On Succinct Arguments and Witness Encryption from Groups

Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and <u>David J. Wu</u> September 2020

Argument Systems

Completeness: $\forall x \in \mathcal{L} : \Pr[\langle P, V \rangle(x) = \text{accept}] = 1$

"Honest prover convinces honest verifier of true statements"

Soundness: $\forall x \notin \mathcal{L}, \ \forall \ \text{efficient} \ P^* : \Pr[\langle P^*, V \rangle(x) = \text{accept}] \leq \varepsilon$

"Efficient prover cannot convince honest verifier of false statement"

This talk: <u>laconic</u> arguments for NP

Succinctness: $|\pi| = \text{poly}(\lambda, \log|C|)$

"Proof size is much shorter than circuit size of classic NP verifier"

This talk: <u>laconic</u> arguments for NP

Succinctness: $|\pi| = \text{poly}(\lambda, \log|C|)$

"Proof size is much shorter than circuit size of classic NP verifier"

This talk: <u>laconic</u> arguments for NP

Focus of this talk: 2-message arguments

Special case: If verifier's message is statement-independent ⇒ succinct non-interactive argument (SNARG) in the CRS model

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

Many practical ("implementable") SNARGs are based on groups

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

Many practical ("implementable") SNARGs are based on groups

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

Concretely-efficient arguments where proofs consist of 2 group elements?

Arguments where proof consists of 1 group element?

Summary of Results

Construction	Group Type	Proof Size	Information-Theoretic Building Block	Soundness Error	Completeness Error	Argument Type
[Gro16]	bilinear	$2 \mathbb{G}_1 + \mathbb{G}_2 $	linear PCP	$\operatorname{negl}(\lambda)$	0	SNARG
[BCIOP13]	linear	8 G	linear PCP	$1/\text{poly}(\lambda)$	0	dvSNARG
[BCIOP13]	linear	2 G	PCP	$1/\text{poly}(\lambda)$	0	dvSNARG
This work	linear	2 G	linear PCP	$1/\text{poly}(\lambda)$	$\operatorname{negl}(\lambda)$	dvSNARG
This work	linear	2 G	PCP	$\operatorname{negl}(\lambda)$	<i>o</i> (1)	laconic argument
This work	linear	G	PCP	$\operatorname{negl}(\lambda)$	o(1)	laconic argument

- Relies on a new hypothesis on the hardness of approximation of the minimal distance of linear codes
- Under the same hypothesis, implies a <u>witness encryption</u> scheme for NP in the generic group model

Main Ingredient: Linear PCPs (LPCPs)

(x, w)PCP where the proof oracle implements a linear function $\pi \in \mathbb{F}^m$ $\langle q,\pi\rangle\in\mathbb{F}$

Instantiations (for circuit satisfiability):

- Walsh-Hadamard encoding [ALMSS92, IKO07] 3 queries, $m = O(|C|^2)$
- Quadratic span programs [GGPR13] 3 queries, m = O(|C|)
- Square span programs [DFGK14] 2 queries, m = O(|C|)
- Traditional PCPs [BCIOP13] 1 query, m = poly(|C|)

Queries in these constructions are statement-independent

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

Encryption scheme only supports linear homomorphism Part of CRS

Verifier encrypts its queries using a <u>linear-only</u> encryption scheme

Prover constructs linear PCP π from (x, w)

Prover homomorphically computes responses to linear PCP queries

Prover's message

[BCIOP13]

Statement-independent LPCP ⇒ designated-verifier SNARG

Statement-dependent LPCP ⇒ 2-message laconic argument

(Also possible to instantiate compiler with a linear-only encoding scheme to obtain <u>publicly-verifiable</u> SNARGs)

Verifier decrypts ciphertexts and checks linear PCP responses

Prover constructs linear PCP π from (x, w)

Prover homomorphically computes responses to linear PCP queries

Prover's message

Succinct Arguments based on ElGamal

Assumption: ElGamal encryption (with message in exponent) is linear-only (holds unconditionally if we model G as a generic group)

$$sk: x \leftarrow \mathbb{Z}_p$$

$$pk: h = g^x \in \mathbb{G}$$

Encrypt(pk, m): $r \leftarrow \mathbb{Z}_p$, $ct = (g^r, h^r g^m)$

$$|ct| = 2|G|$$

Decryption recovers message in the exponent, so need to solve discrete log to recover message

Assuming LPCP responses are "small"

k-query LPCP

[BCIOP13] compiler

Designated-verifier argument with proofs of size $2(k+1)|\mathbb{G}|$

 \mathbb{G} : group with prime order p and generator g

Succinct Arguments based on ElGamal

Assumption: ElGamal encryption (with message in exponent) is linear-only (holds unconditionally if we model G as a generic group)

$$sk: x \leftarrow \mathbb{Z}_p$$

$$pk: h = g^x \in \mathbb{G}$$

Encrypt(pk, m): $r \leftarrow \mathbb{Z}_p$, ct = $(g^r, h^r g^m)$

$$|ct| = 2|G|$$

Decryption recovers message in the exponent, so need to solve discrete log to recover message

Assuming LPCP responses are "small"

k-query LPCP

[BCIOP13] compiler

Designated-verifier argument with proofs of size $2(k+1)|\mathbb{G}|$

Observation: to obtain a SNARG with proof size $2|\mathbb{G}|$, sufficient to construct a <u>1-query linear PCP</u>

"Extra" query needed for consistency check (unnecessary when k=1)

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP

This work: k-query (bounded) linear PCP \Rightarrow 1-query linear PCP

Suppose $\|\boldsymbol{Q}^T\boldsymbol{\pi}\|_{\infty} < B$ bounded LPCP

$$\langle q^*, \pi \rangle = \sum_{i \in [k]} B^{i-1} \langle q_i, \pi \rangle$$

Can view value as an integer in base B with k digits (corresponding to LPCP responses)

$$\boldsymbol{q}^* = \sum_{i \in [k]} B^{i-1} \boldsymbol{q}_i$$

Starting point: View linear PCP queries + proof over the <u>integers</u>

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP

This work: k-query (bounded) linear PCP \Rightarrow 1-query linear PCP

Suppose $\|\boldsymbol{Q}^T\boldsymbol{\pi}\|_{\infty} < B$ bounded LPCP

$$\langle \boldsymbol{q}^*, \boldsymbol{\pi} \rangle = \sum_{i \in [k]} B^{i-1} \langle \boldsymbol{q}_i, \boldsymbol{\pi} \rangle$$

Problem: malicious prover can choose $\pi \in \mathbb{Z}^m$ such that responses are <u>not</u> bounded

Then, packed responses cannot be explained by a single linear function

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP

This work: k-query (bounded) linear PCP \Rightarrow 1-query linear PCP

Suppose $\|\boldsymbol{Q}^T\boldsymbol{\pi}\|_{\infty} < B$ bounded LPCP

$$\langle q^*, \pi \rangle = \sum_{i \in [k]} r_i \langle q_i, \pi \rangle$$

Solution: take a $\underline{\text{random}}$ linear combination of query vectors, where scalars r_i chosen from sufficiently-large interval

k-query B-bounded LPCP \Rightarrow 1-query $B^{O(k)}$ -bounded LPCP

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP

This work: k-query (bounded) linear PCP \Rightarrow 1-query linear PCP

Embed B-bounded integer linear PCPs over a finite field \mathbb{F}_p where p>B

Compile linear PCP over \mathbb{F}_p to succinct argument using [BCIOP13]

For packed linear PCP, meaningful if final bound satisfies $B^{O(k)} < p$

Hadamard instantiation [ALMSS92, IKO07]:

2-query B-bounded linear PCP

Previously described as a 3-query construction, but 2 of the queries can be combined

k-query (bounded) LPCP \Rightarrow 1-query LPCP

Hadamard instantiation [ALMSS92, IKO07]:

- 2-query B-bounded linear PCP
- Query dimension: $m = O(|C|^2)$
- For soundness error ε , $B = O(|C|^2/\varepsilon^2)$

Problematic: bound for packed LPCP is $B' = O(|C|^4/\varepsilon^4)$

Verification time requires computing a discrete log of this magnitude – requires time $O(|C|^2/\varepsilon^2)$

k-query (bounded) LPCP \Rightarrow 1-query LPCP

Optimizing proof verification:

 Linear PCP verification corresponds to a quadratic test:

$$a_1^2 - a_2 = t$$

LPCP responses

Target value (depends only on statement)

Hadamard instantiation [ALMSS92, IKO07]:

- 2-query B-bounded linear PCP
- Query dimension: $m = O(|C|^2)$
- For soundness error ε , $B = O(|C|^2/\varepsilon^2)$

Problematic: bound for packed LPCP is $B' = O(|C|^4/\varepsilon^4)$

Verification time requires computing a discrete log of this magnitude – requires time $O(|C|^2/\varepsilon^2)$

Optimizing proof verification:

 Linear PCP verification corresponds to a quadratic test:

$$a_1^2 - a_2 = t$$

- Packed representation: verifier computes $g^a = g^{a_1+r\cdot a_2}$ (verifier knows r)
- Observation: With overwhelming probability, $|a_1| \in O\left(\sqrt{|C|}/\varepsilon\right)$

Strict bound (with probability 1): $|a_1| \in O(|C|/\varepsilon)$

Hadamard instantiation [ALMSS92, IKO07]:

- 2-query B-bounded linear PCP
- Query dimension: $m = O(|C|^2)$
- For soundness error ε , $B = O(|C|^2/\varepsilon^2)$

Problematic: bound for packed LPCP is $B' = O(|C|^4/\varepsilon^4)$

Verification time requires computing a discrete log of this magnitude – requires time $O(|C|^2/\varepsilon^2)$

Optimizing proof verification:

 Linear PCP verification corresponds to a quadratic test:

$$a_1^2 - a_2 = t$$

- Packed representation: verifier computes $g^a = g^{a_1+r\cdot a_2}$ (verifier knows r)
- Observation: With overwhelming probability, $|a_1| \in O\left(\sqrt{|C|}/\varepsilon\right)$

Strict bound (with probability 1): $|a_1| \in O(|C|/\varepsilon)$

If g^a encodes a valid LPCP response, then there exists a_1 such that

$$g^{a} = g^{a_1 + r \cdot a_2} = g^{a_1 + r a_1^2} g^{-rt}$$

Equivalently:

$$g^a g^{-rt} = g^{a_1 + ra_1^2}$$

Statement independent

Implication: verifier can <u>precompute</u> accepting values of $g^{a_1+ra_1^2}$

Verification consists of ElGamal decryption (to obtain g^a), multiplication by g^{-rt} and a table lookup (for $g^{a_1+ra_1^2}$)

With a precomputed table of size $\tilde{O}\left(\sqrt{|C|}/\varepsilon\right)$, verification requires just 4 group operations and table lookup

Can we get <u>negligible</u> soundness

without compromising correctness?

Achieving Negligible Soundness Error

1-query linear PCP

Encrypt query vector with ElGamal

Approach: If verification relation is <u>linear</u>, then possible to evaluate it in the exponent

Can we construct a 1-query linear PCP with a <u>linear</u> decision procedure?

Prover computes:

$$\langle q^*,\pi \rangle$$

$$(g^r, h^r g^{\langle q^*, \pi \rangle})$$

Problem: linear PCP response computed in the <u>exponent</u>

"Decryption" yields $g^{\langle q^*, \pi \rangle}$

Achieving Negligible Soundness Error

Can we construct a 1-query linear PCP with a <u>linear</u> decision procedure?

[Gro16]: linear PCP with linear decision procedure is <u>impossible</u> (for hard languages) but only if... the underlying linear PCP has negligible completeness error

Main intuition: if decision procedure is linear:

Linear PCPs from Hardness of Approximation

Can we construct a 1-query linear PCP with a <u>linear</u> decision procedure?

Implication of [Gro16]: LPCP with linear decision procedure must rely on imperfect completeness

This work: leverage hardness of approximation results to design new LPCPs

Minimal weight solution problem (MWSP)

GapMWSP $_{\beta}$:

- YES instance (A, b, d): there exists x with weight $\leq d$ such that Ax = b
- No instance (A, b, d): all x where Ax = b have weight $\geq \beta d$

Adaptation of [HKLT19]: GapMWSP $_{\beta}$ is NP-hard for $\beta = \log^{c} n$ and field \mathbb{F} where $\log |\mathbb{F}| = \operatorname{poly}(n)$

Query: noisy linear combination of rows of A

GapMWSP $_{\beta}$:

- YES instance: there exists x with weight $\leq d$ such that Ax = b
- **NO instance:** all \boldsymbol{x} where $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of **A**

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{A} + \boldsymbol{e}^T$$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies $a = \mathbf{r}^T \mathbf{h}$

YES instance:

$$q^T x = r^T A x + e^T x = r^T b$$

Suppose density of e is ε/d :

$$\Pr[\mathbf{e}^T \mathbf{x} = 0] \ge (1 - \varepsilon/d)^d \ge 1 - \varepsilon$$

completeness error arepsilon

GapMWSP $_{\beta}$:

- YES instance: there exists x with weight $\leq d$ such that Ax = b
- No instance: all x where Ax = b have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of **A**

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{A} + \boldsymbol{e}^T$$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies $a = \mathbf{r}^T \mathbf{h}$

No instance:

$$q^T x = r^T A x + e^T x = r^T b$$

Case 1: $Ax \neq b$

 $m{r}^T m{A} m{x}$ is uniform, so verifier accepts with probability at most $1/\mathbb{F}$

Linear PCP for GapMWSP

GapMWSP $_{\beta}$:

- YES instance: there exists x with weight $\leq d$ such that Ax = b
 - **No instance:** all x where Ax = b have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of **A**

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{A} + \boldsymbol{e}^T$$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies $a = r^T b$

No instance:

$$q^T x = r^T A x + e^T x = r^T b$$

Case 2: Ax = b, weight $(x) \ge \beta d$

$$e^T x = 0$$
 with probability $\left(1 - \frac{\varepsilon}{d}\right)^{\beta d} \le e^{-\beta \varepsilon}$

negligible when $\varepsilon\beta = \omega(\log n)$

Linear PCP for GapMWSP

GapMWSP $_{\beta}$:

- YES instance: there exists x with weight $\leq d$ such that Ax = b
- **NO instance:** all x where Ax = b have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of *A*

$$q^T = r^T A + e^T$$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies

$$a = \mathbf{r}^T \mathbf{b}$$

1-query linear PCP for NP with

- o(1) completeness error
- negligible soundness error
- linear decision procedure

ElGamal is linear-only \Rightarrow laconic argument for NP with negligible soundness where $|\pi| = 2|\mathbb{G}|$

Witness Encryption

Encrypt a message m to a statement x (for NP language \mathcal{L})

Decrypt ciphertext ct with any valid witness w

Security: if $x \notin \mathcal{L}$, then ct provides semantic security

A "hub" for many cryptographic notions: PKE, IBE, ABE, etc. ("lightweight obfuscation")

Existing constructions rely on indistinguishability obfuscation [GGHRSW13], multilinear maps [GGSW13, CVW18], or new algebraic structures [BIJMSZ20]

From Soundness to Confidentiality

Query: noisy linear combination of rows of **A**

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{A} + \boldsymbol{e}^T$$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies

$$a = \mathbf{r}^T \mathbf{b}$$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

[FNV17]: predictable arguments for $\mathcal{L} \Rightarrow$ witness encryption for \mathcal{L}

Idea: for $x \notin \mathcal{L}$, accepting response must be unpredictable (soundness) \Rightarrow encrypt a message using a hard-core bit derived from the response

Query: noisy linear combination of rows of **A**

$$q^T = r^T A + e^T$$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies

$$a = \mathbf{r}^T \mathbf{b}$$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

Predictable linear PCP ⇒ Predictable argument

Current compiler (encrypting with ElGamal) does <u>not</u> yield a predictable argument: Proof is an <u>encryption</u> of the predicted linear PCP response

Query: noisy linear combination of rows of **A**

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{A} + \boldsymbol{e}^T$$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies

$$a = \mathbf{r}^T \mathbf{b}$$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

Approach: instead of encrypting q^T , directly encode it in the exponent

Accepting response: g^{r^Tb}

Query: noisy linear combination of rows of **A**

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{A} + \boldsymbol{e}^T$$

Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies

$$a = \mathbf{r}^T \mathbf{b}$$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

Approach: instead of encrypting $oldsymbol{q}^T$, directly

Problem: Does not hide q^T (and in particular, e^T)

If there is low-weight x such that Ax = 0, then adversary learns g^{e^Tx}

Need to "rule out" low-weight solutions to homogeneous system

Minimum distance problem (MDP):

G

Given a matrix $G \in \mathbb{F}^{m \times n}$, find the minimal distance (under Hamming metric) of the code generated by G

GapMDP $_{\beta}$:

- YES instance (G, d): minimal distance of code generated by G is $\leq d$
- No instance (G, d): minimal distance of code generated by G is $\geq \beta d$

In terms of parity-check matrix H for G: minimal distance of G is $d \Leftrightarrow \exists x : Hx = 0$ where x has weight d

GapMDP $_{\beta}$:

- YES instance (H, d): there exists x with weight $\leq d$ such that Hx = 0
- **NO instance** (H, d): all x where Hx = 0 have weight $\geq \beta \cdot d$

Hardness of GapMDP $_{\beta}$:

- NP-hard when $\beta = O(1)$ and $|\mathbb{F}| = \text{poly}(n)$ [DMS99]
- SAT reduces to GapMDP in <u>quasi-polynomial</u> time when $\beta=\omega(\log n)$ and $|\mathbb{F}|=\mathrm{poly}(n)$ [CW09, AK14]

Hypothesis: SAT reduces to GapMDP $_{eta}$ in polynomial time when $eta=\omega(\log n)$ and $|\mathbb{F}|=n^{\omega(1)}$

GapMDP $_{\beta}$:

- YES instance (H, d): there exists x with weight $\leq d$ such that Hx = 0
- No instance (H, d): all x where Hx = 0 have weight $\geq \beta \cdot d$ Accept if

prover's

message is g^s

Query: noisy linear combination of rows of *H*

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{H} + \boldsymbol{e}^T + s \boldsymbol{c}^T$$

r: uniformly random

e: low-weight vector (with density ε/d)

s, *c*: uniformly random

Completeness: Hx = 0

$$q^T x = r^T H x + e^T x + s c^T x = s c^T x$$

 $e^T x = 0$ with probability at least $(1 - \varepsilon/d)^d \ge 1 - \varepsilon$

GapMDP $_{\beta}$:

- YES instance (H, d): there exists x with weight $\leq d$ such that Hx = 0
- No instance (H, d): all x where Hx = 0 have weight $\geq \beta \cdot d$ Accept if

prover's

message is g^s

Query: noisy linear combination of rows of H

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{H} + \boldsymbol{e}^T + s \boldsymbol{c}^T$$

r: uniformly random

e: low-weight vector (with density ε/d)

s, *c*: uniformly random

Soundness: if \mathbb{G} is modeled as a generic group, then prover's message is always $g^{\alpha q^T z}$ for some $\alpha \in \mathbb{F}, z \in \mathbb{F}^n$

Case 1: $Hz \neq 0$: $r^T Hz$ is random (over choice of r)

Case 2: Hz = 0: e^Tz is random (over choice of e)

Query: noisy linear combination of rows of H

$$\boldsymbol{q}^T = \boldsymbol{r}^T \boldsymbol{H} + \boldsymbol{e}^T + s \boldsymbol{c}^T$$

r: uniformly random

e: low-weight vector (with density ε/d)

s, *c*: uniformly random

GapMDP $_{\beta}$:

- YES instance (H, d): there exists x with weight $\leq d$ such that Hx = 0
- No instance (H, d): all x where Hx = 0 have weight $\geq \beta \cdot d$

Accept if prover's message is g^s

Witness Encryption from Hardness of Approximation

Implies a predictable laconic argument for $\operatorname{GapMDP}_{\beta}$ in the generic group model

Hypothesis: SAT reduces to GapMDP in <u>polynomial</u> time when $\beta = \omega(\log n)$ and $|\mathbb{F}| = n^{\omega(1)}$

Corollary: Under this hypothesis, there exists:

- a predictable laconic argument for NP in the generic group model with proof size |G|
- a witness encryption scheme for NP in the generic group model

Witness Encryption from Hardness of Approximation

Hypothesis: SAT reduces to GapMDP $_{\beta}$ in polynomial time when $\beta = \omega(\log n)$ and $|\mathbb{F}| = n^{\omega(1)}$

Corollary: Under this hypothesis, there exists:

- a predictable laconic argument for NP in the generic group model with proof size |G|
- a witness encryption scheme for NP in the generic group model

Implications:

- Our hypothesis may be proven in the future (no known barriers to doing so) ⇒ there
 exists an <u>unconditional</u> construction of witness encryption in the generic group model
- Ruling out witness encryption in the generic group model ⇒ falsify this hypothesis
 - Impossibility results known in the generic group model known for IBE [PRV12] and indistinguishability obfuscation [MMNPs16]

Witness Encryption from Hardness of Approximation

Hypothesis: SAT reduces to GapMDP $_{\beta}$ in polynomial time when $\beta = \omega(\log n)$ and $|\mathbb{F}| = n^{\omega(1)}$

Corollary: Under this hypothesis, there exists:

- ullet a predictable laconic argument for NP in the generic group model with proof size $|\mathbb{G}|$
- a witness encryption scheme for NP in the ger

Implications:

- Our hypothesis may be proven in the future (exists an unconditional construction of witnes.
- More generally: any argument where the proof consists of a single group element and the verification procedure is a *generic* algorithm ⇒ predictable argument
- Ruling out witness encryption in the generic group model ⇒ falsify this hypothesis
 - Impossibility results known in the generic group model known for IBE [PRV12] and indistinguishability obfuscation [MMNPs16]

Summary of Results

Construction	Group Type	Proof Size	Information-Theoretic Building Block	Soundness Error	Completeness Error	Argument Type
[Gro16]	bilinear	$2 \mathbb{G}_1 + \mathbb{G}_2 $	linear PCP	$\operatorname{negl}(\lambda)$	0	SNARG
[BCIOP13]	linear	8 G	linear PCP	$1/\text{poly}(\lambda)$	0	dvSNARG
[BCIOP13]	linear	2 G	PCP	$1/\text{poly}(\lambda)$	0	dvSNARG
This work	linear	2 G	linear PCP	$1/\text{poly}(\lambda)$	$\operatorname{negl}(\lambda)$	dvSNARG
This work	linear	2 G	PCP	$\operatorname{negl}(\lambda)$	<i>o</i> (1)	laconic argument
This work	linear	G	PCP	$\operatorname{negl}(\lambda)$	o(1)	laconic argument

- Relies on a new hypothesis on the hardness of approximation of the minimal distance of linear codes
- Under the same hypothesis, implies a <u>witness encryption</u> scheme for NP in the generic group model

Open Problems

Unconditional construction of witness encryption in the generic group model

- Show NP-hardness of GapMDP for our parameter regime
- Compile predictable linear PCP into predictable argument
- (VBB) obfuscate linear PCP verification (affine tester)

Concretely-efficient 2-element SNARGs with sub-quadratic prover overhead

2-element laconic arguments with perfect completeness

Thank you!