On Succinct Arguments and Witness Encryption from Groups

Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu
September 2020

Argument Systems

Completeness:

Soundness:
$\forall x \in \mathcal{L}: \operatorname{Pr}[\langle P, V\rangle(x)=$ accept $]=1$
"Honest prover convinces honest verifier of true statements"
$\forall x \notin \mathcal{L}, \forall$ efficient $P^{*}: \operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=\right.$ accept $] \leq \varepsilon$
"Efficient prover cannot convince honest verifier of false statement"

How Short Can a Proof Be?

This talk: laconic arguments for NP

Succinctness:	$\|\pi\|=\operatorname{poly}(\lambda, \log \|C\|)$
	"Proof size is much shorter than circuit size of classic NP verifier"

How Short Can a Proof Be?

This talk: laconic arguments for NP

$$
\text { Succinctness: } \quad|\pi|=\operatorname{poly}(\lambda, \log |C|)
$$

"Proof size is much shorter than circuit size of classic NP verifier"

How Short Can a Proof Be?

This talk: laconic arguments for NP

Focus of this talk: 2-message arguments
Special case: If verifier's message is statement-independent \Rightarrow succinct non-interactive argument (SNARG) in the CRS model

How Short Can a Proof Be?

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14] Many practical ("implementable") SNARGs are based on groups

How Short Can a Proof Be?

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14] Many practical ("implementable") SNARGs are based on groups

How Short Can a Proof Be?

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

Concretely-efficient arguments where proofs consist of 2 group elements?
Arguments where proof consists of 1 group element?

Summary of Results

Construction	Group Type	Proof Size	Information-Theoretic Building Block	Soundness Error	Completeness Error	Argument Type
[Gro16]	bilinear	$2\left\|\mathbb{G}_{1}\right\|+\left\|\mathbb{G}_{2}\right\|$	linear PCP	$\operatorname{negl}(\lambda)$	0	SNARG
[BCIOP13]	linear	$8\|\mathbb{G}\|$	linear PCP	$1 / \operatorname{poly}(\lambda)$	0	dvSNARG
[BCIOP13]	linear	$2\|\mathbb{G}\|$	PCP	$1 / \operatorname{poly}(\lambda)$	0	dvSNARG
This work	linear	$2\|\mathbb{G}\|$	linear PCP	$1 / \operatorname{poly}(\lambda)$	$\operatorname{negl}(\lambda)$	dvSNARG
This work	linear	$2\|\mathbb{G}\|$	PCP	negl (λ)	$o(1)$	laconic argument
This work	linear	$\|\mathbb{G}\|$	PCP	negl (λ)	$o(1)$	laconic argument
- Relies on a new hypothesis on the hardness of approximation of the minimal distance of linear codes						
- Under the same hypothesis, implies a witness encryption scheme for $N P$ in the generic group model						

Main Ingredient: Linear PCPs (LPCPs)

PCP where the proof oracle implements a linear function $\boldsymbol{\pi} \in \mathbb{F}^{m}$

Instantiations (for circuit satisfiability):

- Walsh-Hadamard encoding [ALMSS92, IKOO7] 3 queries, $m=O\left(|C|^{2}\right)$
- Quadratic span programs [GGPR13]

$$
3 \text { queries, } m=O(|C|)
$$

- Square span programs [DFGK14]

2 queries, $m=O(|C|)$

- Traditional PCPs [BCIOP13]

1 query, $m=\operatorname{poly}(|C|)$

Queries in these constructions are statement-independent

Verifier

From Linear PCPs to Succinct Arguments

Verifier encrypts its queries using a linear-only encryption scheme

From Linear PCPs to Succinct Arguments

Verifier encrypts its queries using a linear-only encryption scheme

Encryption scheme only supports linear homomorphism

From Linear PCPs to Succinct Arguments

Verifier encrypts its queries using a linear-only encryption scheme

Prover constructs linear PCP π from (x, w)

Prover homomorphically computes responses to linear PCP queries

Prover's message

From Linear PCPs to Succinct Arguments

Statement-independent LPCP \Rightarrow designated-verifier SNARG
Statement-dependent LPCP \Rightarrow 2-message laconic argument (Also possible to instantiate compiler with a linear-only encoding scheme to obtain publicly-verifiable SNAREs)

Verifier decrypts ciphertexts and checks linear PCP responses

Prover constructs linear
PCP π from (x, w)

Prover homomorphically computes responses to linear PCP queries

Prover's message

Succinct Arguments based on ElGamal

Assumption: ElGamal encryption (with message in exponent) is linear-only (holds unconditionally if we model \mathbb{G} as a generic group)

$$
\begin{aligned}
& \text { sk: } x \leftarrow \mathbb{Z}_{p} \\
& \text { pk: } h=g^{x} \in \mathbb{G}
\end{aligned}
$$

$$
\operatorname{Encrypt}(\mathrm{pk}, m): r \leftarrow \mathbb{Z}_{p, \mathrm{ct}}=\left(g^{r}, h^{r} g^{m}\right)
$$

$$
|c t|=2|\mathbb{G}|
$$

Decryption recovers message in the exponent, so need to solve discrete log to recover message
k-query LPCP

Designated-verifier argument with proofs of size $2(k+1)|\mathbb{G}|$
\mathfrak{G} : group with prime order p and generator g

Succinct Arguments based on ElGamal

Assumption: ElGamal encryption (with message in exponent) is linear-only (holds unconditionally if we model \mathbb{G} as a generic group)

$$
\begin{aligned}
& \text { sk: } x \leftarrow \mathbb{Z}_{p} \\
& \text { pk: } h=g^{x} \in \mathbb{G}
\end{aligned}
$$

$$
\operatorname{Encrypt}(\mathrm{pk}, m): r \leftarrow \mathbb{Z}_{p}, \text { ct }=\left(g^{r}, h^{r} g^{m}\right)
$$

$$
|c t|=2|G|
$$

Decryption recovers message in the exponent, so need to solve discrete log to recover message

Assuming LPCP responses are "small"
k-query LPCP
[BCIOP13] compiler
Designated-verifier argument with proofs of size $2(k+1)|\mathbb{G}|$

Observation: to obtain a SNARG with proof size $2|\mathbb{G}|$, sufficient to construct a 1-query linear PCP

> "Extra" query needed for consistency check (unnecessary when $k=1$)

Query Packing for Linear PCPs

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP
This work: k-query (bounded) linear PCP $\Rightarrow 1$-query linear PCP

Suppose $\left\|\boldsymbol{Q}^{T} \boldsymbol{\pi}\right\|_{\infty}<B \quad$ bounded LPCP

$$
\left\langle\boldsymbol{q}^{*}, \boldsymbol{\pi}\right\rangle=\sum_{i \in[k]} B^{i-1}\left\langle q_{i}, \pi\right\rangle
$$

Can view value as an integer in base B with k digits (corresponding to LPCP responses)

$$
\boldsymbol{Q} \in \mathbb{Z}^{m \times k} \quad \boldsymbol{q}^{*}=\sum_{i \in[k]} B^{i-1} \boldsymbol{q}_{i}
$$

Starting point: View linear PCP queries + proof over the integers

Query Packing for Linear PCPs

[BCIOP13]: k-query PCP $\Rightarrow 1$-query linear PCP
This work: k-query (bounded) linear PCP $\Rightarrow 1$-query linear PCP

$\boldsymbol{Q} \in \mathbb{Z}^{m \times k}$

Suppose $\left\|\boldsymbol{Q}^{T} \boldsymbol{\pi}\right\|_{\infty}<B \quad$ bounded LPCP

$$
\left\langle\boldsymbol{q}^{*}, \boldsymbol{\pi}\right\rangle=\sum_{i \in[k]} B^{i-1}\left\langle\boldsymbol{q}_{i}, \pi\right\rangle
$$

Problem: malicious prover can choose $\boldsymbol{\pi} \in \mathbb{Z}^{m}$ such that responses are not bounded

Then, packed responses cannot be explained by a single linear function

Query Packing for Linear PCPs

[BCIOP13]: k-query PCP $\Rightarrow 1$-query linear PCP
This work: k-query (bounded) linear PCP $\Rightarrow 1$-query linear PCP

Suppose $\left\|\boldsymbol{Q}^{T} \boldsymbol{\pi}\right\|_{\infty}<B \quad$ bounded LPCP

$$
\left\langle\boldsymbol{q}^{*}, \boldsymbol{\pi}\right\rangle=\sum_{i \in[k]} r_{i}\left\langle\boldsymbol{q}_{i}, \pi\right\rangle
$$

Solution: take a random linear combination of query vectors, where scalars r_{i} chosen from sufficiently-large interval
k-query B-bounded LPCP \Rightarrow 1-query $B^{O(k)}$-bounded LPCP

Query Packing for Linear PCPs

[BCIOP13]: k-query PCP \Rightarrow 1-query linear PCP
This work: k-query (bounded) linear PCP $\Rightarrow 1$-query linear PCP

$\boldsymbol{Q} \in \mathbb{Z}^{m \times k}$

$\boldsymbol{q}^{*}=\sum_{i \in[k]} r_{i} \boldsymbol{q}_{i}$

Embed B-bounded integer linear PCPs over a finite field \mathbb{F}_{p} where $p>B$

Compile linear PCP over \mathbb{F}_{p} to succinct argument using [BCIOP13]

For packed linear PCP, meaningful if final bound satisfies $B^{O(k)}<p$

Hadamard LPCP Instantiation

$\boldsymbol{Q} \in \mathbb{Z}^{m \times k}$

k-query (bounded) LPCP \Rightarrow 1-query LPCP

Hadamard instantiation [ALMSS92, IK007]:

- 2-query B-bounded linear PCP

Previously described as a 3-query construction, but 2 of the queries can be combined

Hadamard LPCP Instantiation

$\boldsymbol{Q} \in \mathbb{Z}^{m \times k}$

k-query (bounded) LPCP \Rightarrow 1-query LPCP

Hadamard instantiation [ALMSS92, IKO07]:

- 2-query B-bounded linear PCP
- Query dimension: $m=O\left(|C|^{2}\right)$
- For soundness error $\varepsilon, B=O\left(|C|^{2} / \varepsilon^{2}\right)$

Problematic: bound for packed LPCP is $B^{\prime}=O\left(|C|^{4} / \varepsilon^{4}\right)$

Verification time requires computing a discrete log of this magnitude requires time $O\left(|C|^{2} / \varepsilon^{2}\right)$

Hadamard LPCP Instantiation

Optimizing proof verification:

- Linear PCP verification corresponds to a quadratic test:

$$
a_{1}^{2}-a_{2}=t
$$

Target value (depends only on statement)

Hadamard instantiation [ALMSS92, IKO07]:

- 2-query B-bounded linear PCP
- Query dimension: $m=O\left(|C|^{2}\right)$
- For soundness error $\varepsilon, B=O\left(|C|^{2} / \varepsilon^{2}\right)$

Problematic: bound for packed LPCP is $B^{\prime}=O\left(|C|^{4} / \varepsilon^{4}\right)$

Verification time requires computing a discrete log of this magnitude requires time $O\left(|C|^{2} / \varepsilon^{2}\right)$

Hadamard LPCP Instantiation

Optimizing proof verification:

- Linear PCP verification corresponds to a quadratic test:

$$
a_{1}^{2}-a_{2}=t
$$

- Packed representation: verifier computes $g^{a}=g^{a_{1}+r \cdot a_{2}}$ (verifier knows r)
- Observation: With overwhelming probability, $\left|a_{1}\right| \in O(\sqrt{|C|} / \varepsilon)$

Strict bound (with probability 1):

$$
\left|a_{1}\right| \in O(|C| / \varepsilon)
$$

Hadamard instantiation [ALMSS92, IK007]:

- 2-query B-bounded linear PCP
- Query dimension: $m=O\left(|C|^{2}\right)$
- For soundness error $\varepsilon, B=O\left(|C|^{2} / \varepsilon^{2}\right)$

Problematic: bound for packed LPCP is $B^{\prime}=O\left(|C|^{4} / \varepsilon^{4}\right)$

Verification time requires computing a discrete log of this magnitude requires time $O\left(|C|^{2} / \varepsilon^{2}\right)$

Hadamard LPCP Instantiation

Optimizing proof verification:

- Linear PCP verification corresponds to a quadratic test:

$$
a_{1}^{2}-a_{2}=t
$$

- Packed representation: verifier computes $g^{a}=g^{a_{1}+r \cdot a_{2}}$ (verifier knows r)
- Observation: With overwhelming probability, $\left|a_{1}\right| \in O(\sqrt{|C|} / \varepsilon)$

Strict bound (with probability 1):

$$
\left|a_{1}\right| \in O(|C| / \varepsilon)
$$

If g^{a} encodes a valid LPCP response, then there exists a_{1} such that

$$
g^{a}=g^{a_{1}+r \cdot a_{2}}=g^{a_{1}+r a_{1}^{2}} g^{-r t}
$$

Equivalently:

$$
g^{a} g^{-r t}=g^{a_{1}+r a_{1}^{2}}
$$

Implication: verifier can precompute accepting values of $g^{a_{1}+r a_{1}^{2}}$

Verification consists of ElGamal decryption (to obtain g^{a}), multiplication by $g^{-r t}$ and a table lookup (for $g^{a_{1}+r a_{1}^{2}}$)

Designated-Verifier SNARGs based on EIGamal

Assuming ElGamal is linearonly (or modeling \mathbb{G} as a generic group)

Designated-verifier SNARG for NP

To verify NP relation of size $|C|$:

- Proof size: $2|\mathbb{G}|$
- CRS size + prover cost: $O\left(|C|^{2}\right)$
- Soundness error: $\varepsilon=1 / \operatorname{poly}(\lambda)$
- Verifier cost: $\tilde{O}(\sqrt{|C|} / \varepsilon)$

With a precomputed table of size $\tilde{O}(\sqrt{|C|} / \varepsilon)$, verification requires just 4 group operations and table lookup

Designated-Verifier SNARGs based on ElGamal

Shortest SNARG with good concrete efficiency (does not need to use classical PCPs)

1-query linear PCP

To verify NP relation of size $|C|$:

- Proof size: $2|\mathbb{G}|$
- CRS size + prover cost: $O\left(|C|^{2}\right)$
- Soundness error: $\varepsilon=1 / \operatorname{poly}(\lambda)$
- Verifier cost: $\tilde{O}(\sqrt{|C|} / \varepsilon)$

Designated-Verifier SNARGs based on ElGamal

Open question: Same level of succinctness but with $O(|C|)$ size CRS (and $O(|C|)$ prover cost)

1-query linear PCP

Designated-verifier
SNARG for NP
To verify NP relation of size $|C|$:

- Proof size: $2|\mathbb{G}|$
- CRS size + prover cost: $O\left(|C|^{2}\right)$
- Soundness error: $\varepsilon=1 / \operatorname{poly}(\lambda)$
- Verifier cost: $\tilde{O}(\sqrt{|C|} / \varepsilon)$

Designated-Verifier SNARGs based on ElGamal

Achieving Negligible Soundness Error

1-query linear PCP

Encrypt query vector with ElGamal

Approach: If verification relation is linear, then possible to evaluate it in the exponent

Can we construct a 1-query linear PCP with a linear decision procedure?

Problem: linear PCP response computed in the exponent
"Decryption" yields $g^{\left\langle q^{*}, \pi\right\rangle}$

Achieving Negligible Soundness Error

Can we construct a 1-query linear PCP with a linear decision procedure?
[Gro16]: linear PCP with linear decision procedure is impossible (for hard languages)
but only if... the underlying linear PCP has negligible completeness error
Main intuition: if decision procedure is linear:

LPCP query matrix
LPCP proof

- True statement: satisfying $\boldsymbol{\pi}$ exists for all valid \boldsymbol{Q}
- False statement: by union bound, no satisfying $\boldsymbol{\pi}$ for sufficiently many $\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{\ell}$

Target value

Linear PCPs from Hardness of Approximation

Can we construct a 1-query linear PCP with a linear decision procedure?
Implication of [Gro16]: LPCP with linear decision procedure must rely on imperfect completeness

This work: leverage hardness of approximation results to design new LPCPs

Given $A \in \mathbb{F}^{m \times n}$ and vector $b \in \mathbb{F}^{m}$, find a sparse solution $x \in \mathbb{F}^{n}$ where $A x=b$

Low Hamming weight
(number of nonzero entries)
Minimal weight solution problem (MWSP)

Linear PCP for GapMWSP

$$
\begin{aligned}
& \text { Given } A \in \mathbb{F}^{m \times n} \text { and vector } b \in \mathbb{F}^{m} \text {, find } \\
& \text { a sparse solution } x \in \mathbb{F}^{n} \text { where } A x=b
\end{aligned}
$$

GapMWSP ${ }_{\beta}$:

- Yes instance (A, b, d) : there exists x with weight $\leq d$ such that $A x=b$
- No instance (A, b, d) : all x where $A x=b$ have weight $\geq \beta d$

Adaptation of [HKLT19]: GapMWSP ${ }_{\beta}$ is NP-hard for $\beta=\log ^{c} n$ and field \mathbb{F} where $\log |\mathbb{F}|=\operatorname{poly}(n)$

Linear PCP for GapMWSP

GapMWSP $\boldsymbol{\beta}_{\boldsymbol{\beta}}$:

- YES instance: there exists x with weight $\leq d$ such that $A x=b$
- no instance: all x where $A x=b$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of \boldsymbol{A}

$$
r \leftarrow \mathbb{F}_{q}^{m} \text { is }
$$

uniformly random

$\boldsymbol{e} \in \mathbb{F}_{q}^{n}$ has low-weight (each entry is random with probability ε / d and 0 otherwise)

Linear PCP for GapMWSP

GapMWSP $_{\boldsymbol{\beta}}$:

- YES instance: there exists x with weight $\leq d$ such that $A x=b$
- no instance: all x where $A x=b$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of \boldsymbol{A}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{A}+\boldsymbol{e}^{T}
$$

Proof: low-weight solution $\boldsymbol{x}(\boldsymbol{A x}=\boldsymbol{b})$
Verification: accept if response a satisfies $a=\boldsymbol{r}^{T} \boldsymbol{b}$

YES instance:

$$
\boldsymbol{q}^{T} \boldsymbol{x}=\boldsymbol{r}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{e}^{T} \boldsymbol{x}=\boldsymbol{r}^{T} \boldsymbol{b}
$$

Suppose density of \boldsymbol{e} is ε / d :

$$
\operatorname{Pr}\left[\boldsymbol{e}^{T} \boldsymbol{x}=0\right] \geq(1-\varepsilon / d)^{d} \geq 1-\varepsilon
$$

Linear PCP for GapMWSP

GapMWSP ${ }_{\beta}$:

- YES instance: there exists x with weight $\leq d$ such that $A x=b$
- No instance: all x where $A x=b$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of \boldsymbol{A}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{A}+\boldsymbol{e}^{T}
$$

Proof: low-weight solution $\boldsymbol{x}(\boldsymbol{A x}=\boldsymbol{b})$
Verification: accept if response a satisfies $a=\boldsymbol{r}^{T} \boldsymbol{b}$

NO instance:

$$
\boldsymbol{q}^{T} \boldsymbol{x}=\boldsymbol{r}^{T} A \boldsymbol{x}+\boldsymbol{e}^{T} \boldsymbol{x}=\boldsymbol{r}^{T} \boldsymbol{b}
$$

Case 1: $A x \neq b$
$\boldsymbol{r}^{T} \boldsymbol{A} \boldsymbol{x}$ is uniform, so verifier accepts with probability at most $1 / \mathbb{F}$

Linear PCP for GapMWSP

GapMWSP $_{\boldsymbol{\beta}}$:

- YES instance: there exists x with weight $\leq d$ such that $A x=b$
- No instance: all x where $A x=b$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of \boldsymbol{A}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{A}+\boldsymbol{e}^{T}
$$

Proof: low-weight solution $\boldsymbol{x}(\boldsymbol{A x}=\boldsymbol{b})$
Verification: accept if response a satisfies $a=\boldsymbol{r}^{T} \boldsymbol{b}$

NO instance:

$$
\boldsymbol{q}^{T} \boldsymbol{x}=\boldsymbol{r}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{e}^{T} \boldsymbol{x}=\boldsymbol{r}^{T} \boldsymbol{b}
$$

Case 2: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, weight $(\boldsymbol{x}) \geq \beta d$

$$
\boldsymbol{e}^{T} \boldsymbol{x}=0 \text { with probability }\left(1-\frac{\varepsilon}{d}\right)^{\beta d} \leq e^{-\beta \varepsilon}
$$

$$
\text { negligible when } \varepsilon \beta=\omega(\log n)
$$

Linear PCP for GapMWSP

GapMWSP $_{\boldsymbol{\beta}}$:

- YES instance: there exists x with weight $\leq d$ such that $A x=b$
- No instance: all x where $A x=b$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of \boldsymbol{A}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{A}+\boldsymbol{e}^{T}
$$

Proof: low-weight solution $\boldsymbol{x}(\boldsymbol{A x}=\boldsymbol{b})$
Verification: accept if response a satisfies $a=\boldsymbol{r}^{T} \boldsymbol{b}$

1-query linear PCP for NP with

- o(1) completeness error
- negligible soundness error
- linear decision procedure

ElGamal is linear-only \Rightarrow laconic argument for NP with negligible soundness where $|\pi|=2|\mathbb{G}|$

Witness Encryption

Encrypt a message m to a statement x (for NP language \mathcal{L})

Security: if $x \notin \mathcal{L}$, then ct provides semantic security
A "hub" for many cryptographic notions: PKE, IBE, ABE, etc. ("lightweight obfuscation")
Existing constructions rely on indistinguishability obfuscation [GGHRSW13], multilinear maps [GGSW13, CVW18], or new algebraic structures [BIJMSZ20]

From Soundness to Confidentiality

Query: noisy linear combination of rows of \boldsymbol{A}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{A}+\boldsymbol{e}^{T}
$$

Proof: low-weight solution $\boldsymbol{x}(\boldsymbol{A x}=\boldsymbol{b})$
Verification: accept if response a satisfies $a=\boldsymbol{r}^{T} \boldsymbol{b}$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)
[FNV17]: predictable arguments for $\mathcal{L} \Rightarrow$ witness encryption for \mathcal{L}
Idea: for $x \notin \mathcal{L}$, accepting response must be unpredictable (soundness) \Rightarrow encrypt a message using a hard-core bit derived from the response

Predictable Argument from Hardness of Approximation

Query: noisy linear combination of rows of \boldsymbol{A}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{A}+\boldsymbol{e}^{T}
$$

Proof: low-weight solution $\boldsymbol{x}(\boldsymbol{A x}=\boldsymbol{b})$
Verification: accept if response a satisfies $a=\boldsymbol{r}^{T} \boldsymbol{b}$

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori)

Predictable linear PCP $\stackrel{?}{\Rightarrow}$ Predictable argument

Current compiler (encrypting with ElGamal) does not yield a predictable argument:
Proof is an encryption of the predicted linear PCP response

Predictable Argument from Hardness of Approximation

Query: noisy linear combination of rows of \boldsymbol{A}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{A}+\boldsymbol{e}^{T}
$$

Proof: low-weight solution $\boldsymbol{x}(\boldsymbol{A x}=\boldsymbol{b})$
Verification: accept if response a satisfies

Linear PCP is "predictable"

Verifier accepts only one response (that is known to verifier a priori) $a=\boldsymbol{r}^{T} \boldsymbol{b}$

Approach: instead of encrypting \boldsymbol{q}^{T}, directly encode it in the exponent

Accepting response: $g^{r^{T} b}$

Predictable Argument from Hardness of Approximation

Query: noisy linear combination of rows of A

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{A}+\boldsymbol{e}^{T}
$$

Proof: low-weight solution $\boldsymbol{x}(\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b})$
Verification: accept if response a satisfies $a=\boldsymbol{r}^{T} \boldsymbol{b}$

Approach: instead of encrypting \boldsymbol{q}^{T}, directly

$$
g^{\boldsymbol{q}^{T} \boldsymbol{x}}=g^{r^{T} b+}
$$

Problem: Does not hide \boldsymbol{q}^{T} (and in particular, \boldsymbol{e}^{T})

Verifier accepts only one response (that is known to verifier a priori)

If there is low-weight x such that
Linear PCP is "predictable"
$A x=0$, then adversary learns $g^{e^{T} x}$

Predictable Argument from Hardness of Approximation

Need to "rule out" low-weight solutions to homogeneous system
Minimum distance problem (MDP):

Given a matrix $G \in \mathbb{F}^{m \times n}$, find the minimal distance (under Hamming metric) of the code generated by G

GapMDP $_{\beta}$:

- YES instance (G, d) : minimal distance of code generated by G is $\leq d$
- No instance (G, d): minimal distance of code generated by G is $\geq \beta d$

In terms of parity-check matrix \boldsymbol{H} for \boldsymbol{G} : minimal distance of \boldsymbol{G} is $d \Leftrightarrow \exists \boldsymbol{x}: \boldsymbol{H} \boldsymbol{x}=\mathbf{0}$ where \boldsymbol{x} has weight d

Predictable Argument from Hardness of Approximation

GapMDP $_{\boldsymbol{\beta}}$:

- YES instance (H, d) : there exists \boldsymbol{x} with weight $\leq d$ such that $H x=0$
- no instance (H, d) : all x where $H x=0$ have weight $\geq \beta \cdot d$

Hardness of GapMDP $\boldsymbol{\beta}_{\boldsymbol{\beta}}$:

- NP-hard when $\beta=O(1)$ and $|\mathbb{F}|=\operatorname{poly}(n)$ [DMS99]
- SAT reduces to GapMDP in quasi-polynomial time when $\beta=\omega(\log n)$ and $|\mathbb{F}|=$ poly (n) [CW09, AK14]

Hypothesis: SAT reduces to GapMDP_{β} in polynomial time when $\beta=\omega(\log n)$ and $|\mathbb{F}|=n^{\omega(1)}$

Predictable Argument from Hardness of Approximation

GapMDP $_{\boldsymbol{\beta}}$:

- YES instance (H, d) : there exists \boldsymbol{x} with weight $\leq d$ such that $H x=0$
- no instance (H, d) : all x where $H x=0$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of \boldsymbol{H}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{H}+\boldsymbol{e}^{T}+s \boldsymbol{c}^{T}
$$

r : uniformly random
\boldsymbol{e} : low-weight vector (with density ε / d) s, c : uniformly random

Predictable Argument from Hardness of Approximation

Completeness: $H x=0$

$$
q^{T} x=r^{T} H x+e^{T} x+s c^{T} x=s c^{T} x
$$

$\boldsymbol{e}^{T} \boldsymbol{x}=0$ with probability at least

$$
(1-\varepsilon / d)^{d} \geq 1-\varepsilon
$$

GapMDP $_{\beta}$:

- YES instance (H, d) : there exists \boldsymbol{x} with weight $\leq d$ such that $H x=0$
- no instance (H, d) : all x where $H x=0$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of \boldsymbol{H}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{H}+\boldsymbol{e}^{T}+s \boldsymbol{c}^{T}
$$

\boldsymbol{r} : uniformly random
\boldsymbol{e} : low-weight vector (with density ε / d) s, c : uniformly random

Predictable Argument from Hardness of Approximation

Soundness: if \mathbb{G} is modeled as a generic group, then prover's message is always $g^{\alpha q^{T} z}$ for some $\alpha \in \mathbb{F}, \boldsymbol{z} \in \mathbb{F}^{n}$

Case 1: $H z \neq 0: r^{T} H z$ is random (over choice of \boldsymbol{r})
Case 2: $\boldsymbol{H z}=0: \boldsymbol{e}^{T} \boldsymbol{z}$ is random (over choice of e)

GapMDP $_{\beta}$:

- YES instance (H, d) : there exists \boldsymbol{x} with weight $\leq d$ such that $H x=0$
- no instance (H, d) : all x where $H x=0$ have weight $\geq \beta \cdot d$

Query: noisy linear combination of rows of \boldsymbol{H}

$$
\boldsymbol{q}^{T}=\boldsymbol{r}^{T} \boldsymbol{H}+\boldsymbol{e}^{T}+s \boldsymbol{c}^{T}
$$

r : uniformly random
\boldsymbol{e} : low-weight vector (with density ε / d) s, c : uniformly random

Witness Encryption from Hardness of Approximation

Implies a predictable laconic argument for GapMDP β_{β} in the generic group model

Hypothesis: SAT reduces to GapMDP in polynomial time when $\beta=\omega(\log n)$ and $|\mathbb{F}|=n^{\omega(1)}$
Corollary: Under this hypothesis, there exists:

- a predictable laconic argument for NP in the generic group model with proof size $|\mathbb{G}|$
- a witness encryption scheme for NP in the generic group model

Witness Encryption from Hardness of Approximation

Hypothesis: SAT reduces to $\operatorname{GapMDP}_{\beta}$ in polynomial time when $\beta=\omega(\log n)$ and $|\mathbb{F}|=n^{\omega(1)}$
Corollary: Under this hypothesis, there exists:

- a predictable laconic argument for NP in the generic group model with proof size $|\mathbb{G}|$
- a witness encryption scheme for NP in the generic group model

Implications:

- Our hypothesis may be proven in the future (no known barriers to doing so) \Rightarrow there exists an unconditional construction of witness encryption in the generic group model
- Ruling out witness encryption in the generic group model \Rightarrow falsify this hypothesis
- Impossibility results known in the generic group model known for IBE [PRV12] and indistinguishability obfuscation [MMNPs16]

Witness Encryption from Hardness of Approximation

Hypothesis: SAT reduces to $\operatorname{GapMDP}_{\beta}$ in polynomial time when $\beta=\omega(\log n)$ and $|\mathbb{F}|=n^{\omega(1)}$
Corollary: Under this hypothesis, there exists:

- a predictable laconic argument for NP in the generic group model with proof size $|\mathbb{G}|$
- a witness encryption scheme for NP in the ger

Implications:

- Our hypothesis may be proven in the future (exists an unconditional construction of witnes

More generally: any argument where the proof consists of a single group element and the verification procedure is a generic algorithm \Rightarrow predictable argument

- Ruling out witness encryption in the generic group model \Rightarrow falsify this hypothesis
- Impossibility results known in the generic group model known for IBE [PRV12] and indistinguishability obfuscation [MMNPs16]

Summary of Results

Construction	Group Type	Proof Size	Information-Theoretic Building Block	Soundness Error	Completeness Error	Argument Type
[Gro16]	bilinear	$2\left\|\mathbb{G}_{1}\right\|+\left\|\mathbb{G}_{2}\right\|$	linear PCP	$\operatorname{negl}(\lambda)$	0	SNARG
[BCIOP13]	linear	$8\|\mathbb{G}\|$	linear PCP	$1 / \operatorname{poly}(\lambda)$	0	dvSNARG
[BCIOP13]	linear	$2\|\mathbb{G}\|$	PCP	$1 / \operatorname{poly}(\lambda)$	0	dvSNARG
This work	linear	$2\|\mathbb{G}\|$	linear PCP	$1 / \operatorname{poly}(\lambda)$	$\operatorname{negl}(\lambda)$	dvSNARG
This work	linear	$2\|\mathbb{G}\|$	PCP	negl (λ)	$o(1)$	laconic argument
This work	linear	$\|\mathbb{G}\|$	PCP	negl (λ)	$o(1)$	laconic argument
- Relies on a new hypothesis on the hardness of approximation of the minimal distance of linear codes						
- Under the same hypothesis, implies a witness encryption scheme for $N P$ in the generic group model						

Open Problems

Unconditional construction of witness encryption in the generic group model

- Show NP-hardness of GapMDP for our parameter regime
- Compile predictable linear PCP into predictable argument
- (VBB) obfuscate linear PCP verification (affine tester)

Concretely-efficient 2-element SNARGs with sub-quadratic prover overhead
2-element laconic arguments with perfect completeness

Thank you!

