On Succinct Arguments and Witness Encryption from Groups

Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu

December 2020

Argument Systems

This talk: laconic arguments for NP

Succinctness:

 $|\pi| = \text{poly}(\lambda, \log|C|)$ "Proof size is much shorter than circuit size of classic NP verifier"

This talk: laconic arguments for NP

"Proof size is much shorter than circuit size of classic NP verifier"

This talk: laconic arguments for NP

Focus of this talk: <u>2-message</u> arguments

Special case: If verifier's message is statement-independent ⇒ succinct non-interactive argument (SNARG) in the CRS model

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

Many practical ("implementable") SNARGs are based on groups

Number of (pairing) group elements

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

Many practical ("implementable") SNARGs are based on groups

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

<u>Concretely-efficient</u> arguments where proofs consist of 2 group elements?

Arguments where proof consists of 1 group element?

Summary of Results

Construction	Group Type	Proof Size	Information-Theoretic Building Block	Soundness Error	Completeness Error	Argument Type
[Gro16]	bilinear	$2 \mathbb{G}_1 + \mathbb{G}_2 $	linear PCP	$negl(\lambda)$	0	SNARG
[BCIOP13]	linear	8 G	linear PCP	$1/\text{poly}(\lambda)$	0	dvSNARG
[BCIOP13]	linear	2 G	РСР	$1/\text{poly}(\lambda)$	0	dvSNARG
This work	linear	2 G	linear PCP	$1/\text{poly}(\lambda)$	$negl(\lambda)$	dvSNARG
This work	linear	2 G	РСР	$negl(\lambda)$	<i>o</i> (1)	laconic argument
This work	linear	G	РСР	$negl(\lambda)$	o(1)	laconic argument

• Relies on a new hypothesis on the hardness of approximation of the minimal distance of linear codes

• Under the same hypothesis, implies a <u>witness encryption</u> scheme for NP in the generic group model

Main Ingredient: Linear PCPs (LPCPs)

Instantiations (for circuit satisfiability):

- Walsh-Hadamard encoding [ALMSS92, IKO07] 3 queries, $m = O(|\mathcal{C}|^2)$
- Quadratic span programs [GGPR13] 3 queries, m = O(|C|)
- Square span programs [DFGK14] 2 queries, m = O(|C|)
- Traditional PCPs [BCIOP13] 1 query, m = poly(|C|)

Queries in these constructions are <u>statement-independent</u>

Verifier

[BCIOP13]

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

[BCIOP13]

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

Encryption scheme <u>only</u> supports linear homomorphism

[BCIOP13]

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

Prover constructs linear PCP π from (*x*, *w*)

Prover homomorphically computes responses to linear PCP queries

Prover's message

[BCIOP13]

Statement-independent LPCP \Rightarrow designated-verifier SNARG

Statement-dependent LPCP \Rightarrow 2-message laconic argument

(Also possible to instantiate compiler with a linear-only <u>encoding scheme</u> to obtain <u>publicly-verifiable</u> SNARGs)

Verifier decrypts ciphertexts and checks linear PCP responses

Prover constructs linear PCP π from (*x*, *w*)

Prover homomorphically computes responses to linear PCP queries

Prover's message

Succinct Arguments based on ElGamal

Assumption: ElGamal encryption (with message in exponent) is linear-only (holds unconditionally if we model G as a generic group)

 \mathbb{G} : group with prime order p and generator g

Succinct Arguments based on ElGamal

Assumption: ElGamal encryption (with message in exponent) is linear-only (holds unconditionally if we model G as a generic group)

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP

This work: *k*-query (bounded) linear PCP \Rightarrow 1-query linear PCP

Starting point: View linear PCP queries + proof over the integers

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP

This work: *k*-query (bounded) linear PCP \Rightarrow 1-query linear PCP

Suppose $\| \boldsymbol{Q}^T \boldsymbol{\pi} \|_{\infty} < B$ bounded LPCP $\langle \boldsymbol{q}^*, \boldsymbol{\pi} \rangle = \sum_{i \in [k]} B^{i-1} \langle \boldsymbol{q}_i, \boldsymbol{\pi} \rangle$

> **Problem:** malicious prover can choose $\pi \in \mathbb{Z}^m$ such that responses are <u>not</u> bounded

Then, packed responses cannot be explained by a single linear function

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP

This work: *k*-query (bounded) linear PCP \Rightarrow 1-query linear PCP

Suppose $\| \boldsymbol{Q}^T \boldsymbol{\pi} \|_{\infty} < B$ bounded LPCP $\langle \boldsymbol{q}^*, \boldsymbol{\pi} \rangle = \sum_{i \in [k]} r_i \langle \boldsymbol{q}_i, \boldsymbol{\pi} \rangle$

Solution: take a <u>random</u> linear combination of query vectors, where scalars r_i chosen from sufficiently-large interval

> *k*-query *B*-bounded LPCP \Rightarrow 1-query $B^{O(k)}$ -bounded LPCP

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP

This work: *k*-query (bounded) linear PCP \Rightarrow 1-query linear PCP

Embed *B*-bounded integer linear PCPs over a finite field \mathbb{F}_p where p > B

Compile linear PCP over \mathbb{F}_p to succinct argument using [BCIOP13]

For packed linear PCP, meaningful if final bound satisfies $B^{O(k)} < p$

Hadamard instantiation [ALMSS92, IKO07]:

2-query B-bounded linear PCP

Previously described as a 3-query construction, but 2 of the queries can be combined

k-query (bounded) LPCP \Rightarrow 1-query LPCP

k-query (bounded) LPCP \Rightarrow 1-query LPCP

Hadamard instantiation [ALMSS92, IKO07]:

- 2-query *B*-bounded linear PCP
- Query dimension: $m = O(|C|^2)$
- For soundness error ε , $B = O(|C|^2/\varepsilon^2)$

Problematic: bound for packed LPCP is $B' = O(|C|^4/\varepsilon^4)$

Verification time requires computing a discrete log of this magnitude – requires time $O(|C|^2/\varepsilon^2)$

Optimizing proof verification:

• Linear PCP verification corresponds to a quadratic test:

 $a_1^2 - a_2 = t$ LPCP responses

Target value (depends
only on statement)

Hadamard instantiation [ALMSS92, IKO07]:

- 2-query *B*-bounded linear PCP
- Query dimension: $m = O(|C|^2)$
- For soundness error ε , $B = O(|C|^2/\varepsilon^2)$

Problematic: bound for packed LPCP is $B' = O(|C|^4/\varepsilon^4)$

Verification time requires computing a discrete log of this magnitude – requires time $O(|C|^2/\varepsilon^2)$

Optimizing proof verification:

• Linear PCP verification corresponds to a quadratic test:

 $a_1^2 - a_2 = t$

- Packed representation: verifier computes $g^a = g^{a_1 + r \cdot a_2}$ (verifier knows r)
- **Observation:** With overwhelming probability, $|a_1| \in O\left(\sqrt{|C|}/\varepsilon\right)$

Strict bound (with probability 1): $|a_1| \in O(|\mathcal{C}|/\varepsilon)$ Hadamard instantiation [ALMSS92, IKO07]:

- 2-query *B*-bounded linear PCP
- Query dimension: $m = O(|C|^2)$
- For soundness error ε , $B = O(|C|^2/\varepsilon^2)$

Problematic: bound for packed LPCP is $B' = O(|C|^4/\varepsilon^4)$

Verification time requires computing a discrete log of this magnitude – requires time $O(|C|^2/\varepsilon^2)$

Optimizing proof verification:

• Linear PCP verification corresponds to a quadratic test:

$$a_1^2 - a_2 = t$$

- Packed representation: verifier computes $g^a = g^{a_1 + r \cdot a_2}$ (verifier knows r)
- **Observation:** With overwhelming probability, $|a_1| \in O\left(\sqrt{|C|}/\varepsilon\right)$

Strict bound (with probability 1): $|a_1| \in O(|C|/\varepsilon)$ If g^a encodes a valid LPCP response, then there exists a_1 such that $g^a = g^{a_1 + r \cdot a_2} = g^{a_1 + r a_1^2} g^{-rt}$ Equivalently: $g^a g^{-rt} = g^{a_1 + r a_1^2}$ Statement independent

Implication: verifier can precompute accepting values of $g^{a_1+ra_1^2}$

Verification consists of ElGamal decryption (to obtain g^a), multiplication by g^{-rt} and a table lookup (for $g^{a_1+ra_1^2}$)

Shortest SNARG with good concrete efficiency (does not need to use classical PCPs)

> Designated-verifier SNARG for NP

To verify NP relation of size |C|:

- Proof size: 2|G|
- CRS size + prover cost: $O(|C|^2)$
- Soundness error: $\varepsilon = 1/\text{poly}(\lambda)$

• Verifier cost:
$$\tilde{O}\left(\sqrt{|C|}/\varepsilon\right)$$

Open question: Same level of succinctness but with O(|C|) size CRS (and O(|C|) prover cost)

Designated-verifier SNARG for NP

To verify NP relation of size |C|:

- Proof size: 2|G|
- CRS size + prover cost: $O(|C|^2)$
- Soundness error: $\varepsilon = 1/\text{poly}(\lambda)$

• Verifier cost:
$$\tilde{O}\left(\sqrt{|C|}/\varepsilon\right)$$

Designated-verifier SNARG for NP

To verify NP relation of size |C|:

- Proof size: 2|G|
- CRS size + prover cost: $O(|C|^2)$
- Soundness error: $\varepsilon = 1/\text{poly}(\lambda)$

• Verifier cost:
$$\tilde{O}\left(\sqrt{|C|}/\varepsilon\right)$$

Can we get <u>negligible</u> soundness without compromising correctness?

Achieving Negligible Soundness Error

 $(g^r, h^r g^{\langle q^*, \pi \rangle})$

1-query linear PCP

Encrypt query vector with ElGamal

Prover computes:

 $\langle a^*,\pi
angle$

Approach: If verification relation is <u>linear</u>, then possible to evaluate it in the exponent

Can we construct a 1-query linear PCP with a <u>linear</u> decision procedure?

Problem: linear PCP response computed in the <u>exponent</u>

"Decryption" yields $g^{\langle {m q}^*, {m \pi}
angle}$

Achieving Negligible Soundness Error

Can we construct a 1-query linear PCP with a <u>linear</u> decision procedure?

[Gro16]: linear PCP with linear decision procedure is <u>impossible</u> (for hard languages) but only if... the underlying linear PCP has negligible completeness error

Main intuition: if decision procedure is linear:

- True statement: satisfying π exists for all valid Q
- False statement: by union bound, no satisfying π for sufficiently many $oldsymbol{Q}_1,\ldots,oldsymbol{Q}_\ell$

Linear PCPs from Hardness of Approximation

Can we construct a 1-query linear PCP with a <u>linear</u> decision procedure?

Implication of [Gro16]: LPCP with linear decision procedure must rely on imperfect completeness

This work: leverage hardness of approximation results to design new LPCPs

Given $A \in \mathbb{F}^{m \times n}$ and vector $b \in \mathbb{F}^m$, find a sparse solution $x \in \mathbb{F}^n$ where Ax = b

> Low Hamming weight (number of nonzero entries)

Minimal weight solution problem (MWSP)

GapMWSP_{*B*}:

- YES instance (A, b, d): there exists x with weight $\leq d$ such that Ax = b
- NO instance (A, b, d): all x where Ax = b have weight $\geq \beta d$ •

Adaptation of [HKLT19]: GapMWSP_{β} is NP-hard for $\beta = \log^{c} n$ and field \mathbb{F} where $\log |\mathbb{F}| = \operatorname{poly}(n)$

GapMWSP_β:

- **YES instance:** there exists x with weight $\leq d$ such that Ax = b
- **NO instance:** all \boldsymbol{x} where $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of A

GapMWSP_β:

- **YES instance:** there exists x with weight $\leq d$ such that Ax = b
- NO instance: all x where Ax = b have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of A $q^T = r^T A + e^T$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies $a = \mathbf{r}^T \mathbf{b}$

YES instance: $q^T x = r^T A x + e^T x = r^T b$

Suppose density of e is ε/d :

$$\Pr[\boldsymbol{e}^T \boldsymbol{x} = 0] \ge (1 - \varepsilon/d)^d \ge 1 - \varepsilon$$

completeness error *ɛ*

GapMWSP_β:

- **YES instance:** there exists x with weight $\leq d$ such that Ax = b
- **NO instance:** all \boldsymbol{x} where $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of A $q^T = r^T A + e^T$

Proof: low-weight solution x (Ax = b)

Verification: accept if response *a* satisfies $a = \mathbf{r}^T \mathbf{b}$

NO instance: $q^T x = r^T A x + e^T x = r^T b$

Case 1: $Ax \neq b$

 $r^T A x$ is uniform, so verifier accepts with probability at most $1/\mathbb{F}$

GapMWSP_β:

- $x = b \quad F \quad YES \text{ instance: there exists } x \text{ with} \\ weight \leq d \text{ such that } Ax = b$
 - **NO instance:** all x where Ax = b have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of A $q^T = r^T A + e^T$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies $a = \mathbf{r}^T \mathbf{b}$

NO instance: $q^T x = r^T A x + e^T x = r^T b$ Case 2: Ax = b, weight $(x) \ge \beta d$ $e^T x = 0$ with probability $\left(1 - \frac{\varepsilon}{d}\right)^{\beta d} \le e^{-\beta \varepsilon}$

negligible when $\epsilon\beta = \omega(\log n)$

GapMWSP_β:

- **YES instance:** there exists x with weight $\leq d$ such that Ax = b
- **NO instance:** all x where Ax = b have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of A $q^T = r^T A + e^T$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies $a = \mathbf{r}^T \mathbf{b}$

1-query linear PCP for NP with

- o(1) completeness error
- negligible soundness error
- linear decision procedure

ElGamal is linear-only \Rightarrow laconic argument for NP with negligible soundness where $|\pi| = 2|\mathbb{G}|$

Witness Encryption

Encrypt a message m to a statement x (for NP language \mathcal{L})

Decrypt ciphertext ct with any valid witness w

Security: if $x \notin \mathcal{L}$, then ct provides semantic security

A "hub" for many cryptographic notions: PKE, IBE, ABE, etc. ("lightweight obfuscation")

Existing constructions rely on indistinguishability obfuscation [GGHRSW13], multilinear maps [GGSW13, CVW18], or new algebraic structures [BIJMSZ20]

From Soundness to Confidentiality

Query: noisy linear combination of rows of A

 $\boldsymbol{q}^{T} = \boldsymbol{r}^{T}\boldsymbol{A} + \boldsymbol{e}^{T}$

Proof: low-weight solution x (Ax = b)

Verification: accept if response *a* satisfies $a = r^T b$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

[FNV17]: predictable arguments for $\mathcal{L} \Rightarrow$ witness encryption for \mathcal{L}

Idea: for $x \notin \mathcal{L}$, accepting response must be unpredictable (soundness) \Rightarrow encrypt a message using a hard-core bit derived from the response

Query: noisy linear combination of rows of A

 $\boldsymbol{q}^{T} = \boldsymbol{r}^{T}\boldsymbol{A} + \boldsymbol{e}^{T}$

Proof: low-weight solution x (Ax = b)

Verification: accept if response *a* satisfies $a = r^T b$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

? Predictable linear PCP \Rightarrow Predictable argument

Current compiler (encrypting with ElGamal) does <u>not</u> yield a predictable argument: Proof is an <u>encryption</u> of the predicted linear PCP response

Query: noisy linear combination of rows of A

 $\boldsymbol{q}^{T} = \boldsymbol{r}^{T}\boldsymbol{A} + \boldsymbol{e}^{T}$

Proof: low-weight solution x (Ax = b)

Verification: accept if response *a* satisfies $a = \mathbf{r}^T \mathbf{b}$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

Approach: instead of encrypting q^T , directly encode it in the exponent

Accepting response: $g^{r^T b}$

 $q^{q'}$

 $a^{q^Tx} = a^{r^Tb^+}$

Query: noisy linear combination of rows of A

 $\boldsymbol{q}^{T} = \boldsymbol{r}^{T}\boldsymbol{A} + \boldsymbol{e}^{T}$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies $a = \mathbf{r}^T \mathbf{b}$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

Approach: instead of encrypting q^T , directly

Problem: Does not hide q^T (and in particular, e^T)

If there is low-weight x such that Ax = 0, then adversary learns $g^{e^T x}$

Need to "rule out" low-weight solutions to homogeneous system

Minimum distance problem (MDP):

Given a matrix $G \in \mathbb{F}^{m \times n}$, find the minimal distance (under Hamming metric) of the code generated by G

GapMDP_β:

- YES instance (G, d): minimal distance of code generated by G is $\leq d$
- No instance (G, d): minimal distance of code generated by G is $\geq \beta d$

In terms of parity-check matrix H for G: minimal distance of G is $d \Leftrightarrow \exists x : Hx = 0$ where x has weight d

GapMDP_β:

- **YES instance** (*H*, *d*): there exists $x \neq 0$ with weight $\leq d$ such that Hx = 0
- NO instance (H, d): all x where Hx = 0have weight $\geq \beta \cdot d$

Hardness of $GapMDP_{\beta}$:

- NP-hard when $\beta = O(1)$ and $|\mathbb{F}| = \text{poly}(n)$ [DMS99]
- SAT reduces to GapMDP in <u>quasi-polynomial</u> time when $\beta = \omega(\log n)$ and $|\mathbb{F}| = \text{poly}(n)$ [CW09, AK14]

Hypothesis: SAT reduces to GapMDP_{β} in <u>polynomial</u> time when $\beta = \omega(\log n)$ and $|\mathbb{F}| = n^{\omega(1)}$

GapMDP_β:

- **YES instance** (*H*, *d*): there exists $x \neq 0$ with weight $\leq d$ such that Hx = 0
- NO instance (H, d): all x where Hx = 0

Query: noisy linear combination of rows of H

 $\boldsymbol{q}^{T} = \boldsymbol{r}^{T}\boldsymbol{H} + \boldsymbol{e}^{T} + \boldsymbol{s}\boldsymbol{c}^{T}$

r: uniformly random e: low-weight vector (with density ε/d) s, c: uniformly random

Completeness: Hx = 0

$$q^T x = r^T H x + e^T x + s c^T x = s c^T x$$

 $e^T x = 0$ with probability at least $(1 - \varepsilon/d)^d \ge 1 - \varepsilon$

Query: noisy linear combination of rows of H

 $\boldsymbol{q}^{T} = \boldsymbol{r}^{T}\boldsymbol{H} + \boldsymbol{e}^{T} + \boldsymbol{s}\boldsymbol{c}^{T}$

r: uniformly random e: low-weight vector (with density ε/d) s, c: uniformly random

GapMDP_β:

- **YES instance** (*H*, *d*): there exists $x \neq 0$ with weight $\leq d$ such that Hx = 0
- NO instance (H, d): all x where Hx = 0

 $g^{oldsymbol{q}^T}$, $oldsymbol{c}$

 $g^{q^T x (c^T x)^{-1}}$

have weight $\geq \beta \cdot d$

Accept if prover's message is *g*^s

Soundness: if \mathbb{G} is modeled as a generic group, then prover's message is always $g^{\alpha q^T z}$ for some $\alpha \in \mathbb{F}, z \in \mathbb{F}^n$

Case 1: $Hz \neq 0$: $r^T Hz$ is random (over choice of r) **Case 2:** Hz = 0: $e^T z$ is random (over choice of e)

Query: noisy linear combination of rows of H

 $\boldsymbol{q}^{T} = \boldsymbol{r}^{T}\boldsymbol{H} + \boldsymbol{e}^{T} + \boldsymbol{s}\boldsymbol{c}^{T}$

r: uniformly random e: low-weight vector (with density ε/d) s, c: uniformly random

GapMDP_β:

- **YES instance** (*H*, *d*): there exists $x \neq 0$ with weight $\leq d$ such that Hx = 0
- NO instance (H, d): all x where Hx = 0

 $g^{oldsymbol{q}^T}$, $oldsymbol{c}$

 $g^{q^T x (c^T x)^{-1}}$

have weight $\geq \beta \cdot d$

Accept if prover's message is g^s

Witness Encryption from Hardness of Approximation

Implies a predictable laconic argument for $GapMDP_{\beta}$ in the generic group model

Hypothesis: SAT reduces to GapMDP in <u>polynomial</u> time when $\beta = \omega(\log n)$ and $|\mathbb{F}| = n^{\omega(1)}$

Corollary: Under this hypothesis, there exists:

- a predictable laconic argument for NP in the generic group model with proof size |G|
- a witness encryption scheme for NP in the generic group model

Witness Encryption from Hardness of Approximation

Hypothesis: SAT reduces to GapMDP_{β} in <u>polynomial</u> time when $\beta = \omega(\log n)$ and $|\mathbb{F}| = n^{\omega(1)}$

- **Corollary:** Under this hypothesis, there exists:
 - a predictable laconic argument for NP in the generic group model with proof size $|\mathbb{G}|$
 - a witness encryption scheme for NP in the generic group model

Implications:

- Our hypothesis may be proven in the future (no known barriers to doing so) ⇒ there exists an <u>unconditional</u> construction of witness encryption in the generic group model
- Ruling out witness encryption in the generic group model ⇒ falsify this hypothesis
 - Impossibility results known in the generic group model known for IBE [PRV12] and indistinguishability obfuscation [MMNPs16]

Witness Encryption from Hardness of Approximation

Hypothesis: SAT reduces to GapMDP_{β} in <u>polynomial</u> time when $\beta = \omega(\log n)$ and $|\mathbb{F}| = n^{\omega(1)}$

- **Corollary:** Under this hypothesis, there exists:
 - a predictable laconic argument for NP in the generic group model with proof size $|\mathbb{G}|$
 - a witness encryption scheme for NP in the ger

Implications:

 Our hypothesis may be proven in the future (exists an <u>unconditional</u> construction of witnes.

More generally: any argument where the proof consists of a single group element and the verification procedure is a *generic* algorithm ⇒ predictable argument

- Ruling out witness encryption in the generic group model \Rightarrow falsify this hypothesis
 - Impossibility results known in the generic group model known for IBE [PRV12] and indistinguishability obfuscation [MMNPs16]

Summary of Results

Construction	Group Type	Proof Size	Information-Theoretic Building Block	Soundness Error	Completeness Error	Argument Type
[Gro16]	bilinear	$2 \mathbb{G}_1 + \mathbb{G}_2 $	linear PCP	$negl(\lambda)$	0	SNARG
[BCIOP13]	linear	8 G	linear PCP	$1/\text{poly}(\lambda)$	0	dvSNARG
[BCIOP13]	linear	2 G	РСР	$1/\text{poly}(\lambda)$	0	dvSNARG
This work	linear	2 G	linear PCP	$1/\text{poly}(\lambda)$	$negl(\lambda)$	dvSNARG
This work	linear	2 G	РСР	$negl(\lambda)$	<i>o</i> (1)	laconic argument
This work	linear	G	РСР	$negl(\lambda)$	o(1)	laconic argument

• Relies on a new hypothesis on the hardness of approximation of the minimal distance of linear codes

• Under the same hypothesis, implies a <u>witness encryption</u> scheme for NP in the generic group model

Open Problems

Unconditional construction of witness encryption in the generic group model

- Show NP-hardness of GapMDP for our parameter regime
- Compile predictable linear PCP into predictable argument
- (VBB) obfuscate linear PCP verification (affine tester)

Concretely-efficient 2-element SNARGs with sub-quadratic prover overhead

2-element laconic arguments with perfect completeness

Thank you!

https://eprint.iacr.org/2020/1319