
Functional Encryption: Deterministic 
to Randomized Functions from 

Simple Assumptions

Shashank Agrawal and David J. Wu



Public-Key Functional Encryption [BSW11, O’N10]

Keys are associated with 
deterministic functions 𝑓

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚)

𝑥

𝑓(𝑥)

sk𝑓

sk𝑓



Public-Key Functional Encryption [BSW11, O’N10]

• Setup 1𝜆 : Outputs (msk,mpk)

• KeyGen(msk, 𝑓): Outputs decryption key sk𝑓

• Encrypt mpk,𝑚 : Outputs ciphertext ct𝑚

• Decrypt(sk𝑓, ct𝑚): Outputs 𝑓 𝑚



Public-Key Functional Encryption [BSW11, O’N10]

• Setup 1𝜆 : Outputs (msk,mpk)

• KeyGen(msk, 𝑓): Outputs decryption key sk𝑓

• Encrypt mpk,𝑚 : Outputs ciphertext ct𝑚

• Decrypt(sk𝑓, ct𝑚): Outputs 𝑓 𝑚

Deterministic
function 𝑓



Functional Encryption for Randomized Functionalities (rFE) [GJKS15]

But what if 𝑓 is 
randomized?

Many interesting functions are 
randomized

𝑥

𝑓(𝑥 ; 𝑟)

𝑟



Application 1: Proxy Re-Encryption

Alice Alice

personal email

work email

Secretary

Mail server has functional key 
to re-encrypt message under 

secretary’s public key



Application 2: Auditing an Encrypted Database

Encrypted database of records

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Sample a random 
subset to audit

𝑟2 𝑟6



Does Public-Key rFE Exist?

iO
General-

Purpose rFE

[GJKS15]

(selectively secure)



Public-Key Functional Encryption [BSW11, O’N10]

PKE / LWE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

[SS10, GVW12, GKPVZ13, …]

[GGHRSW13, Wat15, GGHZ16, …]

Can be instantiated from a wide range of assumptions



The Landscape of (Public-Key) Functional Encryption

PKE / LWE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

Generally adaptively 
secure

iO
General-

Purpose rFE

Selectively secure

Deterministic functionalities Randomized functionalities
[SS10, GVW12, …]

[GGHRSW13, GGHZ16, … ]

[GJKS15]



PKE / LWE

Multilinear 
Maps / iO

General-
Purpose rFE

The Landscape of (Public-Key) Functional Encryption

Does extending FE to support 
randomized functionalities require 

much stronger tools?



Our Main Result

General-purpose FE 
for deterministic 

functionalities

Number Theory

(e.g., DDH, RSA)

General-purpose FE 
for randomized 
functionalities

Implication: randomized FE is not much more 
difficult to construct than standard FE.



Defining rFE



Correctness for FE

Deterministic functions

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚)
sk𝑓



Correctness for rFE [GJKS15]

Randomized functions

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚; 𝑟)
sk𝑓

𝑚′ Decrypt(sk𝑓 , ct𝑚′) 𝑓(𝑚′; 𝑟′)
sk𝑓

Same function 
key

Different 
ciphertexts

Independent draws 
from output 
distribution



Correctness for rFE [GJKS15]

Randomized functionalities

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚; 𝑟)
sk𝑓

𝑚 Decrypt(sk𝑓′ , ct𝑚) 𝑓′(𝑚; 𝑟′)
sk𝑓′

Different 
function keys

Same 
ciphertexts

Independent draws 
from output 
distribution



Simulation-Based Security (Informally)

Real World: honestly 
generated ciphertexts 

and secret keys

Ideal World: 
simulated ciphertexts 

and secret keys

𝑚

sk𝑓𝑓

𝑓(𝑚)

𝑚

msk

𝑓

𝑚

sk𝑓



Simulation-Based Security (Informally)

Real World: honestly 
generated ciphertexts 

and secret keys

Ideal World: 
simulated ciphertexts 

and secret keys

𝑚

sk𝑓𝑓

𝑓(𝑚)

𝑚

msk

𝑓

𝑚

sk𝑓

Simulator only 
sees 𝑓 𝑚



Encrypted database of records

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Sample a random 
subset to audit

𝑟2 𝑟6

What if 
encrypter (bank) 

is adversarial?

The Case for Malicious Encrypters [GJKS15]



Randomized functionalities

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚; 𝑟)
sk𝑓

𝑚′ Decrypt(sk𝑓 , ct𝑚′) 𝑓(𝑚′; 𝑟)
sk𝑓

Dishonest encrypters can 
construct “bad” ciphertexts such 

that decryption produces 
correlated outputs

The Case for Malicious Encrypters [GJKS15]



Randomized functionalities

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚; 𝑟)
sk𝑓

𝑚′ Decrypt(sk𝑓 , ct𝑚′) 𝑓(𝑚′; 𝑟)
sk𝑓

Formally captured by giving 
adversary access to a decryption 
oracle (like in the CCA-security 

game). [See paper for details.]

The Case for Malicious Encrypters [GJKS15]



Our Generic Transformation



Starting Point: Derandomization

𝑥

𝑓 𝑥; PRF 𝑘, 𝑥

𝑘

Starting point: construct “derandomized
function” where randomness for 𝑓

derived from outputs of a PRF

Randomized 
functionality

Derandomized 
functionality

𝑥

𝑓(𝑥 ; 𝑟)

𝑟



Starting Point: Derandomization

𝑥

𝑓 𝑥; PRF 𝑘, 𝑥

𝑘

Randomized 
functionality

Derandomized 
functionality

𝑥

𝑓(𝑥 ; 𝑟)

𝑟

Randomized function 𝑓
Derandomized function 𝑔𝑘:

𝑔𝑘 𝑥 = 𝑓 𝑥, PRF 𝑘, 𝑥



Starting Point: Derandomization

𝑥

𝑓 𝑥; PRF 𝑘, 𝑥

𝑘

Randomized 
functionality

Derandomized 
functionality

𝑥

𝑓(𝑥 ; 𝑟)

𝑟

Randomized function 𝑓
Derandomized function 𝑔𝑘:

𝑔𝑘 𝑥 = 𝑓 𝑥, PRF 𝑘, 𝑥

PRF key embedded 
inside 𝑔𝑘



Starting Point: Derandomization

sk𝑔𝑘

rFE. KeyGen(msk, 𝑓)

FE. KeyGen(msk, 𝑔𝑘)

But in public-
key setting, keys 
do not hide the 

function!𝑘 
R
𝒦

𝑔𝑘 𝑥 = 𝑓 𝑥, PRF 𝑘, 𝑥



Starting Point: Derandomization

sk𝑔𝑘

rFE. KeyGen(msk, 𝑓)

FE. KeyGen(msk, 𝑔𝑘)

Given sk𝑔𝑘, adversary can 

learn the PRF key 𝑘
𝑘 
R
𝒦

𝑔𝑘 𝑥 = 𝑓 𝑥, PRF 𝑘, 𝑥



How to Hide the Key?

Key idea: functional encryption provides message-hiding, so 
place part of the key in the ciphertext

PRF key 𝑘

𝑘1 𝑘2
Key share in 
ciphertext

Secret-share the 
PRF key

Key share in 
function key



How to Hide the Key?

Key idea: functional encryption provides message-hiding, so 
place part of the key in the ciphertext

rFE. Encrypt(mpk,𝑚)

FE. Encrypt mpk, 𝑚, 𝑘1

𝑘1 
R
𝒦

(𝑚, 𝑘1)



How to Hide the Key?

Key idea: functional encryption provides message-hiding, so 
place part of the key in the ciphertext

rFE. KeyGen(msk, 𝑓)

FE. KeyGen msk, 𝑔𝑘2

𝑘2 
R
𝒦

sk𝑔𝑘2

𝑔𝑘2 𝑚, 𝑘1 = 𝑓(𝑚 ; PRF(𝑘1 ⋄ 𝑘2, 𝑚)

Some operation to 
combine shares of key



How to Hide the Key?

Key idea: functional encryption provides message-hiding, so 
place part of the key in the ciphertext

rFE. KeyGen(msk, 𝑓)

FE. KeyGen msk, 𝑔𝑘2

𝑘2 
R
𝒦

sk𝑔𝑘2

𝑔𝑘2 𝑚, 𝑘1 = 𝑓(𝑚 ; PRF(𝑘1 ⋄ 𝑘2, 𝑚)

Encrypter controls 𝑘1
so we need related-

key security



Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

rFE. Encrypt(mpk,𝑚)

FE. Encrypt mpk, 𝑚, 𝑘1

𝑘1 
R
𝒦

(𝑚, 𝑘1)

Encrypter can 
choose the key-

share

Encrypter can choose the randomness

Cannot influence 
output distribution 
due to RKA-security

Potentially problematic



Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

FE. Encrypt mpk, 𝑚, 𝑘1

(𝑚, 𝑘1) (𝑚, 𝑘1)

Two distinct FE ciphertexts encrypting the same message

Run encryption 
algorithm twice with 
different randomness



Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

(𝑚, 𝑘1)

(𝑚, 𝑘1)

Reality: Decryption always produces 
same output

Desired: Two different ciphertexts, so 
should produces independent outputs

Encrypter has too much freedom in constructing ciphertexts



Applying Deterministic Encryption

Key observation: honestly generated ciphertexts have high 
entropy

(𝑚, 𝑘1)

Derive encryption 
randomness from 𝑘1 and 

include a NIZK argument that 
ciphertext is well-formed

Should be random PRF 
key – high entropy!



Putting the Pieces Together

rFE. Encrypt(mpk,𝑚)

FE. Encrypt mpk, 𝑚, 𝑘1 ; ℎ(𝑘1)

𝑘1 
R
𝒦

𝜋

NIZK argument of 
knowledge of (𝑚, 𝑘1)

that explains ciphertext

Randomness for FE encryption derived from 
deterministic function on 𝑘1 (e.g., a PRG) [See paper for full details.]



Putting the Pieces Together

rFE. Encrypt(mpk,𝑚)

FE. Encrypt mpk, 𝑚, 𝑘1 ; ℎ(𝑘1)

𝑘1 
R
𝒦

𝜋

Ciphertext is a deterministic function 
of 𝑚, 𝑘1 so for any distinct pairs 
(𝑚, 𝑘1), (𝑚

′, 𝑘1
′ ), outputs of PRF 

uniform and independently 
distributed by RKA-security

[See paper for full details.]



Our Transformation in a Nutshell

Simulation-
secure FE

DDH + RSA

NIZK 
arguments

RKA-
secure PRF

deterministic 
encryption

Simulation-
secure rFE

Security properties of 
underlying FE scheme is 
preserved (e.g., adaptive 

security)



The State of (Public-Key) Functional Encryption

PKE / LWE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

Generally adaptively 
secure

iO
General-

Purpose rFE

Selectively secure

Deterministic functionalities Randomized functionalities
[SS10, GVW12, …]

[GGHRSW13, GGHZ16, … ]

[GJKS15]



The State of (Public-Key) Functional Encryption

PKE / LWE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

[SS10, GVW12, …]

[GGHRSW13, GGHZ16, … ]

Bounded-
Collusion rFE

General-
Purpose rFE

Number-theoretic 
assumptions

Adaptively secure 
against malicious 

encrypters!

This work



Open Questions

• More direct / efficient constructions of rFE for simpler classes of 
functionalities (e.g., sampling random entries from a vector)?

• Generic construction of rFE from FE without making additional 
assumptions?

• Generic transformation for indistinguishability-based notions of 
security?

Thank you!
http://eprint.iacr.org/2016/482


