Removing Trust Assumptions from Functional Encryption

David Wu
December 2023

based on joint works with Cody Freitag, Rachit Garg, Susan Hohenberger, George Lu, and Brent Waters

Functional Encryption (FE)

Functional Encryption (FE)

Functional Encryption (FE)

Functional Encryption (FE)

Key issuer can decrypt all ciphertexts

Central point of failure
Users do not have control over keys

Functional Encryption vs. Public-Key Encryption

Public-key encryption is decentralized

Can we get the best of both worlds?

Every user generates their own key (no coordination or trust needed) Does not support fine-grained decryption

Functional encryption is centralized

Central (trusted) authority generates individual keys
Supports fine-grained decryption capabilities

Registration-Based Encryption (RBE)

Users chooses their own public/secret key and register their public key with the curator

Registration-Based Encryption (RBE)

Users chooses their own public/secret key and register their public key with the curator

Registration-Based Encryption (RBE)

Registration-Based Encryption (RBE)

Note: As users join, the master public key is updated, so users occasionally need to retrieve a new helper decryption key

Registration-Based Encryption (RBE)

- Initial constructions based on indistinguishability obfuscation or hash garbling (based on CDH, QR, LWE) - all require non-black-box use of cryptography
- High concrete efficiency costs: ciphertext is 4.5 TB for supporting 2 billion users [CES21]

Can we construct RBE schemes that only need black-box use of cryptography?
Can we construct support more general policies (beyond identity-based encryption)?

Removing Trust from Functional Encryption

Users chooses their own key and register the public key (together with function f) with the curator Note: f could also be chosen by the key curator

Removing Trust from Functional Encryption

Registered Functional Encryption

Can we construct RBE schemes that only need black-box use of cryptography?
Can we construct support more general policies (beyond identity-based encryption)?
Registration-based encryption [GHMR18, GHMMRS19, GV20, CES21, DKLLMR23, GKMR23, ZZGQ23, FKP23]
Registered attribute-based encryption (ABE)

- Monotone Boolean formulas [HLWW23, ZZGQ23]
- Inner products [FFMMRV23, ZZGQ23]
- Arithmetic branching program [ZZGQ23]

Lots of progress in

- Boolean circuits [HLWW23, FWW23] this past year!

Distributed/flexible broadcast [BZ14, KMW23, FWW23, GLWW23]

Registered functional encryption

- Linear functions [DPY23]
- Boolean circuits [FFMMRV23, DPY23]

Underlined schemes only need black-box use of cryptography

Registered Functional Encryption

Can we construct RBE schemes that only need black-box use of cryptography?
Can we construct support more general policies (beyond identity-based encryption)?
Registration-based encryption [GHMR18, GHMMRS19, GV20, CES21, DKLLMR23, GKMR23, ZZGQ23, FKP23]
Registered attribute-based encryption (ABE)

- Monotone Boolean formulas [HLWW23, ZZGQ23]
- Inner products [FFMMRV23, ZZGQ23]
- Arithmetic branching program [ZZGQ23]

Lots of progress in this past year!

- Boolean circuits [HLWW23, FWW23]

Distributed/flexible broadcast [BZ14, KMW23, FWW23, GLWW23]

Registered functional encryption

- Linear functions [DPY23]
- Boolean circuits [FFMMRV23, DPY23]

Underlined schemes only need black-box use of cryptography

Attribute-Based Encryption

policy: CS and faculty

Attribute-Based Encryption

policy: CS and faculty

Attribute-Based Encryption

policy: CS and faculty

Can decrypt

Cannot decrypt
Cannot decrypt

Attribute-Based Encryption

Users cannot collude to decrypt

A Template for Building Registered ABE

Users chooses their own public/secret key

A Template for Building Registered ABE

Simplification: assume that all of the users register at the same time (rather than in an online fashion)

Slotted registered ABE:

Let L be the number of users

hsk $_{1}, \ldots$, hsk $_{L}$
Each slot associated with a public key pk and a set of attributes S

$$
\begin{aligned}
&|\operatorname{mpk}|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) \\
&\left|\operatorname{hsk}_{i}\right|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) \\
& \mathcal{U}: \text { universe of attributes }
\end{aligned}
$$

A Template for Building Registered ABE

Simplification: assume that all of the users register at the same time (rather than in an online fashion)

Slotted registered ABE:

Let L be the number of users

mpk
hsk $_{1}, \ldots$, hsk $_{L}$

Each slot associated with a public key pk and a set of attributes S

Encrypt $(\mathrm{mpk}, P, m) \rightarrow \mathrm{ct}$
$\operatorname{Decrypt}\left(\mathrm{sk}_{i}, \mathrm{hsk}_{i}, \mathrm{ct}\right) \rightarrow m$

Encryption takes master public key and policy P (no slot)
Decryption takes secret key sk_{i} for some slot and the helper key hsk_{i} for that slot

A Template for Building Registered ABE

Simplification: assume that all of the users register at the same time (rather than in an online fashion)

Slotted registered ABE:

Let L be the number of users

mpk
hsk $_{1}, \ldots$, hsk $_{L}$

Each slot associated with a public key pk and a set of attributes S
$\operatorname{Encrypt}(\mathrm{mpk}, P, m) \rightarrow \mathrm{ct}$
$\operatorname{Decrypt}\left(\mathrm{sk}_{i}, \mathrm{hsk}_{i}, \mathrm{ct}\right) \rightarrow m$

Main difference with registered $A B E$:
Aggregate takes all L keys simultaneously

Slotted Registered ABE to Registered ABE

Let L be the number of users

Aggregate
 $\mathrm{hsk}_{1}, \ldots, \mathrm{hsk}_{L}$

Slotted scheme does not support online registration

Solution: use "powers-of-two" approach (like [GHMR18])

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1
$$

\square

$$
2^{1}=2
$$

Initially: all slots are empty $m p k=\perp$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $\operatorname{mpk}=\perp$

Add key to each scheme with available slot

$$
\mathrm{pk}_{1}, S_{1}
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty $m p k=\perp$

pk_{1}, S_{1}

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{1}=2 \quad \mathrm{pk}_{1}, S_{1}
$$

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}\right)
$$

pk_{1}, S_{1}

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}\right)
$$

Add key to each scheme with available slot

$$
\mathrm{pk}_{2}, S_{2}
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}\right)
$$

pk_{2}, S_{2}

$2^{\ell}=L$| | pk_{1}, S_{1} | pk_{2}, S_{2} | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

:

$2^{\ell}=L$| | pk_{1}, S_{1} | pk_{2}, S_{2} | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{1}\right)
$$

$$
\mathrm{pk}_{2}, S_{2}
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes
:

$2^{\ell}=L \quad$| pk_{1}, S_{1} | pk_{2}, S_{2} |
| :--- | :--- | \square

\square

\square
\square

Initially: all slots are empty $m p k=\left(\mathrm{mpk}_{2}\right)$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1 \quad \mathrm{pk}_{3}, S_{3}
$$

$$
2^{1}=2 \begin{array}{|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} \\
& \text { all slots are full } \\
\mathrm{mpk}_{2}
\end{array}
$$

$$
2^{2}=4 \begin{array}{|l|l|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & \mathrm{pk}_{3}, S_{3} & \\
\hline
\end{array}
$$

Add key to each scheme with
Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{2}\right)
$$

 available slot

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1 \stackrel{\mathrm{pk}_{3}, S_{3}}{ } \xrightarrow{\text { all slots are full }} \mathrm{mpk}_{1}
$$

$$
2^{1}=2 \begin{array}{|c|c|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} \\
& \text { all slots are full } \\
\mathrm{mpk}_{2}
\end{array}
$$

$$
2^{2}=4 \begin{array}{|l|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & \mathrm{pk}_{3}, S_{3} \\
\hline
\end{array}
$$

Add key to each scheme with
Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{2}\right)
$$

 available slot

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1 \xrightarrow{\mathrm{pk}_{3}, S_{3}} \xrightarrow{\text { all slots are full }} \mathrm{mpk}_{1}
$$

$$
2^{1}=2 \begin{array}{|c|c|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} \\
\end{array} \stackrel{\text { all slots are full }}{ } \mathrm{mpk}_{2}
$$

$$
2^{2}=4 \begin{array}{|l|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & \mathrm{pk}_{3}, S_{3} \\
\hline
\end{array}
$$

Add key to each scheme with available slot

$$
m p k=\left(m p k_{1}, m p k_{2}\right)
$$

pk_{3}, S_{3}

$$
2^{\ell}=L \begin{array}{|l|l|l|l|l|l|}
\mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & \mathrm{pk}_{3}, S_{3} & & & \\
\hline
\end{array}
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{1}, \mathrm{mpk}_{2}\right)
$$

Add key to each scheme with available slot

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{1}, \mathrm{mpk}_{2}\right)
$$

pk_{4}, S_{4}

$2^{1}=2$| pk_{1}, S_{1} | pk_{2}, S_{2} |
| :--- | :--- |$\xrightarrow{\text { all slots are full }} \mathrm{mpk}_{2}$

$2^{2}=4$| pk_{1}, S_{1} | pk_{2}, S_{2} | pk_{3}, S_{3} | pk_{4}, S_{4} |
| :--- | :--- | :--- | :--- |$\xrightarrow{\text { all slots are full }} \mathrm{mpk}_{3}$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18])
To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
m p k=\left(\mathrm{mpk}_{1}, \mathrm{mpk}_{2}\right)
$$

pk_{4}, S_{4}

$2^{2}=4$| pk_{1}, S_{1} | pk_{2}, S_{2} | pk_{3}, S_{3} | pk_{4}, S_{4} |
| :--- | :--- | :--- | :--- |$\xrightarrow{\text { all slots are full }} \mathrm{mpk}_{3}$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{3}\right)
$$

$2^{2}=4$| pk_{1}, S_{1} | pk_{2}, S_{2} | pk_{3}, S_{3} | pk_{4}, S_{4} |
| :--- | :--- | :--- | :--- |$\xrightarrow{\text { all slots are full }} \mathrm{mpk}_{3}$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

$$
2^{0}=1 \square
$$

Ciphertext is an encryption to

$$
2^{1}=2 \square
$$ each public key

$$
2^{2}=4 \begin{array}{|l|l|l|l|}
\hline \mathrm{pk}_{1}, S_{1} & \mathrm{pk}_{2}, S_{2} & \mathrm{pk}_{3}, S_{3} & \mathrm{pk}_{4}, S_{4} \\
\hline
\end{array}
$$

$\log L$ overhead

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{3}\right)
$$

Slotted Registered ABE to Registered ABE

Solution: use "powers-of-two" approach (like [GHMR18]) To support $L=2^{\ell}$ users: maintain ℓ slotted schemes

Initially: all slots are empty

$$
\mathrm{mpk}=\left(\mathrm{mpk}_{3}\right)
$$

Update needed whenever user's key moves from scheme i to scheme $j>i$

At most $\ell=\log L$ updates

Constructing Slotted Registered ABE

Construction will rely on (composite-order) pairing groups ($\mathbb{G}, \mathbb{G}_{T}$)
Pairing is an efficiently-computable bilinear map $e: \mathbb{G} \rightarrow \mathbb{G}_{T}$ from \mathbb{G} to \mathbb{G}_{T} :

$$
e\left(g^{x}, g^{y}\right)=e(g, g)^{x y}
$$

Multiplies exponents in the target group

Outline of Slotted Registered ABE

Scheme will rely on a structured common reference string (CRS)
Slot components: each slot $i \in[L]$ will have a set of associated group elements (denoted A_{i})

A_{1}	A_{2}	A_{3}	A_{4}	\cdots	A_{L}

Attribute components: each attribute $w \in \mathcal{U}$ will have a group element U_{w}
User's individual public/secret key is an ElGamal key-pair

$$
\mathrm{sk}=r, \mathrm{pk}=g^{r}
$$

Aggregated public key is just the product of every user's public key:

$$
\mathrm{mpk}=\prod_{i \in[L]} g^{r_{i}}
$$

Similar aggregation for attribute components

Outline of Slotted Registered ABE

Scheme will rely on a structured common reference string (CRS)

Slot components: each slot $i \in[L]$ will have a set of associated group elements (denoted A_{i})

A_{1}	A_{2}	A_{3}	A_{4}	\cdots	A_{L}

Attribute components: each attribute $w \in \mathcal{U}$ will have a group element U_{w}
Decryption enforces the following two requirements:
Slot requirement: Decrypter know a secret key associated with the public key for some slot i^{*}
Attribute requirement: Attributes associated with slot i^{*} satisfy the decryption policy
In the construction, message is "blinded" by $v_{1} v_{2}$, where v_{1} can be computed with knowledge of a secret key associated with a slot i^{*} and v_{2} can be computed if the attributes for slot i^{*} satisfy the policy

Outline of Slotted Registered ABE

Scheme will rely on a structured common reference string (CRS)

Slot components: each slot $i \in[L]$ will have a set of associated group elements (denoted A_{i})

A_{1}	A_{2}	A_{3}	A_{4}	\cdots	A_{L}

Attribute components: each attribute $w \in \mathcal{U}$ will have a group element U_{w}
Need to be careful to defend against collusions [see paper for details]
v a secret key associated with the public key for some slot i^{*} associated with slot i^{*} satisfy the decryption policy

In the construction, message is "blinded" by $v_{1} v_{2}$, where v_{1} can be computed with knowledge of a secret key associated with a slot i^{*} and v_{2} can be computed if the attributes for slot i^{*} satisfy the policy

Registered ABE Summary

An Application to Broadcast Encryption

Registered ABE is a useful building block for other trustless cryptographic systems

Suppose we want to encrypt a message to $\left\{\mathrm{pk}_{1}, \mathrm{pk}_{3}, \mathrm{pk}_{4}\right\}$
Public-key encryption: ciphertext size grows with the size of the set

m

Broadcast encryption: achieve sublinear ciphertext size, but requires central authority

Independent, user-generated keys

An Application to Broadcast Encryption

Distributed broadcast encryption [Bz14]

Each user chooses its own public key, and each key has a unique index
$\operatorname{Encrypt}\left(\mathrm{pp},\left\{\mathrm{pk}_{i}\right\}_{i \in S}, m\right) \rightarrow \mathrm{ct}$
Can encrypt a message m to any set of public keys
Efficiency: $|c t|=|m|+\operatorname{poly}(\lambda, \log |S|)$
Decrypt(pp, $\left.\left\{\mathrm{pk}_{i}\right\}_{i \in S}, \mathrm{sk}, \mathrm{ct}\right) \rightarrow m$
Any secret key associated with broadcast set can decrypt Decryption does requires knowledge of public keys in broadcast set

Distributed Broadcast from Slotted Registered ABE

Consider a registered ABE scheme with a single dummy attribute x
Public key for an index i is a key for slot i with attribute x

Distributed Broadcast from Slotted Registered ABE

Consider a registered ABE scheme with a single dummy attribute x
Public key for an index i is a key for slot i with attribute x

Distributed Broadcast from Slotted Registered ABE

Consider a registered ABE scheme with a single dummy attribute x
Public key for an index i is a key for slot i with attribute x

Flexible Broadcast Encryption

Distributed broadcast encryption still requires some coordination

Users have to generate public keys for distinct slots (for correctness), so public-key directory needs to be centralized

Flexible Broadcast Encryption

Distributed broadcast encryption still requires some coordination

Users have to generate public keys for distinct slots (for correctness), so public-key directory needs to be centralized

Flexible broadcast encryption: no notion of slots, can encrypt to an arbitrary set of public keys

Flexible Broadcast Encryption

Distributed broadcast encryption still requires some coordination

$\operatorname{Encrypt}\left(\mathrm{pp},\left\{\mathrm{pk}_{i}\right\}_{i \in S}, m\right) \rightarrow \mathrm{ct}$
Can encrypt a message m to any set of public keys
Efficiency: $|\mathrm{ct}|=|m|+\operatorname{poly}(\lambda, \log |S|)$
Decrypt(pp, $\left.\left\{\mathrm{pk}_{i}\right\}_{i \in S}, \mathrm{sk}, \mathrm{ct}\right) \rightarrow m$
Any secret key associated with broadcast set can decrypt Decryption does requires knowledge of public keys in broadcast set

Flexible Broadcast Encryption

public some coordination parameters

$\operatorname{Encrypt}\left(\mathrm{pp},\left\{\mathrm{pk}_{i}\right\}_{i \in S}, m\right) \rightarrow \mathrm{ct}$
Can encrypt a message m to any set of public keys
Efficiency: $|c t|=|m|+\operatorname{poly}(\lambda, \log |S|)$
$\operatorname{Decrypt}\left(\mathrm{pp},\left\{\mathrm{pk}_{i}\right\}_{i \in S}, \mathrm{sk}, \mathrm{ct}\right) \rightarrow m$
Any secret key associated with broadcast set can decrypt Decryption does requires knowledge of public keys in broadcast set
[GLWW23]: distributed broadcast encryption \Rightarrow flexible broadcast encryption

Removing Trust from Functional Encryption

Goal: Support capabilities of functional encryption without a trusted authority

Open Problems

Schemes with short CRS or unstructured CRS without non-black-box use of cryptography Existing constructions have long structured CRS (typically quadratic in the number of users)

Lattice-based constructions of registered FE (and special cases of FE)
Registration-based encryption known from LWE [DKLLMR23]
Registered ABE for circuits known from evasive LWE (via witness encryption) [FWW23]
Key revocation and verifiability
Defending against possibly malicious adversaries

Improve concrete efficiency for registered FE schemes
Current bottlenecks include large CRS and large public keys

Thank you!

References

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption: Definitions and Challenges. TCC 2011.
[BZ14] Dan Boneh and Mark Zhandry. Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation. CRYPTO 2014.
[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing Registration Based Encryption. IMACC 2021.
[DKLLMR23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza Rahimi. Efficient Laconic Cryptography from Learning with Errors. EUROCRYPT 2023.
[DPY23] Pratish Datta, Tapas Pal, and Shota Yamada. Registered FE Beyond Predicates: (Attribute-Based) Linear Functions and More. 2023.
[FFMMRV23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele Venturi. Registered (Inner-Product) Functional Encryption. ASIACRYPT 2023.
[FKP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo Commitments: Registration-Based Encryption and Key-Value Map Commitments for Large Spaces. ASIACRYPT 2023.
[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to Use (Plain) Witness Encryption: Registered ABE, Flexible Broadcast, and More. CRYPTO 2023.

References

[GHMMRS19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar. Registration-Based Encryption from Standard Assumptions. PKC 2019.
[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-Based Encryption: Removing Private-Key Generator from IBE. TCC 2018.
[GKMR23] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient Registration-Based Encryption. ACM CCS 2023.
[GLWW23] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory. ACM CCS 2023.
[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data. ACM CCS 2006
[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable Registration-Based Encryption. CRYPTO 2020.
[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered Attribute-Based Encryption. EUROCRYPT 2023.
[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed Broadcast Encryption from Bilinear Groups. ASIACRYPT 2023.

References

\(\left.\begin{array}{ll}[O'N10] \& Adam O'Neill. Definitional Issues in Functional Encryption. 2010 .

[SS10] \& Amit Sahai and Hakan Seyalioglu. Worry-Free Encryption: Functional Encryption with Public Keys. ACM CCS

2010.\end{array}\right]\)| Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. EUROCRYPT 2005. |
| :--- |
| [SW05] |
| [ZZGQ23] | | Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via Predicate Encodings. ASIACRYPT |
| :--- |
| 2023. |

