
Removing Trust Assumptions
from Functional Encryption

David Wu

December 2023

based on joint works with Cody Freitag, Rachit Garg,
Susan Hohenberger, George Lu, and Brent Waters

Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓1 𝑓2 𝑓3

𝑥

learns 𝑓1(𝑥) learns 𝑓2(𝑥) learns 𝑓3(𝑥)

ciphertext encrypting 𝑥

Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓2 𝑓3

𝑥

learns 𝑓2(𝑥) learns 𝑓3(𝑥)

ciphertext encrypting 𝑥

Should not learn more
than 𝑓1 𝑥 and 𝑓2 𝑥

Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓1 𝑓2 𝑓3

𝑥

learns 𝑓1(𝑥) learns 𝑓2(𝑥) learns 𝑓3(𝑥)

ciphertext encrypting 𝑥

What if the key-issuer is
compromised?

Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓1 𝑓2 𝑓3

learns 𝑓1(𝑥) learns 𝑓2(𝑥) learns 𝑓3(𝑥)

What if the key-issuer is
compromised?

Central point of failure

Key issuer can decrypt all
ciphertexts

Users do not have control over keys

Functional Encryption vs. Public-Key Encryption

Public-key encryption is decentralized

Functional encryption is centralized

Every user generates their own key (no coordination or trust needed)

Does not support fine-grained decryption

Central (trusted) authority generates
individual keys

Supports fine-grained decryption capabilities

Can we get the best of
both worlds?

Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

(Bob, pk2)
sk2 sk3

(Carol, pk3)

Special case of
identity-based encryption (IBE)

Decryption keys are
associated with identities

Key issuer replaced
with key curator

Users chooses their own public/secret key and
register their public key with the curator

Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

Users chooses their own public/secret key and
register their public key with the curator

(Bob, pk2)
sk2 sk3

(Carol, pk3)

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

Aggregated key is short: for 𝐿
users, mpk = poly(𝜆, log 𝐿)

Key curator is
deterministic and

transparent (no secrets)

Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

(Bob, pk2)
sk2 sk3

(Carol, pk3)

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

message

id: Carol

Encrypt mpk, Carol, message

Master public key functions as the public key for
an identity-based encryption scheme

Registration-Based Encryption (RBE)

sk

[GHMR18]

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

To decrypt, users periodically
retrieve a helper decryption key hsk

(function of mpk and user’s public key pk1)

hsk hsk = poly(𝜆, log 𝐿)

key updates per user = poly 𝜆, log 𝐿

Note: As users join, the master public key is updated, so users occasionally need to retrieve
a new helper decryption key

(Alice, pk)

Registration-Based Encryption (RBE)
[GHMR18]

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

• Initial constructions based on indistinguishability obfuscation or hash garbling
(based on CDH, QR, LWE) – all require non-black-box use of cryptography

• High concrete efficiency costs: ciphertext is 4.5 TB for supporting 2 billion
users [CES21]

Can we construct RBE schemes that only need black-box use of cryptography?

Can we construct support more general policies (beyond identity-based encryption)?

Removing Trust from Functional Encryption

(pk1, 𝑓1)

sk1

(pk2, 𝑓2)
sk2 sk3

(pk3, 𝑓3)

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

Users chooses their own key and register the public key
(together with function 𝒇) with the curator

Note: 𝑓 could also be chosen by the key curator

mpk = poly(𝜆, log 𝐿)

Removing Trust from Functional Encryption

sk1 sk2 sk3

Aggregate public
keys together

𝑥Encrypt mpk, 𝑥

𝑓1 𝑥 𝑓2 𝑥 𝑓3 𝑥

mpk is essentially a key for a
functional encryption scheme

mpk

mpk = poly(𝜆, log 𝐿)

(pk1, 𝑓1)
(pk2, 𝑓2)

(pk3, 𝑓3)

Registered Functional Encryption

Can we construct RBE schemes that only need black-box use of cryptography?

Can we construct support more general policies (beyond identity-based encryption)?

YES!

YES!

Registration-based encryption [GHMR18, GHMMRS19, GV20, CES21, DKLLMR23, GKMR23, ZZGQ23, FKP23]

Registered attribute-based encryption (ABE)
• Monotone Boolean formulas [HLWW23, ZZGQ23]

• Inner products [FFMMRV23, ZZGQ23]

• Arithmetic branching program [ZZGQ23]

• Boolean circuits [HLWW23, FWW23]

Distributed/flexible broadcast [BZ14, KMW23, FWW23, GLWW23]

Registered functional encryption
• Linear functions [DPY23]

• Boolean circuits [FFMMRV23, DPY23]

Underlined schemes only need
black-box use of cryptography

Lots of progress in
this past year!

Registration-based encryption [GHMR18, GHMMRS19, GV20, CES21, DKLLMR23, GKMR23, ZZGQ23, FKP23]

Registered attribute-based encryption (ABE)
• Monotone Boolean formulas [HLWW23, ZZGQ23]

• Inner products [FFMMRV23, ZZGQ23]

• Arithmetic branching program [ZZGQ23]

• Boolean circuits [HLWW23, FWW23]

Distributed/flexible broadcast [BZ14, KMW23, FWW23, GLWW23]

Registered functional encryption
• Linear functions [DPY23]

• Boolean circuits [FFMMRV23, DPY23]

Registered Functional Encryption

Can we construct RBE schemes that only need black-box use of cryptography?

Can we construct support more general policies (beyond identity-based encryption)?

YES!

YES!

Underlined schemes only need
black-box use of cryptography

Lots of progress in
this past year!

This talk

This talk

Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“CS”

“faculty”

“math”

“student”

“CS”

message

policy: CS and faculty

Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“CS”

“faculty”

“math”

“student”

“CS”

message

policy: CS and faculty

Can decrypt

Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“CS”

message

policy: CS and faculty

Can decrypt Cannot decrypt Cannot decrypt

Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“math”

“student”

“CS”

message

policy: CS and faculty

Users cannot collude to decrypt

A Template for Building Registered ABE
[HLWW23]

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

mpk

aggregated public key

sk2

“student”

“CS”

“faculty”

“math”

pk2

pk3

sk3

Users join the system by
registering their public key

along with a set of attributes

message

policy: CS and faculty

ciphertexts associated
with policy

transparent key curator

A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

mpk = poly 𝜆, 𝒰 , log 𝐿

hsk𝑖 = poly 𝜆, 𝒰 , log 𝐿

𝜆: security parameter

𝒰: universe of attributes

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an
online fashion)

Slotted registered ABE:

A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an
online fashion)

Slotted registered ABE:

Encrypt mpk, 𝑃, 𝑚 → ct

Decrypt sk𝑖 , hsk𝑖 , ct → 𝑚

Encryption takes master public key and policy 𝑃 (no slot)

Decryption takes secret key sk𝑖 for some slot and the
helper key hsk𝑖 for that slot

A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an
online fashion)

Slotted registered ABE:

Encrypt mpk, 𝑃, 𝑚 → ct

Decrypt sk𝑖 , hsk𝑖 , ct → 𝑚

Encryption takes master public key and policy 𝑃 (no slot)

Decryption takes secret key sk𝑖 for some slot and the
helper key hsk𝑖 for that slot

Main difference with registered ABE:
Aggregate takes all 𝐿 keys simultaneously

Slotted Registered ABE to Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Aggregate
mpk

hsk1, … , hsk𝐿

Slotted scheme does not support online registration

Solution: use “powers-of-two” approach (like [GHMR18])

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = ⊥

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = ⊥

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

Add key to each
scheme with
available slot

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = ⊥

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

all slots are full
mpk1

[HLWW23]

Initially: all slots are empty
mpk = mpk1

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

all slots are full
mpk1

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1

pk2, 𝑆2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

Add key to each
scheme with
available slot

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

all slots are full
mpk1

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1

pk2, 𝑆2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2

all slots are full

all slots are full
mpk1

clear out
previous
schemes

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1

pk2, 𝑆2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2

all slots are full

clear out
previous
schemes

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk2

pk2, 𝑆2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2

all slots are full

clear out
previous
schemes

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2

all slots are full

pk3, 𝑆3pk3, 𝑆3

pk3, 𝑆3

pk3, 𝑆3

Add key to each
scheme with
available slot

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2

all slots are full

pk3, 𝑆3pk3, 𝑆3

pk3, 𝑆3

pk3, 𝑆3
all slots are full

mpk1

Add key to each
scheme with
available slot

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1, mpk2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2

all slots are full

pk3, 𝑆3pk3, 𝑆3

pk3, 𝑆3

pk3, 𝑆3
all slots are full

mpk1

Add key to each
scheme with
available slot

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1, mpk2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2

all slots are full

pk3, 𝑆3

pk3, 𝑆3

pk3, 𝑆3
all slots are full

mpk1

pk4, 𝑆4pk4, 𝑆4

pk4, 𝑆4

Add key to each
scheme with
available slot

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1, mpk2

pk1, 𝑆1

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk2, 𝑆2

mpk2

all slots are full

pk3, 𝑆3

pk3, 𝑆3

pk3, 𝑆3
all slots are full

mpk1

pk4, 𝑆4pk4, 𝑆4

pk4, 𝑆4

mpk3

all slots are full

clear out
previous
schemes

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk1, mpk2

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk3, 𝑆3

pk3, 𝑆3

pk4, 𝑆4pk4, 𝑆4

pk4, 𝑆4

mpk3

all slots are full

clear out
previous
schemes

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk3

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk3, 𝑆3

pk3, 𝑆3

pk4, 𝑆4pk4, 𝑆4

pk4, 𝑆4

mpk3

all slots are full

clear out
previous
schemes

[HLWW23]

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk3

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk3, 𝑆3

pk3, 𝑆3

pk4, 𝑆4

pk4, 𝑆4

Ciphertext is an encryption to
each public key

log 𝐿 overhead

[HLWW23]

Update needed whenever
user’s key moves from

scheme 𝑖 to scheme 𝑗 > 𝑖

Slotted Registered ABE to Registered ABE

Solution: use “powers-of-two” approach (like [GHMR18])

To support 𝐿 = 2ℓ users: maintain ℓ slotted schemes

20 = 1

21 = 2

22 = 4

2ℓ = 𝐿

⋮

Initially: all slots are empty
mpk = mpk3

pk1, 𝑆1

pk1, 𝑆1

pk2, 𝑆2

pk2, 𝑆2

pk3, 𝑆3

pk3, 𝑆3

pk4, 𝑆4

pk4, 𝑆4

At most ℓ = log 𝐿 updates

[HLWW23]

Constructing Slotted Registered ABE

Construction will rely on (composite-order) pairing groups 𝔾, 𝔾𝑇

Pairing is an efficiently-computable bilinear map 𝑒: 𝔾 → 𝔾𝑇 from 𝔾 to 𝔾𝑇:

𝑒 𝑔𝑥 , 𝑔𝑦 = 𝑒 𝑔, 𝑔 𝑥𝑦

Multiplies exponents in the target group

Outline of Slotted Registered ABE
[HLWW23]

Scheme will rely on a structured common reference string (CRS)

Slot components: each slot 𝑖 ∈ 𝐿 will have a set of associated group elements (denoted 𝐴𝑖)

Attribute components: each attribute 𝑤 ∈ 𝒰 will have a group element 𝑈𝑤

𝐴1 𝐴2 𝐴3 𝐴4 ⋯ 𝐴𝐿

User’s individual public/secret key is an ElGamal key-pair

sk = 𝑟, pk = 𝑔𝑟

Aggregated public key is just the product of every user’s public key:

mpk = ෑ

𝑖∈ 𝐿

𝑔𝑟𝑖 Similar aggregation for
attribute components

Outline of Slotted Registered ABE
[HLWW23]

Scheme will rely on a structured common reference string (CRS)

Slot components: each slot 𝑖 ∈ 𝐿 will have a set of associated group elements (denoted 𝐴𝑖)

Attribute components: each attribute 𝑤 ∈ 𝒰 will have a group element 𝑈𝑤

𝐴1 𝐴2 𝐴3 𝐴4 ⋯ 𝐴𝐿

Decryption enforces the following two requirements:

Slot requirement: Decrypter know a secret key associated with the public key for some slot 𝑖∗

Attribute requirement: Attributes associated with slot 𝑖∗ satisfy the decryption policy

In the construction, message is “blinded” by 𝑣1𝑣2, where 𝑣1 can be computed with knowledge of a secret key
associated with a slot 𝑖∗ and 𝑣2 can be computed if the attributes for slot 𝑖∗ satisfy the policy

Outline of Slotted Registered ABE
[HLWW23]

Scheme will rely on a structured common reference string (CRS)

Slot components: each slot 𝑖 ∈ 𝐿 will have a set of associated group elements (denoted 𝐴𝑖)

Attribute components: each attribute 𝑤 ∈ 𝒰 will have a group element 𝑈𝑤

𝐴1 𝐴2 𝐴3 𝐴4 ⋯ 𝐴𝐿

In the construction, message is “blinded” by 𝑣1𝑣2, where 𝑣1 can be computed with knowledge of a secret key
associated with a slot 𝑖∗ and 𝑣2 can be computed if the attributes for slot 𝑖∗ satisfy the policy

Decryption enforces the following two requirements:

Slot requirement: Decrypter know a secret key associated with the public key for some slot 𝑖∗

Attribute requirement: Attributes associated with slot 𝑖∗ satisfy the decryption policy

Need to be careful to defend
against collusions

[see paper for details]

Registered ABE Summary

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

Key issuer replaced
with key curator

mpk𝐿

Aggregated key

hsk1

• New approach to constructing RBE-type of primitives
• Registered ABE scheme (for Boolean formulas) only

makes black-box use of cryptography

• Construction will need a (trusted) common
reference string (CRS) and supports bounded
number of users

An Application to Broadcast Encryption
[FWW23]

Registered ABE is a useful building block for other trustless cryptographic systems

public-key directory

pk1

pk2

pk3

pk4

pk5

Independent, user-generated keys

Suppose we want to encrypt a message
to pk1, pk3, pk4

Public-key encryption: ciphertext size grows with
the size of the set

𝑚 𝑚 𝑚

Broadcast encryption: achieve sublinear ciphertext
size, but requires central authority

An Application to Broadcast Encryption
[FWW23]

Distributed broadcast encryption [BZ14]

public-key directory

1, pk1

2, pk2

3, pk3

4, pk4

5, pk5

Each user chooses its own public key, and
each key has a unique index

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

Can encrypt a message 𝑚 to any set of public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Any secret key associated with broadcast set can decrypt

Decryption does requires knowledge of public keys in
broadcast set

Distributed Broadcast from Slotted Registered ABE
[FWW23]

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Aggregate public keys using slotted registered ABE scheme

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to
policy 𝑃 that accepts 𝑥

Distributed Broadcast from Slotted Registered ABE
[FWW23]

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to
policy 𝑃 that accepts 𝑥

Correctness: If 𝑖 ∈ 𝑆, then (𝑖, pk𝑖, 𝑥) was aggregated in mpk so
decryption is possible using sk𝑖

Security: If 𝑖 ∉ 𝑆, then 𝑖, pk𝑖, 𝑥 was not aggregated in mpk so
we can appeal to security of registered ABE

Distributed Broadcast from Slotted Registered ABE
[FWW23]

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to
policy 𝑃 that accepts 𝑥

Correctness: If 𝑖 ∈ 𝑆, then (𝑖, pk𝑖, 𝑥) was aggregated in mpk so
decryption is possible using sk𝑖

Security: If 𝑖 ∉ 𝑆, then 𝑖, pk𝑖, 𝑥 was not aggregated in mpk so
we can appeal to security of registered ABE

Registered ABE [HLWW23] + compiler ⇒ distributed broadcast
encryption from composite-order pairing groups

Concurrent work [KMW23]: show how to adapt a centralized
broadcast encryption scheme into a distributed one from
prime-order pairing groups

Flexible Broadcast Encryption
[FWW23, GLWW23]

Distributed broadcast encryption still requires some coordination

public-key directory

1, pk1

2, pk2

3, pk3

4, pk4

5, pk5

Users have to generate public keys for distinct slots (for
correctness), so public-key directory needs to be centralized

public-key directory

pk1

pk2

pk3

pk4

pk5

Flexible Broadcast Encryption
[FWW23, GLWW23]

Distributed broadcast encryption still requires some coordination

Users have to generate public keys for distinct slots (for
correctness), so public-key directory needs to be centralized

Flexible broadcast encryption: no notion of slots, can
encrypt to an arbitrary set of public keys

public-key directory

pk1

pk2

pk3

pk4

pk5

Flexible Broadcast Encryption
[FWW23, GLWW23]

Distributed broadcast encryption still requires some coordination

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

Can encrypt a message 𝑚 to any set of public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Any secret key associated with broadcast set can decrypt

Decryption does requires knowledge of public keys in
broadcast set

public-key directory

pk1

pk2

pk3

pk4

pk5

Flexible Broadcast Encryption
[FWW23, GLWW23]

Distributed broadcast encryption still requires some coordination

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

public
parameters

Can encrypt a message 𝑚 to any set of public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Any secret key associated with broadcast set can decrypt

Decryption does requires knowledge of public keys in
broadcast set

[GLWW23]: distributed broadcast encryption ⇒ flexible broadcast encryption

Removing Trust from Functional Encryption

(Alice, 𝑓1)

sk1

(Bob, 𝑓2)
sk2 sk3

(Carol, 𝑓3)

Aggregate public
keys together

𝑥Encrypt mpk, 𝑥

𝑓1 𝑥 𝑓2 𝑥 𝑓3 𝑥

mpk is essentially a key for a
functional encryption scheme

Goal: Support capabilities of functional encryption without a trusted authority

Open Problems

Schemes with short CRS or unstructured CRS without non-black-box use of cryptography
Existing constructions have long structured CRS (typically quadratic in the number of users)

Lattice-based constructions of registered FE (and special cases of FE)
Registration-based encryption known from LWE [DKLLMR23]

Registered ABE for circuits known from evasive LWE (via witness encryption) [FWW23]

Key revocation and verifiability
Defending against possibly malicious adversaries

Thank you!

Improve concrete efficiency for registered FE schemes
Current bottlenecks include large CRS and large public keys

References

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption: Definitions and Challenges. TCC 2011.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty Key Exchange, Efficient Traitor Tracing, and More from
Indistinguishability Obfuscation. CRYPTO 2014.

[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing Registration Based Encryption. IMACC 2021.

[DKLLMR23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza Rahimi.
Efficient Laconic Cryptography from Learning with Errors. EUROCRYPT 2023.

[DPY23] Pratish Datta, Tapas Pal, and Shota Yamada. Registered FE Beyond Predicates: (Attribute-Based) Linear
Functions and More. 2023.

[FFMMRV23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele Venturi.
Registered (Inner-Product) Functional Encryption. ASIACRYPT 2023.

[FKP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo Commitments: Registration-Based Encryption
and Key-Value Map Commitments for Large Spaces. ASIACRYPT 2023.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to Use (Plain) Witness Encryption: Registered ABE, Flexible
Broadcast, and More. CRYPTO 2023.

References

[GHMMRS19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar.
Registration-Based Encryption from Standard Assumptions. PKC 2019.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-Based
Encryption: Removing Private-Key Generator from IBE. TCC 2018.

[GKMR23] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient Registration-Based
Encryption. ACM CCS 2023.

[GLWW23] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Realizing Flexible Broadcast Encryption: How to
Broadcast to a Public-Key Directory. ACM CCS 2023.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based Encryption for Fine-Grained
Access Control of Encrypted Data. ACM CCS 2006

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable Registration-Based Encryption. CRYPTO 2020.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered Attribute-Based Encryption.
EUROCRYPT 2023.

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed Broadcast Encryption from Bilinear
Groups. ASIACRYPT 2023.

References

[O’N10] Adam O’Neill. Definitional Issues in Functional Encryption. 2010.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-Free Encryption: Functional Encryption with Public Keys. ACM CCS
2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. EUROCRYPT 2005.

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via Predicate Encodings. ASIACRYPT
2023.

	Slide 1: Removing Trust Assumptions from Functional Encryption
	Slide 2: Functional Encryption (FE)
	Slide 3: Functional Encryption (FE)
	Slide 4: Functional Encryption (FE)
	Slide 5: Functional Encryption (FE)
	Slide 6: Functional Encryption vs. Public-Key Encryption
	Slide 7: Registration-Based Encryption (RBE)
	Slide 8: Registration-Based Encryption (RBE)
	Slide 9: Registration-Based Encryption (RBE)
	Slide 10: Registration-Based Encryption (RBE)
	Slide 11: Registration-Based Encryption (RBE)
	Slide 12: Removing Trust from Functional Encryption
	Slide 13: Removing Trust from Functional Encryption
	Slide 14: Registered Functional Encryption
	Slide 15: Registered Functional Encryption
	Slide 16: Attribute-Based Encryption
	Slide 17: Attribute-Based Encryption
	Slide 18: Attribute-Based Encryption
	Slide 19: Attribute-Based Encryption
	Slide 20: A Template for Building Registered ABE
	Slide 21: A Template for Building Registered ABE
	Slide 22: A Template for Building Registered ABE
	Slide 23: A Template for Building Registered ABE
	Slide 24: Slotted Registered ABE to Registered ABE
	Slide 25: Slotted Registered ABE to Registered ABE
	Slide 26: Slotted Registered ABE to Registered ABE
	Slide 27: Slotted Registered ABE to Registered ABE
	Slide 28: Slotted Registered ABE to Registered ABE
	Slide 29: Slotted Registered ABE to Registered ABE
	Slide 30: Slotted Registered ABE to Registered ABE
	Slide 31: Slotted Registered ABE to Registered ABE
	Slide 32: Slotted Registered ABE to Registered ABE
	Slide 33: Slotted Registered ABE to Registered ABE
	Slide 34: Slotted Registered ABE to Registered ABE
	Slide 35: Slotted Registered ABE to Registered ABE
	Slide 36: Slotted Registered ABE to Registered ABE
	Slide 37: Slotted Registered ABE to Registered ABE
	Slide 38: Slotted Registered ABE to Registered ABE
	Slide 39: Slotted Registered ABE to Registered ABE
	Slide 40: Slotted Registered ABE to Registered ABE
	Slide 41: Slotted Registered ABE to Registered ABE
	Slide 42: Constructing Slotted Registered ABE
	Slide 43: Outline of Slotted Registered ABE
	Slide 44: Outline of Slotted Registered ABE
	Slide 45: Outline of Slotted Registered ABE
	Slide 46: Registered ABE Summary
	Slide 47: An Application to Broadcast Encryption
	Slide 48: An Application to Broadcast Encryption
	Slide 49: Distributed Broadcast from Slotted Registered ABE
	Slide 50: Distributed Broadcast from Slotted Registered ABE
	Slide 51: Distributed Broadcast from Slotted Registered ABE
	Slide 52: Flexible Broadcast Encryption
	Slide 53: Flexible Broadcast Encryption
	Slide 54: Flexible Broadcast Encryption
	Slide 55: Flexible Broadcast Encryption
	Slide 56: Removing Trust from Functional Encryption
	Slide 57: Open Problems
	Slide 58: References
	Slide 59: References
	Slide 60: References

