, 2^t \mu$ under s_{Reg} : $s_{\text{Reg}}^T c_i \approx 2^t \mu$

Let
$$\boldsymbol{C} = [\boldsymbol{c}_0 \mid \cdots \mid \boldsymbol{c}_t]$$

Then,
$$S^{\mathrm{T}}Wg^{-1}(\mathbf{C}) \approx -s\left(s_{\mathrm{Reg}}^{\mathrm{T}} \otimes g^{\mathrm{T}}\right)g^{-1}(\mathbf{C}) \approx -s\left[\mu \mid \cdots \mid 2^{t}\mu\right] = -\mu sg^{\mathrm{T}}$$

Goal: use Regev encodings to construct C such that $S^{T}C \approx \mu S^{T}G$

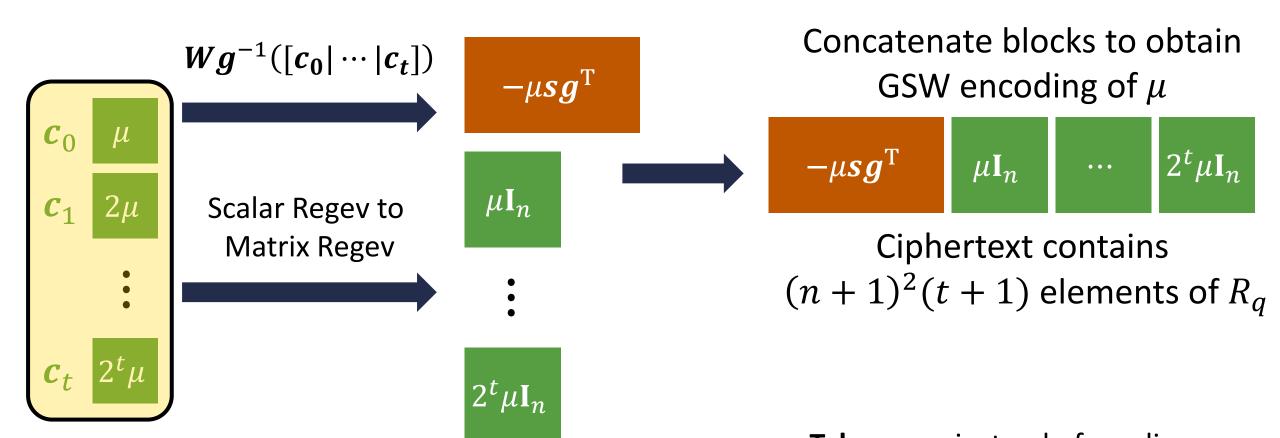
$$\boldsymbol{S}^{\mathrm{T}}\boldsymbol{C} = \begin{bmatrix} \boldsymbol{S}^{\mathrm{T}}\boldsymbol{A} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{0} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{1} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{2} & \cdots & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{t} \\ & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{0} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{1} & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{2} & \cdots & \boldsymbol{S}^{\mathrm{T}}\boldsymbol{B}_{t} \\ & \boldsymbol{Let} \, \boldsymbol{s}_{\mathrm{Reg}} \, \, \mathrm{be} \, \, \mathrm{the} \, \, \mathrm{key} \, \mathrm{for} \, \, \mathrm{a} \, \, \mathrm{Regev} \\ & \mathrm{encoding} \, \, \mathrm{scheme} \\ \\ \boldsymbol{\mu} \boldsymbol{S}^{\mathrm{T}} \boldsymbol{G} = \begin{bmatrix} -\boldsymbol{\mu} \boldsymbol{s} \, \boldsymbol{g}^{\mathrm{T}} & \boldsymbol{\mu} \boldsymbol{I}_{n} & 2\boldsymbol{\mu} \boldsymbol{I}_{n} & 2\boldsymbol{\mu} \boldsymbol{I}_{n} & 2\boldsymbol{\mu} \boldsymbol{I}_{n} & \cdots & 2\boldsymbol{I}_{n} \boldsymbol{I}_{n} \\ & \boldsymbol{S}^{\mathrm{T}} \boldsymbol{W} \approx -\boldsymbol{s} \left(\boldsymbol{s}_{\mathrm{Reg}}^{\mathrm{T}} \otimes \boldsymbol{g}^{\mathrm{T}} \right) \end{bmatrix}$$

Let
$$s_{\mathrm{Reg}}$$
 be the key for a Regev

$$S^{\mathrm{T}}W \approx -s\left(s_{\mathrm{Reg}}^{\mathrm{T}} \otimes g^{\mathrm{T}}\right)$$

Let
$$c_0$$
, . Let c_0 Define $A = Wg^{-1}(c_0)$ under s_{Reg} : $s_{\mathrm{Reg}}^{\mathrm{T}}c_i \approx 2^i \mu$

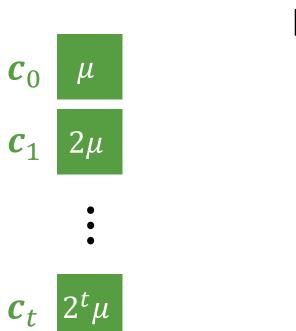
Then,
$$S^{\mathrm{T}}Wg^{-1}(\mathbf{C}) \approx -s\left(s_{\mathrm{Reg}}^{\mathrm{T}} \otimes g^{\mathrm{T}}\right)g^{-1}(\mathbf{C}) \approx -s\left[\mu \mid \cdots \mid 2^{t}\mu\right] = -\mu sg^{\mathrm{T}}$$



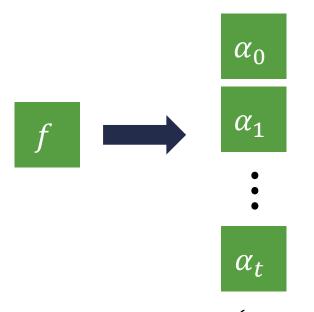
scalar Regev encodings: elements of R_q^2

matrix Regev encodings: elements of $R_q^{(n+1)\times n}$ **Takeaway:** instead of sending $(n+1)^2(t+1)$ ring elements per GSW ciphertext, only need to send 2(t+1)

Further Compression via Polynomial Encodings



[ACLS18, CCR19]: let $f(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_t \cdot x^t$ with t < d



Expands a Regev encoding of a polynomial into Regev encodings of its coefficients

Cost: additional (reusable) public parameters needed for Regev-to-GSW translation

Takeaway: We can pack $(\mu, 2\mu, \dots 2^t \mu)$ into a <u>single</u> polynomial

As long as t + 1 < d, client and communicate a GSW ciphertext with a <u>single</u> Regev encoding (2 ring elements)

$$(n+1)^2(t+1)$$
 ring elements

2 ring elements

Query Expansion in Spiral

Database is represented as $2^{\nu_1} \times 2 \times 2 \times \cdots \times 2$ hypercube

Query contains 2^{ν_1} matrix Regev ciphertexts

Indicator for index along first dimension

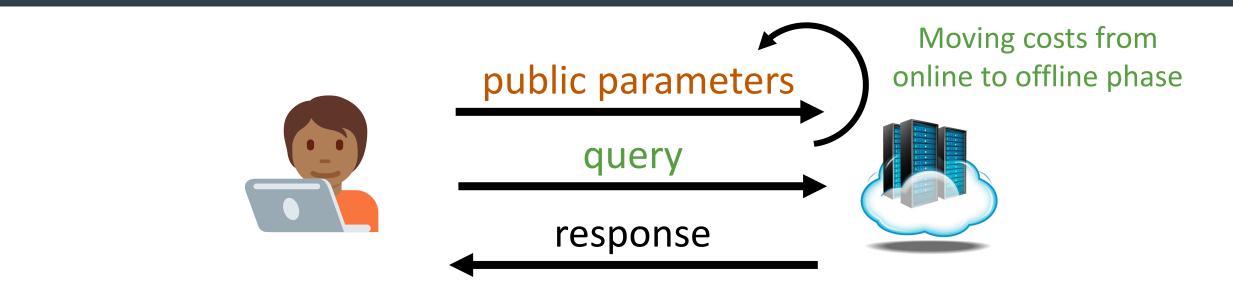
Query contains v_2 GSW ciphertexts

Indicator for index along subsequent dimensions

Compress into scalar Regev encodings

Pack scalars into single polynomial

Query Expansion in Spiral



offline and one-time cost

online cost

Trade-off: larger public parameters, smaller queries

Spiral also achieves higher rate and throughput

SealPIR: 3 MB

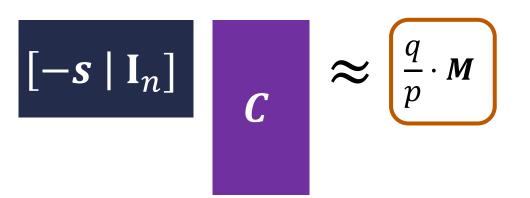
OnionPIR: 5 MB

SPIRAL: 18 MB

SealPIR: 66 KB Gentry-Halevi: ≈30 MB

OnionPIR: 63 KB SPIRAL: 14 KB

PIR response consists of a single matrix Regev encoding



Modulus q must be large enough to support target number of homomorphic operations

rate
$$\propto \frac{\log p}{\log q}$$

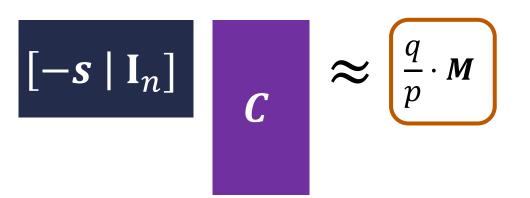
Standard technique in FHE: modulus reduction

Rescale ciphertext by
$$\frac{q'}{q}$$
 where $q' < q$ rate $\propto \frac{\log p}{\log q'}$

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error E is scaled by $[-s \mid I_n]$

PIR response consists of a single matrix Regev encoding



Modulus q must be large enough to support target number of homomorphic operations

rate
$$\propto \frac{\log p}{\log q}$$

Standard technique in FHE: modulus reduction

Rescale ciphertext by
$$\frac{q'}{q}$$
 where $q' < q$ rate $\propto \frac{\log p}{\log q'}$

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error \boldsymbol{E} is scaled by $[-\boldsymbol{s} \mid \mathbf{I}_n]$

$$egin{array}{c|c} egin{array}{c} e_0^{
m T} & {
m Error\ scaled\ by\ } -s \ \\ \hline E_1 & {
m Error\ scaled\ by\ } {
m I}_n \ \end{array}$$

PIR response consists of a single matrix Regev encoding

$$[-s \mid I_n]$$

Observation: At least half of the error components are scaled by identity matrix!

Approach: Use two different moduli to rescale the ciphertext

Standard technique in FHE: modulus reduction

Rescale ciphertext by
$$\frac{q'}{q}$$
 where $q' < q$ rate $\propto \frac{\log p}{\log q'}$

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error \boldsymbol{E} is scaled by $[-\boldsymbol{s} \mid \mathbf{I}_n]$

$$\begin{bmatrix} -s \mid \mathbf{I}_n \end{bmatrix}$$
 $\begin{bmatrix} e_0^{\mathrm{T}} \end{bmatrix}$ Error scaled by $-s$ Error scaled by \mathbf{I}_n

PIR response consists of a single matrix Regev encoding

$$\begin{array}{c|c} & & & \\ \hline C & = & \\ \hline & c_1 & & \\ \hline &$$

Observation: At least half of the error components are scaled by identity matrix!

Approach: Use two different moduli to rescale the ciphertext

Standard technique in FHE: modulus reduction

Rescale ciphertext by
$$\frac{q'}{q}$$
 where $q' < q$ rate $\propto \frac{\log p}{\log q'}$

Rescaling introduces small amount of noise (from rounding)

This work: Observe that rounding error \boldsymbol{E} is scaled by $[-\boldsymbol{s} \mid \mathbf{I}_n]$

$$\begin{bmatrix} -s \mid \mathbf{I}_n \end{bmatrix}$$
 Error scaled by $-s$ Error scaled by \mathbf{I}_n

Error scaled by I_n

PIR response consists of a single matrix Regev encoding

$$\begin{array}{c|c} C & \xrightarrow{\text{Rescale by } q_2/q} & \widetilde{c}_0^{\text{T}} \\ \hline \\ C & = & \\ \hline \\ C_1 & \xrightarrow{\text{Rescale by } q_1/q} & \widetilde{c}_1 \\ \hline \end{array}$$

Observation: At least half of the error components are scaled by identity matrix!

Approach: Use two different moduli to rescale the ciphertext

$$rate = \frac{n^2 \log p}{n^2 \log q_1 + n \log q_2}$$

SealPIR

- 0.01
- Gentry-Halevi (estimated) 0.44
- OnionPIR

0.24

Overall rate: 0.34 (with vanilla modulus switching)

0.81 (with split modulus switching)

This work: Observe that rounding error \boldsymbol{E} is scaled by $[-\boldsymbol{s} \mid \mathbf{I}_n]$

$$[-s \mid I_n]$$

Error scaled by -s

Error scaled by I_n

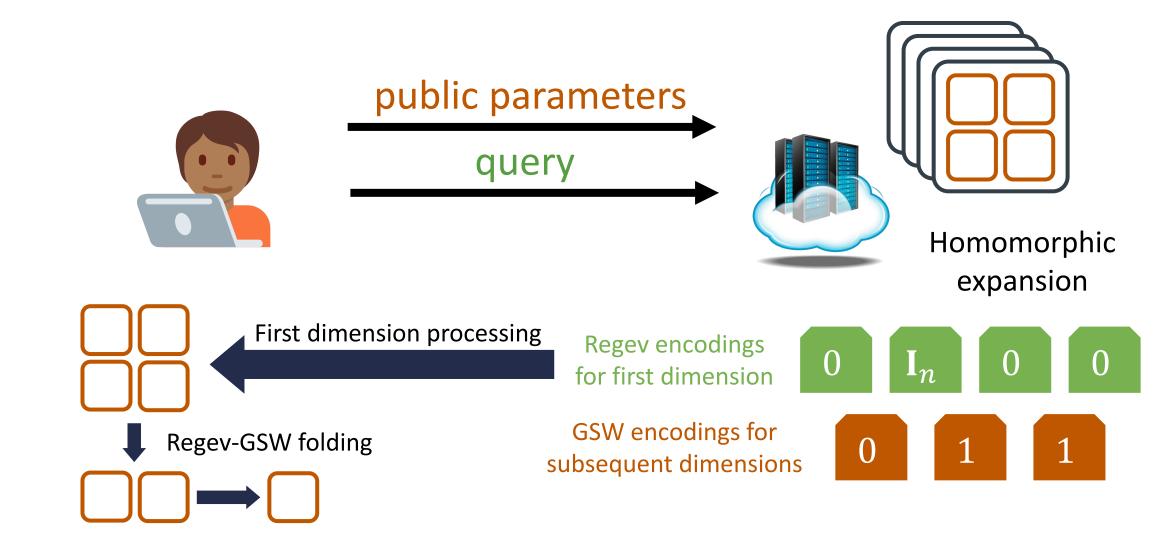
public parameters

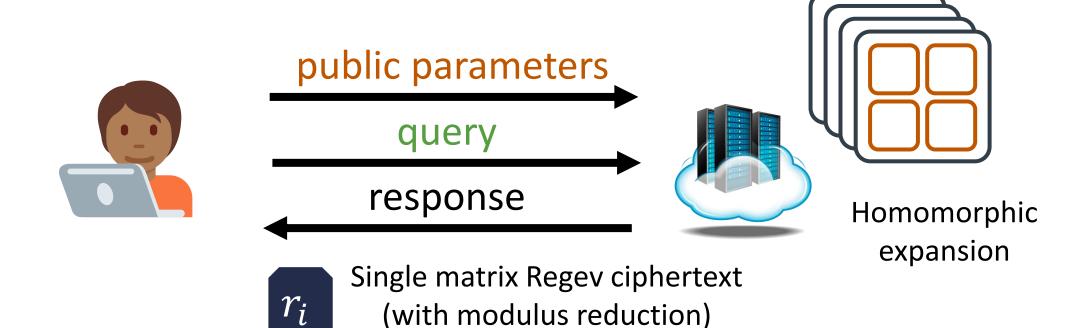
Key-switching matrices for ciphertext expansion and translation

public parameters

query

Single scalar Regevence encoding of a polynomial





Many parameter choices in Spiral:

Plaintext matrix dimension

Plaintext modulus

Decomposition bases for key-switching

Database arrangement

Trade-offs in public parameter size, query size, server throughput, and rate

Use estimated running time + compute cost to choose parameters for an input database configuration

Automatic parameter selection tool

Basic Comparisons

Database	Metric	SealPIR	FastPIR	OnionPIR	SPIRAL
2 ¹⁸ records 30 KB records (7.9 GB database)	Public Param. Size	3 MB	1 MB	5 MB	18 MB
	Query Size	66 KB	8 MB	63 KB	14 KB
	Response Size	3 MB	262 KB	127 KB	84 KB
	Server Compute	74.91 s	50.5 s	52.7 s	24.5 s
			Rate: Throughput:	0.24 149 MB/s	0.36 322 MB/s

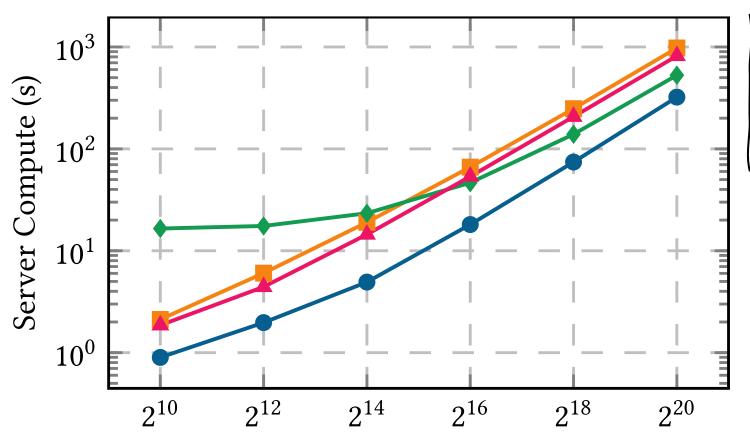
Database configuration preferred by OnionPIR

Compared to OnionPIR:

reduce query size by 4.5× reduce response size by 2× reduce compute time by 2×

reduce query size by $4.5 \times$ increase public parameter size by $3.6 \times$

Basic Comparisons (with Larger Records)



Throughput for 100 GB database (2^{20} records):

SPIRAL: 310 MB/s (322 s)
SealPIR: 102 MB/s (977 s)
FastPIR: 189 MB/s (528 s)
OnionPIR: 122 MB/s (817 s)

Spiral also has smaller query size and response size, but larger public parameters

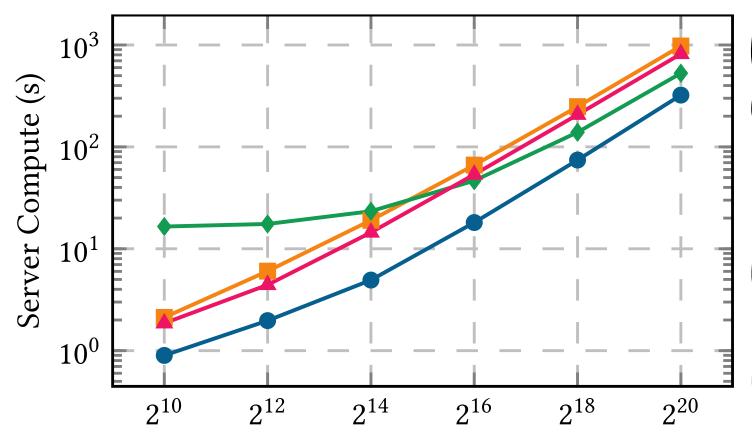
All measurements based on singlethread/single-core processing

Number of Records (100 KB Records)

→ Spiral → SealPIR → FastPIR → OnionPIR

Server cost is <u>linear</u> in database size

Basic Comparisons (with Larger Records)



Client costs:

- Generating <u>reusable</u> public parameters is the most expensive operation, but still < 1 s
- Query generation and response decoding are fast (30 ms and < 1 ms)

Server costs:

- Query expansion typically takes ≈ 1 second (less than 1.5% of overall compute when number of records is large)
- Parameter selection favors configurations that evenly distributes the work between first layer processing and ciphertext folding

Number of Records (100 KB Records)

(see paper for detailed microbenchmarks)

Streaming setting: same query reused over multiple databases

Private video stream (database D_i contains i^{th} block of media)

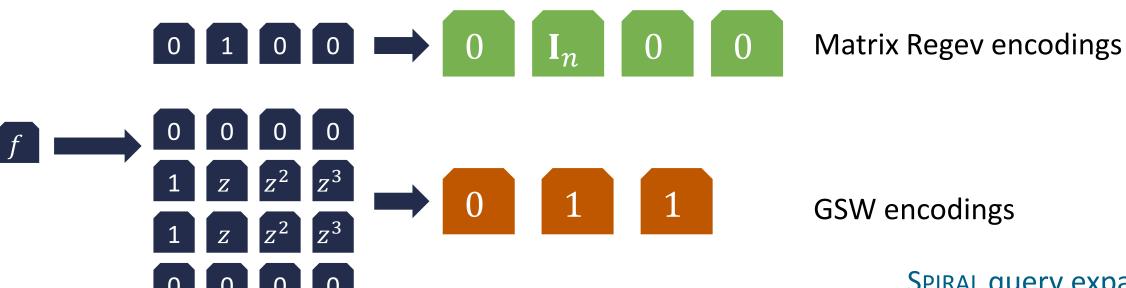
[GCMSAW16]

Private voice calls (repeated polling of the same "mailbox")

[AS16, AYAAG21]

Goal: minimize online costs (i.e., server compute, response size)

Consider larger public parameters or query size (amortized over lifetime of stream)



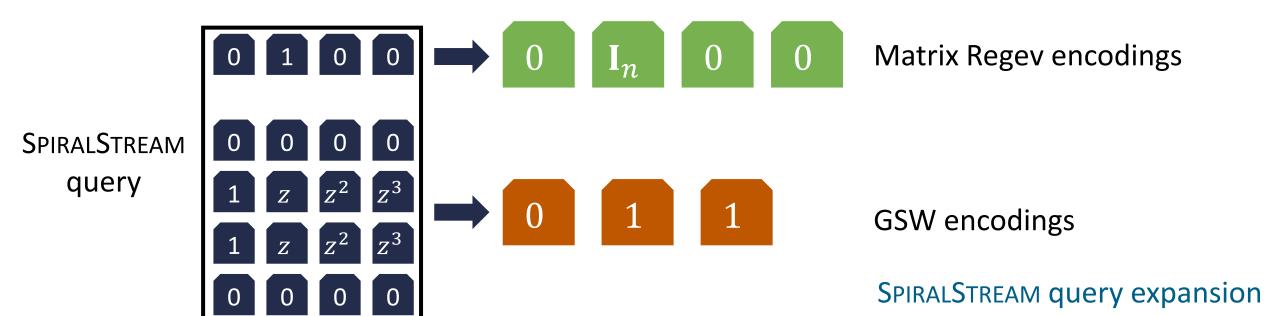
Spiral query expansion

Removing the initial expansion <u>significantly</u> reduces the noise growth from query expansion

Decreases size of public parameters (no more automorphism keys)

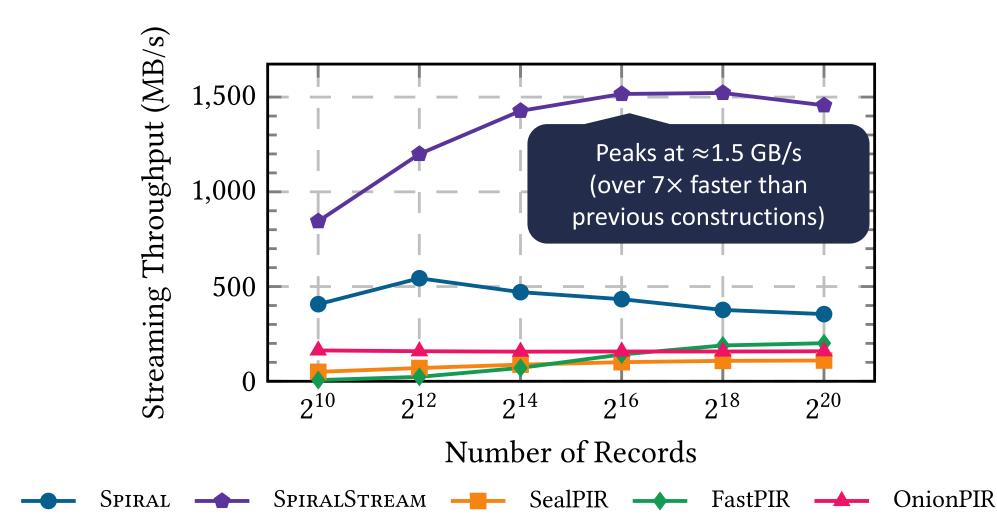
Better control of noise growth ⇒ higher server throughput and higher rate

Larger queries (more Regev encodings)



Database	Metric	OnionPIR	SPIRAL	SPIRALSTREAM
2 ¹⁸ records 30 KB records (7.9 GB database)	Public Param. Size	5 MB	18 MB	3 MB
	Query Size	63 KB	14 KB	15 MB
	Response Size	127 KB	84 KB	62 KB
	Server Compute	52.7 s	24.5 s	9.0 s
	Rate	: 0.23	0.36	0.48
	Throughput	: 149 MB/s	322 MB/s	874 MB/s

25% reduction in response size 2.7× increase in throughput



Can we further reduce response size?

$$rate = \frac{n^2 \log p}{n \log q_2 + n^2 \log q_1} \qquad q_1 = 4p$$

Increasing the plaintext dimension n increases the rate

Spiral and SpiralStream use n=2

Higher values of n increases <u>computational</u> cost

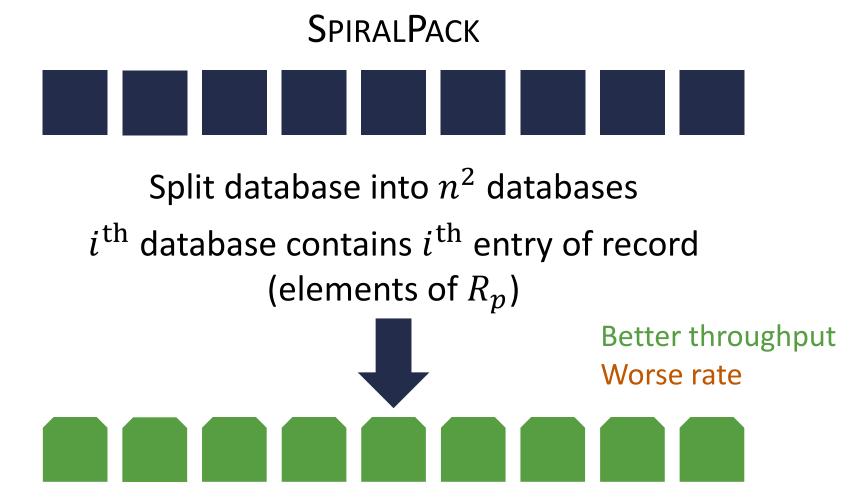
Each Regev encoding is a $(n+1) \times n$ matrix, so number of ring operations per homomorphic operation scale with $O(n^3)$ [Not using fast matrix multiplications here]

SpiralPack: Perform homomorphic operations with n=1 and pack <u>responses</u>

SPIRAL

Plaintext space: $R_p^{n \times n}$

Each record is $n \times n$ matrix

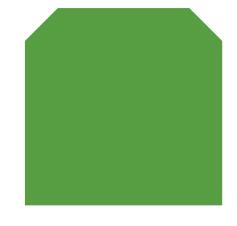


Response consists of n^2 Regev encodings

 n^2 Regev ciphertexts with dimension 1

Variant of scalar Regev to matrix Regev transformation Requires publishing *n* key-switching matrices

Consists of $2n^2$ ring elements



Packing done only at the very end (cost does <u>not</u> scale with number of records)

1 Regev ciphertext with dimension *n*

Consists of n(n + 1) ring elements

SpiralPack: higher throughput and rate (for sufficiently large records), larger public parameters

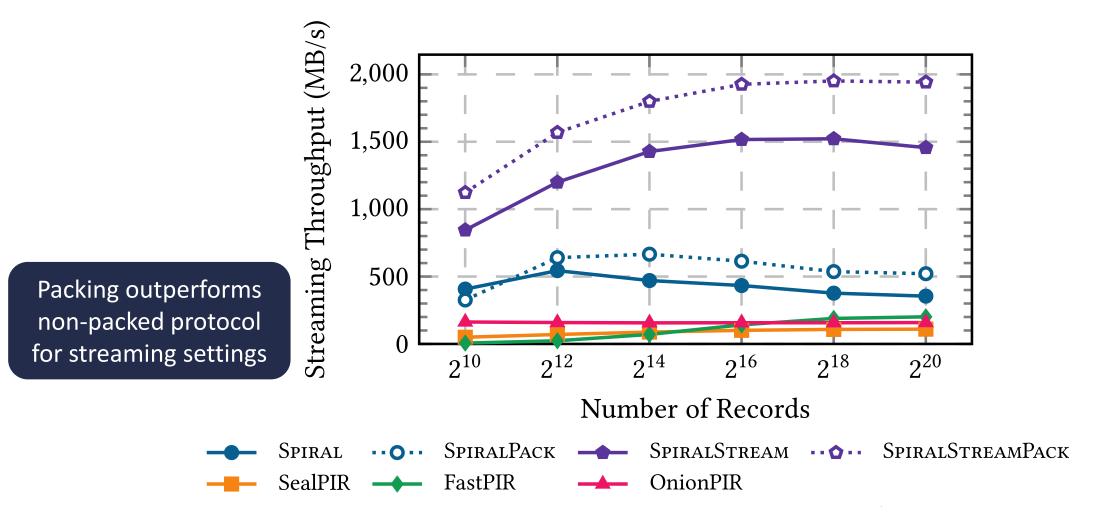
Database	Metric	OnionPIR	SPIRAL	SPIRALSTREAM
40	Public Param. Size	5 MB	18 MB → 18 MB	3 MB → 16 MB
2 ¹⁸ records 30 KB records (7.9 GB database)	Query Size	63 KB	14 KB \rightarrow 14 KB	15 MB → 30 MB
	Response Size	127 KB	84 KB → 86 KB	62 KB → 96 KB
	Server Compute	52.7 s	24.5 s \rightarrow 17.7 s	$9.0 s \rightarrow 5.3 s$

- Small records ⇒ can only take advantage of low packing dimension
- Higher throughputs since homomorphic operations cheaper
- Responses larger due to extra noise from response packing

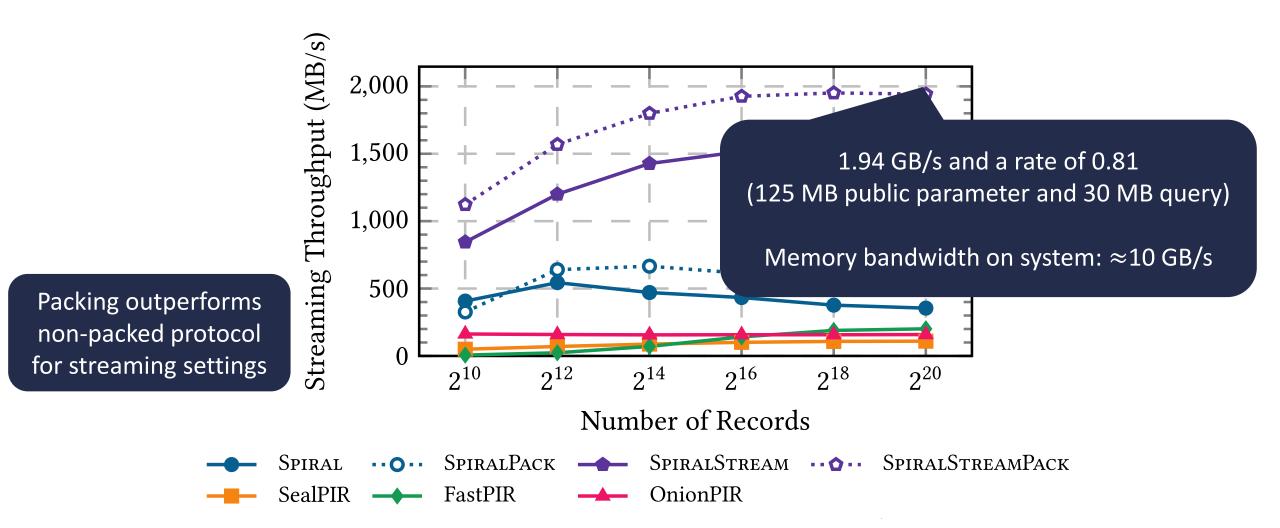
Database	Metric	OnionPIR	SPIRAL	SPIRALSTREAM
2 ¹⁸ records 30 KB records (7.9 GB database)	Public Param. Size	5 MB	18 MB → 18 MB	3 MB → 16 MB
	Query Size	63 KB	14 KB \rightarrow 14 KB	15 MB → 30 MB
	Response Size	127 KB	84 KB → 86 KB	62 KB → 96 KB
	Server Compute	52.7 s	24.5 s \rightarrow 17.7 s	$9.0 s \rightarrow 5.3 s$
2 ¹⁴ records 100 KB records (1.6 GB database)	Public Param. Size	5 MB	17 MB → 47 MB	1 MB → 24 MB
	Query Size	63 KB	14 KB \rightarrow 14 KB	$8 MB \rightarrow 30 MB$
	Response Size	508 KB	242 KB → 188 KB	$208 \text{ KB} \rightarrow 150 \text{ KB}$
	Server Compute	14.4 s	$4.92 s \rightarrow 4.58 s$	$2.4 \text{ s} \rightarrow 1.2 \text{ s}$
	Rate:	0.20	0.41 → 0.53	0.48 → 0.67
	Throughput:	114 MB/s	333 MB/s \rightarrow 358 MB/s	683 MB/s \rightarrow 1.4 GB/s

With 100 KB records, higher rate and throughput in exchange for larger public parameters

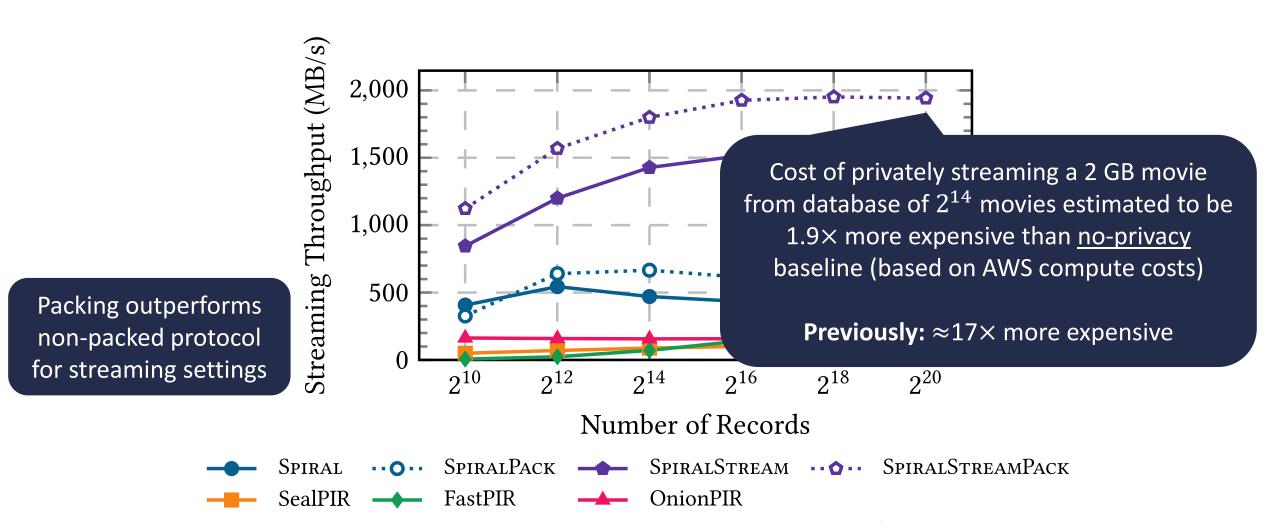
Packing in the Streaming Setting



Packing in the Streaming Setting



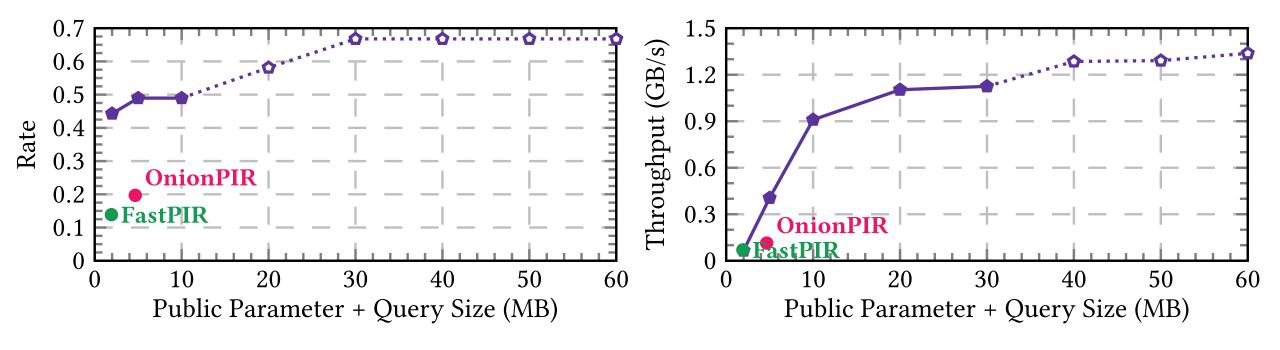
Packing in the Streaming Setting



A Systematic Way to Explore PIR Trade-Offs

Parameter selection tool can be used to minimize online cost with constraints on public parameter and query sizes

(Database configuration: $2^{14} \times 100 \text{ KB}$ database)



The Spiral Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Scalar Regev → Matrix Regev Regev → GSW

Query compression

Scalar Regev → Matrix Regev

Response compression (for large records)

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of Spiral

Query size:14 KB $4.5 \times$ smallerRate:0.41 $2.1 \times$ higherThroughput:333 MB/s $2.9 \times$ higher

(Database with 2^{14} records of size 100 KB)

Streaming versions of Spiral

Rate:0.81 $3.4 \times$ smallerThroughput:1.9 GB/s $12.3 \times$ higher

Improvements primarily due to query and response compression

The Spiral Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Scalar Regev → Matrix Regev Regev → GSW

Query compression

Scalar Regev → Matrix Regev

Response compression (for large records)

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of Spiral

Query size:14 KB $4.5 \times$ smallerRate:0.41 $2.1 \times$ higherThroughput:333 MB/s $2.9 \times$ higher

(Database with 2^{14} records of size 100 KB)

Streaming versions of Spiral

Rate: 0.81 $3.4 \times \text{smaller}$ Throughput: 1.9 GB/s $12.3 \times \text{higher}$

Improvements primarily due to finetuning scheme parameters for database configuration

Future Directions

Leveraging FHE composition in other privacy-preserving systems

Private set intersection (PSI)

Oblivious RAM (ORAM)

Hardware acceleration for higher throughput

Leveraging preprocessing to achieve <u>sublinear</u> server computation

Paper: https://eprint.iacr.org/2022/368

Code: https://github.com/menonsamir/spiral

Thank you!